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Abstract
Aggregating crowd wisdoms takes multiple la-
bels from various sources and infers true la-
bels for objects. Recent research work makes
progress by learning source credibility from data
and roughly form three kinds of modeling frame-
works: weighted majority voting, trust propaga-
tion, and generative models. In this paper, we
propose a novel framework named Label-Aware
Autoencoders (LAA) to aggregate crowd wisdoms.
LAA integrates a classifier and a reconstructor into
a unified model to infer labels in an unsupervised
manner. Analogizing classical autoencoders, we
can regard the classifier as an encoder, the recon-
structor as a decoder, and inferred labels as latent
features. To the best of our knowledge, it is the
first trial to combine label aggregation with autoen-
coders. We adopt networks to implement the clas-
sifier and the reconstructor which have the potential
to automatically learn underlying patterns of source
credibility. To further improve inference accuracy,
we introduce object ambiguity and latent aspects
into LAA. Experiments on three real-world datasets
show that proposed models achieve impressive in-
ference accuracy improvement over state-of-the-art
models.

1 Introduction
Aggregating crowd wisdoms is also known as label aggrega-
tion for crowdsourcing or truth discovery [Li et al., 2016]. It
is an increasingly important topic in machine learning. Many
tasks of machine learning require large labeling datasets. Tra-
ditional label collection from domain experts is usually ex-
pensive and time-consuming, which may not match the in-
creasing requirement for labels. Labeling by the crowd has
become popular with the blooming of online crowdsourcing
platforms such as Amazon Mechanical Turk [Ipeirotis, 2010]
and CrowdFlower [De Winter et al., 2015]. Such a platform
divides the whole labeling task into small parts and distributes
them to ordinary web users (sources). Despite of low cost,
crowdsourced labeling commonly suffers from (much) lower
accuracy than that from experts. Therefore in many labeling
tasks, for each object we need to aggregate multiple labels

from different users to reduce the labeling noise [Tian and
Zhu, 2015a].

Label aggregation takes multiple labels from various
sources as input and infers true labels for objects. This is
a typical unsupervised learning task as there is no ground
truth provided for inferring labels. The most simple and
widely used method is majority voting [Aydin et al., 2014].
It treats sources equally and picks the most voted label as
the true label. Recent research work mainly models source
credibility (or capability). The underlying assumption is
that sources with high credibility assign labels more ac-
curately than those with low credibility [Yin et al., 2008;
Li et al., 2014]. There are roughly three kinds of modeling
frameworks: weighted majority voting, trust propagation, and
generative models. Weighted majority voting is the direct ex-
tension from traditional majority voting [Aydin et al., 2014;
Li et al., 2014]. Trust propagation models both credibil-
ity of sources and reliability of provided labels [Yin et al.,
2008; Pasternack and Roth, 2010; Galland et al., 2010].
More recent work can be categorized into the generative
framework [Whitehill et al., 2009; Welinder et al., 2010;
Bachrach et al., 2012; Qi et al., 2013; Simpson et al., 2013;
Tian and Zhu, 2015a]. These methods generate source la-
bels from underlying (unknown) true labels by probabilistic
models and infer true labels by MAP or Bayesian estimation.
Though these methods have superior inference performance
to majority voting, they need to model sophisticated relation-
ships between source labels and inferred labels (by experts).
There are two weak points of such models. One is that they
are usually designed for data with typical characteristics but
may not generalize to the data with some other characteris-
tics. The other one is that even experts may improperly model
relationships between source labels and inferred labels which
limits the inference performance (e.g. missing effective fac-
tors or adding too many constraints).

In this paper, we propose a novel framework named Label-
Aware Autoencoders (LAA) to aggregate crowd wisdoms.
By vectorizing source labels, label aggregation is simplified
as a classification problem to predict true labels from source
labels. Since label aggregation is unsupervised and there is
no ground truth for training a classifier, we combine a classi-
fier and a reconstructor into a unified framework. The idea is
motivated by classical autoencoders which encode input into
latent features in the hidden layer and reconstruct the input
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from latent features in the output layer [Vincent et al., 2008].
We can regard the classifier in LAA as an encoder and in-
ferred labels as latent features of the input. To the best of our
knowledge, it is the first trial to combine label aggregation
with autoencoders.

The framework is flexible for various implementations. In
this paper we adopt networks to implement the classifier and
the reconstructor. Instead of manually modeling sophisticated
relationships between source labels and inferred labels, net-
works have the potential to automatically learn those under-
lying patterns. That property makes proposed model domain-
free and easy to implement for different data. To further im-
prove inference accuracy, we introduce object ambiguity and
latent aspects into the classifier and the reconstructor.

Experiments on three real-world datasets show that even
the basic version of LAA has competitive inference perfor-
mance with the state-of-the-art. Modeling object ambigu-
ity and latent aspects further improves the inference accu-
racy significantly over the state-of-the-art. We also examine
learned patterns in networks to support the effectiveness of
proposed models.

2 Related Work
The research of label aggregation can be traced back to 1979.
Dawid and Skene proposed a probabilistic model to aggre-
gate observations for patients [Dawid and Skene, 1979]. Re-
cent research about this topic rises with the concept of truth
discovery [Yin et al., 2008].

Models of label aggregation can be roughly categorized
into three frameworks: weighted majority voting, trust prop-
agation, and generative models. Weighted majority voting
is the direct extension from traditional majority voting [Ay-
din et al., 2014; Li et al., 2014]. The key of these meth-
ods is estimating source weights or credibility. Despite of
mediocre inference accuracy, weighted majority voting is in-
tuitive and easy to implement. Trust propagation models
[Yin et al., 2008; Pasternack and Roth, 2010; Galland et al.,
2010] assume labels provided by trustworthy (high credible)
sources are more reliable and sources providing reliable la-
bels are more trustworthy. Without prior structures or pa-
rameters, these models need a sufficient number of labels
and may suffer from sparse data. More recent work usu-
ally utilizes the generative framework [Whitehill et al., 2009;
Welinder et al., 2010; Bachrach et al., 2012; Qi et al., 2013;
Simpson et al., 2013; Tian and Zhu, 2015a]. These methods
generate source labels from the underlying (unknown) true
labels by probabilistic models and are trained via maximiz-
ing a posteriori (MAP) or Bayesian estimation. Besides mod-
eling source credibility, various factors are introduced with
the flexibility of probabilistic models, such as object diffi-
culty [Bachrach et al., 2012] and confusion matrix [Simpson
et al., 2013]. Other interesting work about label aggregation
includes truth existence modeling [Zhi et al., 2015], mini-
max conditional entropy [Zhou et al., 2012], rank aggregat-
ing [Metrikov et al., 2015], crowd clustering [Gomes et al.,
2011], etc.

With the prevalence of deep learning and learning rep-
resentations, autoencoders have become a widely adopted

Figure 1: An example of constructing a source label vector. Here
5 sources label several objects with binary labels. For object om,
source 1, 2, and 5 give their labels respectively while source 3 and 4
do not. A source label vector vm is constructed by one-hot encoding
for each source block. An accompanying mask vector δm indicates
whether a source gives a label for object om.

unsupervised model during the last five years [Vincent et
al., 2010]. Autoencoders perform unsupervised learning in
a supervised learning fashion: trying to recover the input
through a network with a small-sized hidden layer [Vincent
et al., 2008]. Recently, variational autoencoders [Kingma and
Welling, 2013], a marriage between Bayesian inference and
autoencoders, attract much attention in building deep genera-
tive models to learn data distributions.

Despite of the wide usage of autoencoders, to the best of
our knowledge, there is no previous work on label aggrega-
tion that leverages autoencoders to learn the latent data pat-
terns amongst the source labels and infer true labels.

3 Methods
3.1 Problem Definition
Suppose there are M objects, N sources, and a set of labels
the sources give to objects. We denote lmn the label object om
received from source sn,m ∈ {1, ...,M} and n ∈ {1, ..., N}.
A categorical label lmn ∈ {1, ...,K} where K is the number
of categories. The goal of label aggregation is to infer a true
label ỹm for each object om.

3.2 Label Vectorization
We represent an object by a source label vector. For object
om, vector vm of N × K dimensionality is constructed to
contain all labeling information of the object. The vector can
be divided into N blocks where each block contains K con-
secutive elements. The n-th block corresponds to the label
given by source sn. We use source-wise one-hot encoding to
make the vector discriminative between categories. Figure 1
illustrates the construction of a source label vector. Let vmnk
denote the k-th element of block n for object om. If source
sn labels om as category k (i.e. lmn = k), vmnk is set to 1
while the other elements of the same block are 0. If source
sn does not assign any label to om, then all K elements of
block n are set to 0. An accompanying mask vector δm is
constructed to conveniently indicate whether source sn gives
the label or not. δm has the same dimensionality as vm. If
lmn exists, then all corresponding K elements of δmnk are set
to 1 (k ∈ {1, ...,K}), 0 otherwise.
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It is obvious that all the label vectors of different objects
have the same dimensionality. This property makes following
learning methods feasible. A source label vector is also called
an input vector when used in the label-aware autoencoder.

3.3 Label-aware Autoencoders
Since a source label vector contains all given information of
one object, we can exploit a model or a classifier to take
a source label vector vm as input and output the true la-
bel ỹm. However, training a classifier in traditional super-
vised machine learning problems needs partial ground-truth
labels, but label aggregation is totally unsupervised [Li et
al., 2016]. Therefore, we propose a novel framework named
Label-Aware Autoencoders (LAA) to infer true labels in such
an unsupervised scenario. LAA integrates a classifier and
a reconstructor into a unified model. The classifier infers
true labels from input and the reconstructor reconstructs input
from inferred labels in an unsupervised manner. Analogizing
classical autoencoders, we can regard the classifier as an en-
coder, the reconstructor as a decoder, and inferred labels as
latent features of input [Vincent et al., 2008].

Formally, we describe the mechanism of LAA from the
view of maximizing the log-likelihood of input. For a given
input vector v (the superscript m is omitted for simplic-
ity), denote the classifier as qθ(y|v) and the reconstructor
as pφ(v|y), where θ and φ are model parameters, y is the
inferred label. LAA maximizes the lower bound of log-
likelihood log p(v), which is an analogy to variational autoen-
coders [Kingma and Welling, 2013].

log p(v) =

K∑
y=1

qθ(y|v) log
p(y, v)

qθ(y|v)
+DKL(qθ(y|v)||p(y|v))

≥
K∑
y=1

qθ(y|v) log
pφ(v|y)p(y)

qθ(y|v)

= Eqθ(y|v) log pφ(v|y)−DKL(qθ(y|v)||p(y)).
(1)

On the right hand side in formula (1), the first term measures
the expectation of reconstruction quality. It encourages the
probability pφ(v|y) to be 1 to achieve good reconstruction.
The second term is the negative KL divergence between the
distribution of inferred label qθ(y|v) and the prior distribution
p(y), which acts as the regularization term to constrain the
inferred label distribution to the prior one.

3.4 Network Implementation
In this paper we adopt networks to implement the classifier
and the reconstructor in LAA. We first construct a basic ver-
sion LAA-B. It does not need extra knowledge about sources
or objects. Figure 2 illustrates the architecture. The classi-
fier qθ(y|v) is modeled by a network where we obtain a label
vector ȳm from input vm.

ȳm = σ(vmwq) (2)

where weight matrix wq corresponds to classifier parameter
θ (the bias term is omitted for simplicity). σ(·) is the softmax
operator to make ȳm a distribution. ȳm is a K-dimensional

reconstruction 
layer

input layer

label layer

source-wise softmax nodes

sample from 

reconstructor

sample layer

classifier

Figure 2: The architecture of LAA-B. Here the number of categories
K = 2 for demonstration.

vector where K is the number of categories. We then sample
ym from the distribution ȳm. For convenience in the net-
work, ym is one-hot encoded. The reconstructor is also mod-
eled by a network which takes ym as input and reconstructs
ṽm as

ṽm = σ̃(ymwp), (3)
where weight matrix wp corresponds to reconstructor param-
eter φ. σ̃(·) is the source-wise softmax operator. The opera-
tor applies a softmax operator only on nodes in same source
block. By the treatment, reconstructed ṽm has the same struc-
ture as input vm. Then the reconstruction term log pφ(v|y)
in formula (1) is equivalent to the negative cross entropy be-
tween input vm and reconstructed ṽm.

log pφ(v|y) = log pφ(vm|ym) (4)

=
N∑
n=1

K∑
k=1

δmnkv
m
nk log ṽmnk,

where element ṽmnk of reconstructed vector ṽm corresponds to
vmnk of input vector vm, and δmnk is the corresponding element
of mask vector δm. The mask vector makes the calculation
focus on observed labels only.

A potential problem of inferring labels by networks is that
nodes are exchangeable. For a label vector ȳm, its first ele-
ment can either represent category 1 or category 2 if without
any constraint. Therefore, we introduce a proper prior distri-
bution for the KL divergence in formula (1) to constrain the
representation of label vector ȳm (i.e. to make the first el-
ement always represent category 1 while the second element
always represent category 2). A simple and reasonable choice
is to use voting results

DKL(qθ(y|v)||p(y)) = DKL(ȳm||rm), (5)
where rm is a vector of voting distribution from vm where
its k-th element rmk =

∑N
n=1 v

m
nk∑K

k=1

∑N
n=1 v

m
nk

. rm has fixed posi-
tions for categories that constrain the representation of label
vectors and solves the problem of node exchangeability.

Some real-world datasets are sparse, where one object re-
ceives labels from only a few sources or one source only la-
bels a few objects. In such cases, we introduce l1-norm for
weight matrices in the classifier and the reconstructor

Ls = ||wp||1 + ||wq||1. (6)
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Indistinctive elements in weight matrices are pushed to zero
to reduce noise from sources which label only a few objects.

Taking formulas (4), (5), and (6) into (1) and summing over
all objects, LAA-B has the loss function

LB({vm}) =−
M∑
m=1

(
Eqθ(ym|vm) log pφ(vm|ym) (7)

− λklDKL(ȳm||rm)

)
+ λsLs,

where {vm} denotes the set of all input vectors. λkl and λs
are constraint strength. Note that we regard the KL diver-
gence term as a regularizer, and giving it a small λkl achieves
good performance in practice. Model parameters are learned
by minimizing the loss. When the model is well trained, true
label ỹm can be simply predicted from ȳm by choosing the
category with maximum probability: ỹm = arg maxk ȳ

m
k .

3.5 Relationship with Weighted Majority Voting
We demonstrate the intuition of inferring labels of LAA-B
from the view of extended weighted majority voting. That
also explains what is learned in the weight matrix of the clas-
sifier. Here we change the notation of weight matrix wq a
little bit. Let wnij denote the weight from the i-th element in
source block n of an input vector to the j-th element of a la-
bel vector, i, j ∈ {1, ...,K} and n ∈ {1, ..., N}. Weights
corresponding to source block n constitute a weight block.

We write out the expression of label vector ȳm with the
interaction between n-th blocks in the input vector and the
weight matrix (the number of categories is set as 2)

[ȳm1 , ȳ
m
2 ] = σ([· · · , vmn1, vmn2, · · ·]


...

...
wn11 wn12
wn21 wn22

...
...

). (8)

The expression extends weighted majority voting [Li et al.,
2014] which only assigns one weight for each source. A
weight block for the corresponding source has K2 weights.
wnij is the weight from source labeled category i to inferred
category j. A positively larger weight assigns more contribu-
tion from the corresponding source label to the inferred cate-
gory. Therefore a weight block describes labeling credibility
of the corresponding source. Note that a weight block with
large diagonal weights represents a credible source which
usually gives correct labels.

3.6 Object Ambiguity
Based on LAA-B, we can introduce more factors to further
improve the inference performance. Here we introduce ob-
ject ambiguity. An ambiguous object usually contains con-
flicting or little labeling information, that may produce large
noise for learning. By contrast, an unambiguous object has
clean and sufficient labeling information. One may have an
easy understanding of object ambiguity by referring to object
difficulty [Bachrach et al., 2012].

A model is expected to put more efforts to correctly label
and reconstruct an unambiguous object than an ambiguous

reconstruction 
layer

input layer

label layer

sample layer

latent
aspects

Figure 3: The architecture of LAA-L. (Single) arrows represent a
function relationship in the network (usually with corresponding
weight matrices). The dashed arrow (from ȳ to y) indicates sam-
pling. Solid paired arrows represent weight matrices corresponding
with latent aspects.

one. To achieve this goal, we introduce a scalar zm for each
object om and combine it into the classifier and the recon-
structor respectively. A large zm indicates an object is unam-
biguous while a small zm indicates an object is ambiguous.

ȳm = σ(zmvmwq), (9)
ṽm = σ̃(zmymwp). (10)

We can see a larger zm results in more heterogeneous distri-
bution after the softmax operator. Heterogeneous distribution
leads to large loss if the object is not well reconstructed, that
forces the model to improve the reconstruction quality. Since
the input vector vm contains all object information, zm can
be modeled based on it:

zm = τ(vmwo), (11)

where wo is the network weight which is learned in the train-
ing process. τ is the softplus activation function to ensure
that zm is positive. This model is called LAA-O (LAA with
Object ambiguity).

3.7 Latent Aspects
Further extension for LAA-O is to introduce latent aspects.
One object may have more than one latent aspects, such as
colors and shapes of flowers. One source may be good at
classifying flowers by shapes, but not that good by colors.
The performance of a model can be improved by distinguish-
ing source credibilities under different aspects.

Suppose one object om has I latent aspects which is de-
noted by an I-dimensional latent aspect vector zm. Its ele-
ment zmi indicates the weight of the i-th latent aspect. For the
i-th latent aspect, there are corresponding weight matrices wi

q

and wi
p for the classifier and the reconstructor respectively to

represent source credibility under that aspect. Label vector
ȳm and reconstructed vector ṽm are obtained by summing
over all aspects.

ȳm = σ(
I∑
i=1

zmi (vmwi
q)), (12)

ṽm = σ̃(
I∑
i

zmi (ymwi
p)). (13)
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Table 1: Accuracy Comparison on Real-world Datasets

Algorithm Bluebirds Flowers Web Search
MV 0.7593 0.8000 0.7310

TruthFinder 0.7593 0.8050 0.7867
CATD 0.7685 0.8400 0.7806
DARE 0.7778 0.8100 0.8240

DS 0.8981 0.8700 0.8308
BCC 0.8981 0.8700 0.8562

CrowdSVM 0.8981 0.8650 0.9058
LAA-B 0.8889 0.8700 0.8971
LAA-O 0.9074 0.8800 0.9118
LAA-L 0.9259 0.9000 0.9107

The latent aspect vector zm is produced from vm.

zm = τ(vmwl). (14)

The model is named LAA-L (LAA with Latent aspects).
Figure 3 gives its architecture. We can see LAA-O is a special
case of LAA-L where the number of latent aspects is 1.

4 Experiments
Three real-world datasets are used in experiments. Blue-
birds [Welinder et al., 2010] consists of 108 bluebird pic-
tures. There are 2 breeds among all the images, and each
image is labeled by all 39 sources. Flowers [Tian and Zhu,
2015b] contains 200 flower pictures. Each source is asked
whether the flower is a peach flower. 36 sources participate
in the labeling task and contribute 2,366 binary labels in total.
Web Search [Zhou et al., 2012] contains 2,665 query-URL
pairs. 177 sources are asked to rate each pair by 5 relativity
levels. In total 15,567 labels are collected.

Inference accuracy is used as the measurement

accuracy =
number of correctly inferred objects

number of all objects
. (15)

We implement proposed models by TensorFlow1 which of-
fers GPU acceleration . Gradient descent is exploited to mini-
mize the loss. A dataset is split into training set and validation
set. Training process stops when the loss on the validation set
begins to increase. We grid-search proper hyperparameters
by choosing the combination which achieves the lowest loss
on the validation set. Hyperparameters include learning rate
η ∈ [0.001, 0.1], constraint strength λkl ∈ [0.0001, 0.1], and
λs ∈ [0.0001, 0.1]. After determining the optimal hyperpa-
rameters, we train the model by using all data with chosen
hyperparameters. For LAA-L, we set the number of latent as-
pects as 2 (further discussion is in Section 4.4). In this paper,
we implement networks with one layer for the classifier and
the reconstructor respectively. Though deep networks can be
easily exploited, we find they do not further improve infer-
ence accuracy on the datasets due to data size.

4.1 Accuracy Comparison
Representative label aggregation methods are used as base-
lines. They are MV (majority voting), CATD (a weighted

1www.tensorflow.org
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Figure 4: Illustration of the weight matrix in LAA-B learned on the
Flowers dataset. Each block corresponds to a source and has 2 × 2
weights. 20 gray levels are used to indicate weight values.

majority voting model which estimates the confidence inter-
val of source credibility [Li et al., 2014]), TruthFinder (the
first trust propagation model [Yin et al., 2008]), DARE (a
generative model which models source credibility and ob-
ject difficulty [Bachrach et al., 2012]), DS (the first label ag-
gregation model [Dawid and Skene, 1979]), BCC (a gener-
ative model using confusion matrix [Kim and Ghahramani,
2012]), CrowdSVM (a recent proposed method combining
max margin majority voting and DS Model [Tian and Zhu,
2015a]). Proposed label-aware autoencoders LAA-B, LAA-
O, and LAA-L are compared as well. The results of infer-
ence accuracy are illustrated in Table 1. We can see even the
basic model LAA-B is competitive with the state-of-the-art
methods. Note that LAA-B does not use knowledge about
sources or objects. By introducing object ambiguity, LAA-O
improves the inference accuracy significantly. LAA-L further
improves the inference accuracy by exploiting latent aspects.
The results show that proposed LAA has advantages on label
aggregation compared with other methods.

4.2 Source Credibility in Weight Matrix

Weight matrix of the classifier represents source credibility.
To illustrate that, we take weight matrix wp after training
LAA-B on the Flowers dataset. There are 36 blocks corre-
sponding to 36 sources and each block has 2×2 weights. We
use 20 gray levels to color weights according to their values.
White indicates a large weight while black indicates a small
weight. Figure 4b illustrates the weight blocks. For each
block, its diagonal weights are relatively large. That means
the inference accuracy of most sources are better than random
guessing. LAA-B distinguishes sources with high credibility
from others by giving large diagonal weights. To see that,
we illustrate in Figure 4a labeling accuracy for sources which
correspond to the first block column. Labeling accuracy of
a source is: the ratio of correctly labeled object number to
the total labeled object number by the source. We can ob-
serve that sources with high labeling accuracy correspond to
blocks with large diagonal weights. The observation shows
networks in LAA have the capability to capture source credi-
bility by learning the weight matrix.
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Figure 6: Four images of peach flowers from the Flowers dataset.
They are arranged from unambiguous to ambiguous.

4.3 Effect of Object Ambiguity
In this subsection we show the effect of object ambiguity. Af-
ter training LAA-O on the Web Search dataset, we sort ob-
jects by their ambiguity in ascending order and divide them
into 10 buckets. The first bucket contains objects with the
least ambiguity while the last bucket contains objects with
the most ambiguity. For objects in each bucket, we calculate:
1. Average entropy of their inferred label vectors; 2. Aver-
age inference accuracy. The results are illustrated in Figure
5. Objects are given heterogeneous distribution of inferred
labels (with small entropy) if the model treats them as un-
ambiguous (blue bars). Those unambiguous objects usually
lead to high inference accuracy (yellow bars). On the other
hand, low accuracy is caused by objects with conflicting la-
beling information. LAA-O treats them as ambiguous and
gives relatively balanced distribution of inferred labels (with
large entropy) to reduce their effect in the learning process.
That decreases the noise from those objects and improves the
overall accuracy. To visualize object ambiguity, we show four
images of peach flowers from the Flowers dataset and arrange
them from unambiguous to ambiguous in Figure 6. The un-
ambiguous peach flower is easy to recognize while the am-
biguous one is not.

4.4 Effect of Latent Aspects
LAA-L is the extension for LAA-O by introducing more than
one latent aspects. From Table 1, we observe that accuracy
is significantly improved by LAA-L on the Bluebirds and
the Flowers dataset, but not improved on the Web Search
dataset. In Figure 7, we compare latent aspect vectors learned
on Flowers and Web Search datasets to explain the reason. A
latent aspect vector with 2 dimensionality can be illustrated as

first aspect

se
co

nd
 a

sp
ec

t

(a) Flowers

first aspect

se
co

nd
 a

sp
ec

t

(b) Web Search

Figure 7: Illustration of latent aspect vectors on Flowers and Web
Search datasets. The X-axis indicates the weight of first aspect and
the Y-axis indicates the weight of second aspect.

First aspect Second aspect

Figure 8: Illustration of two typical flower images for each aspect.
Images dominated by the first aspect (corresponding to red diamonds
in 7a) are pink flowers, while images dominated by the second as-
pect (corresponding to black triangles in 7a) are white flowers with
special petal shape.

a point in a 2-D figure. On the Web Search dataset, two latent
aspects show strong positive correlation (Figure 7b). There-
fore they can be merged into one aspect without decreasing
the inference accuracy. On the Flowers dataset, however, la-
tent aspects have slight negative correlation (Figure 7a) which
means different objects have different dominant aspects. That
supports the necessity of introducing latent aspects. We show
two typical flower images for each aspect in Figure 8. Images
dominated by the first aspect are pink flowers, while images
dominated by the second aspect are white flowers with spe-
cial petal shape. Figure 7 also shows a method to determine
a proper number of latent aspects. We can try to add one la-
tent aspect at a time, and train LAA-L to see whether there
is positive correlation between aspects. If two aspects do not
have positive correlation, then the added aspect is effective. If
two aspects have strong positive correlation, then adding the
extra aspect is not necessary. Through experiments, we find
that the best numbers of latent aspects for Bluebirds, Flowers,
and Web Search datasets are 2, 2, and 1 respectively.

5 Conclusion
In this paper, we propose Label-Aware Autoencoders (LAA)
for aggregating crowd wisdoms. We exploit networks to im-
plement the classifier and the reconstructor in LAA which
have the potential to automatically learn underlying source
labeling patterns. Object ambiguity and latent aspects are in-
troduced to the basic model to further improve inference ac-
curacy. Experiments on three real-world datasets show the
advantages of proposed framework, where the basic model
LAA-B is competitive with the state-of-the-art, LAA-O and
LAA-L further improve inference accuracy significantly.
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