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Abstract

Recommender systems play an important role in
today’s electronic markets due to the large ben-
efits they bring by helping businesses understand
their customers’ needs and preferences. The major
preference components modelled by current recom-
mender systems include user and item biases, fea-
ture value preferences, conditional dependencies,
temporal preference drifts, and social influence on
preferences. In this paper, we introduce a new
hybrid latent factor model that achieves great ac-
curacy by integrating all these preference compo-
nents in a unified model efficiently. The proposed
model employs gradient descent to optimise the
model parameters, and an evolutionary algorithm
to optimise the hyper-parameters and gradient de-
scent learning rates. Using two popular datasets,
we investigate the interaction effects of the pref-
erence components with each other. We conclude
that depending on the dataset, different interactions
exist between the preference components. There-
fore, understanding these interaction effects is cru-
cial in designing an accurate preference model in
every preference dataset and domain. Our results
show that on both datasets, different combinations
of components result in different accuracies of rec-
ommendation, suggesting that some parts of the
model interact strongly. Moreover, these effects are
highly dataset-dependent, suggesting the need for
exploring these effects before choosing the appro-
priate combination of components.

1 Introduction

The overwhelming number of products (movies, books, mu-
sic, news, services, etc.) offered by on-line retailers has made
it difficult for the customers to decide which products to buy.
This problem has incited retailers to invest on improving their
recommender systems, and many e-commerce leaders such
as Amazon and Netflix have made recommender systems a
salient part of their websites [Koren er al., 2009].
Recommender systems are usually based on collaborative
filtering (CF) [Koren and Bell, 2011; Aldrich, 2011], where
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the preferences of a user are predicted by collecting rating in-
formation from other similar users or items [Ma et al., 2008].
Among the CF systems, latent factor models have become
popular mainly due to their high prediction accuracy and ef-
ficiency [Koren, 2008; Koren et al., 2009]. These models
explain the ratings by transforming both items and users on
a shared latent feature space, which is inferred from the rat-
ing patterns [Zafari and Moser, 2016]. These models are very
flexible and enable the incorporation of additional feedback
information such as social network data, user and item biases,
temporal information, contextual information, and user de-
mographics. Many recent studies have contributed extensions
to the basic PMF by incorporating additional information.
For instance, SocialMF [Jamali and Ester, 2010], SoRec [Ma
et al., 2008], and SoReg [Ma et al., 2011] extend PMF while
addressing the problem of social influence in preferences
and cold-start users, and SoCo [Zhao et al., 2015] incorpo-
rates social and contextual information into the basic PMF.
TimeSVD++ [Koren, 2010] extends the basic PMF (Prob-
abilistic Matrix Factorisation) by incorporating the implicit
feedback, user and item biases, as well as the drift of user
preferences over fime. Zhang et al. [Zhang et al., 2014] use
phrase-level sentiment analysis on user reviews to extract the
users sentiments towards specific item feature values [Zafari
and Nassiri-Mofakham, 2016b; 2017]. Liu et al. [Liu et al.,
2015] proposed an extension to their previously proposed la-
tent factor model, ListPMF [Liu et al., 2014] so that the con-
ditional dependencies between features [Zafari et al., 2015;
Zafari and Nassiri-Mofakham, 2016a] are also taken into con-
sideration. Therefore, we identify five major components
to the preferences. These components include feature value
preferences, social influence, temporal dynamics, conditional
preferences, and user and item biases. Feature value pref-
erences refer to the relative favourability of each one of the
item feature values, social influence refers to the influence
of social relationships on the preferences of a user, temporal
dynamics means the drift of the preferences over time, con-
ditional preferences refers to the dependencies between item
features and their values, and user and item biases refer to the
systematic tendencies for some users to give higher ratings
than others, and for some items to receive higher ratings than
others [Koren and Bell, 2011].

An important research question that arises here is how do
the components of preferences interact with each other, and in
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particular, are these interactions dependent on the preference
dataset or domain? Answering this question would enable the
research community to design more accurate recommender
systems and possibly tailor them to the specific needs of a
domain. Although these components have been extensively
researched individually, to the best of our knowledge, there is
no model that integrates all these components into a unified
model. The interaction effects of these components have been
disregarded. This work is the first attempt at integrating all
the components of preferences in a unified component-based
model. In this paper, first we propose a hybrid model that in-
corporates all the components of preferences. Then we show
that different interactions actually exist between preference
components, which necessitates the designing of a unified
component-based model integrating all the preference com-
ponents in order to achieve the highest accuracy.

The rest of the paper is organised as follows: In section
2, we first briefly introduce matrix factorisation, which lays
the foundation for most of the popular state of the art rec-
ommender systems, and then in section 2.1 we explain the
proposed model TCSFVSVD, which is a latent factor model
based on matrix factorisation that employs all of the five pref-
erence components. Then in section 2.2, we briefly explain
the evolutionary algorithm that we used to optimise the hyper-
parameters and learning rates in TCSFVSVD, and then in
section 2.3, we introduce our hybrid method to get optimised
preference models for every combination of preference com-
ponents. In section 3, we first explain the experimental setup,
and then report on the results. We explain the related work in
section 4, and finally we conclude the paper in section 5 and
give the future directions.

2 Proposed Model

In rating-based recommender systems, the observed ratings
are represented by the rating matrix R, in which the element
R;; is the rating given by the user i to the item j. Usually,
R;;j is a 5-point integer, 1 point means very bad, and 5 points
means excellent. Let U € RV*P and V € RY*? be latent
user and item feature matrices, with vectors U; and V; repre-
senting user-specific and item-specific latent feature vectors
respectively (N is the number of users, M is the number of
items, and D is the number of item features). In probabilistic
matrix factorization, the log-posterior over the user and item
latent feature matrices with rating matrix and fixed parame-
ters is minimised as shown in Eq. 1.
argminy yv[p(U,V|R,0,0y,0v) =

Inp(R|U,V,0)+1Inp(U|oy) +Inp(V|oy) +C]

)]

where C is a constant that is not dependent on U and V and
o, Oy, and oy denote the standard deviations in the matrices
R, U, and V respectively. Minimising Eq. 1 is equivalent to
minimising Eq. 2.
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and &y = % are regularisation parameters (model hyper-
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parameters), and R% = UVT, and I; j is the indicator func-
tion that is equal to 1 if user i rated item j, and O otherwise.
Stochastic Gradient Descent and Alternating Least Squares
are usually employed to solve the optimization problem in
Eq. 2.

As can be seen in Eq. 2 in probabilistic matrix factor-
ization, R;; is estimated by the inner product of latent user
feature vector U; and latent item feature vector V;, that is
IQ’,-T i= UiV)»T. In other words, the goal of matrix factoriza-
tion is to factorize a matrix into two matrices such that by
multiplying the factorized matrices, the original matrix can
be approximated.

In basic matrix factorisation, the preferences of a user are
only defined as a user feature vector, which represents the im-
portance that the user gives to each item feature (e.g. price is
extremely important while quality is less important). How-
ever, one of the important properties of probabilistic matrix
factorisation is that it enables the incorporation of additional
information such as user and item biases, temporal informa-
tion, and social influence.

2.1 TCSFVSVD

In this section, we introduce an extension to the basic matrix
factorisation, which incorporates all the five preference com-
ponents mentioned earlier. This model is abbreviated to TCS-
FVSVD (Time Conditional Social Feature Value Singular
Value Decomposition). In Fig. 1, FP represents preferences
over features, which is captured by matrix U in the basic ma-
trix factorisation. B represents user and item bias, F repre-
sents item features captured by matrix V in the basic matrix
factorisation. CP represents conditional dependencies, FVP
represents preferences over feature values, SI stands for so-
cial influence, and finally T is an abbreviation for time.
TCSFVSVD incorporates additional matrices and vectors
into matrix factorisation, so that all these components can be
learnt from the users’ ratings and social connections. As this
figure shows, the model starts by loading the time-stamped
user ratings as well as the social network data into the mem-
ory. The main loop accounts for the learning iterations over
the model. The first loop within the main loop iterates over
the time-stamped user-item ratings matrix, while the second
loop iterates over the social network adjacency matrix, to
train the socially influenced parts of the model. In each loop,
one entry of the input matrix is read and used to update the
matrices/vectors related to that input data. As can be seen,
the user and item bias values are only updated in loop 1, since
they are only related to the user ratings. Both user-item rat-
ings and users’ social relationships include information about
the users’ preferences over features. Therefore, the new val-
ues for FP are calculated in both loops and updated in the
main loop, when all new values have been calculated. Simi-
larly, the values for SI and FVP depend on both user-item rat-
ings and social relationships. Consequently, their new values
are calculated inside both loops 1 and 2, and are updated in
the main loop. In contrast, the values of F as well as CP only
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Figure 1: The flow charts of TCSFVSVD

need the user-item ratings to be updated. Therefore, they are
immediately updated inside the loop 1. The time component
includes parameters that account for the dynamics of user and
item biases, feature value preferences, and preferences over
features. Since Bias values do not depend on the user-item
ratings matrix, they are updated immediately in loop 1. How-
ever, the new values for the dynamics of feature value prefer-
ences, and preferences over features are updated in the main
loop. In the proposed method, every one of the preference
components can be arbitrarily switched off and on by setting
their learning rates to zero or a non-zero value respectively.

Although social relationships are likely to be time depen-
dent, most data sets do not contain this information. Con-
ditional preferences are related to the feature value prefer-
ences, since they model the dependencies between the fea-
tures and their values, and therefore, are applied to the ma-
trices that account for the users’ preferences over feature val-
ues. Social influence is applied to the components of pref-
erences over features and preferences over feature values.
However, applying social influence to the user and item bi-
ases has no observable benefits and user or item biases do
not seem to be influenced by social interactions. Therefore,
we concluded that user and item biases are not much influ-
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enced by the social interactions. One of the problems faced
in probabilistic matrix factorisation is that if the regularisa-
tion parameters are not tuned carefully, the model is prone
to over-fitting because it finds a single point estimate of the
parameters [Salakhutdinov and Mnih, 2008]. Therefore, in
basic matrix factorisation, it is assumed that the regularisa-
tion parameters are known in advance, and they are fed into
the model as model inputs. In order to address the problem
of finding the optimal parameters, [Salakhutdinov and Mnih,
2008] proposed an extension to the basic PMF by assuming
Gaussian-Wishart priors on the user and item regularisation
parameters. In their proposed method, these parameters are
also learnt along with other model parameters. However, the
proposed approach increases the computational complexity.
Furthermore, our experiments show that this method provides
less accurate recommendations than some other methods. We
found that the performance of the TCSFVSVD depends to a
large extent on fine-tuning the hyper-parameters and learn-
ing rates for each of the preference components. To optimise
the hyper-parameters and learning rates, the proposed method
employs a hybrid method combining an Evolutionary Algo-
rithm (EA) and Gradient Descent (GD). In the following sec-
tions, we first briefly introduce Evolutionary Algorithm (EA),
and then explain the proposed hybrid method. This method is
abbreviated to ATCSFVSVD (Adaptive TCSFVSVD).

22 EA

To optimise the learning rate and regularisation parameter of
each model component, we applied an evolutionary algorithm
(EA) [Aleti and Moser, 2016] with real encoding, Gaussian
mutation and single-point crossover. The parent population
was chosen using binary tournament selection. The algo-
rithm receives its feedback from the error value resulting from
the designed matrix factorisation model. The algorithm be-
gins with the initialisation of an initial current population (P).
Then three empty sets of solutions OP, PP, and CP are cre-
ated. Then M solutions from the set P are selected according
to the tournament selection method, and added to the parents
set (PP). The parent solutions in PP are evolved and added
to CP, and then all the solutions in CP are added to the off-
spring set (OP), and this process is repeated until the size of
this set exceeds the maximum number of offspring. Then the
solutions in OP are evaluated and all the solutions in P are
also added to OP. Then the solutions in OP are truncated ac-
cording to a truncation strategy, and all the solutions in P are
replaced by the truncated solutions in OP. Now P includes the
next generation of the solutions. This process is repeated until
a stopping criteria is met, and finally the best solution in P is
chosen as the optimal solution and returned by the algorithm.
This best solution includes the optimal hyper-parameters and
learning rates for the TCSFVSVD. Optimising the matrices
repeatedly with hyper-parameters (regularisation factors) and
learning rates produced by the EA is computationally expen-
sive. For the hyper-parameter optimisation, a representative
subset of 10%, 3%, and 1% of the matrix entries depending
on the dataset were used, sampled uniformly randomly. The
interactions between the EA and the matrix optimisation are
illustrated in Fig. 2.
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Figure 2: The schematic representation of ATCSFVSVD

2.3 ATCSFVSVD

Having obtained the near-optimal values for the learning rates
and regularisation parameters of the model using a subset of
the matrix entries, we can optimise the matrices by applying
gradient descent repeatedly on the complete datasets using
the pre-optimised hyper-parameters. In recommender sys-
tems, there are usually thousands of users who show their
preferences over thousands of items. Therefore, the con-
structed model includes millions of parameters to optimise.
Most of the latent factor models that we have reviewed so far
employ gradient descent to optimise the model parameters.
This method is applicable to the problems in which the so-
lution space is differentiable, and particularly suitable to the
problems that include many parameters to optimise. The pop-
ularity of this method stems from its efficiency and the high
quality solutions that it can find at a reasonable time. In previ-
ous work [Zafari and Moser, 20171, it has been observed that
recommender systems achieve their best accuracies when dif-
ferent components, represented by matrices, capture different
aspects of a dataset. It is intuitively clear that the compo-
nents of the model interact; for example, we can assume that
users’ preferences change over time. To investigate the inter-
dependencies between the components, we switched off com-
ponents one at a time and investigated the effects on the model
in an attempt to isolate the contribution of each component.

3 Experiments

In order to evaluate the proposed model and determine the
interactions of the preference components, we train separate
models for different component combinations. As explained
in section 2.1, preferences are comprised of 5 major com-
ponents. Considering different combinations of components,
32 preference models are possible. In order to analyse the
interactions of the components, we first need to obtain the
optimal hyper-parameters and learning rates using the ATCS-
FVSVD method as in Fig. 2. This gives us 32 sets of hyper-
parameters and learning rates, each for one combination of
components. Then we run TCSFVSVD using the optimal
hyper-parameters and learning rates obtained using ATCS-
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Figure 3: the preference components and their interplay in ATCS-
FVSVD

FVSVD and evaluate the error of each combination of com-
ponents. The results are compared with TrustSVD [Guo et
al., 2016], which has the highest accuracy among a large set
of state of the art models.

3.1 Experimental Setting

We tested the proposed method on three popular datasets,
Ciao, Epinions, and Flixster. Ciao is a dataset crawled from
the ciao.co.uk website. This dataset includes 35,835 ratings
given by 2,248 users over 16,861 movies. Ciao also includes
the trust relationships between users. The number of trust
relationships in Ciao is 57,544. Therefore the dataset den-
sity of ratings and trust relationships are 0.09% and 1.14%
respectively. The ratings are integer values between 1 and 6.
The Epinions dataset consists of 664,824 ratings from 40,163
users on 139,738 items of different types (software, music,
television show, hardware, office appliances, ...). Ratings are
integer values between 1 and 5, and data density is 0.011%.
Epinions also enables the users to issue explicit trust state-
ments about other users. This dataset includes 487183 trust
ratings. The density of the trust network is 0.03%. Flixster
is a social movie site which allows users to rate movies and
share the ratings with each other, and become friends with
others with similar movie taste. Flixster dataset which is col-
lected from Flixster website includes 8,196,077 ratings issued
by 147,612 users on 48,794 movies. The social network also
includes 7,058,819 friendship links. The density of the rat-
ings matrix and social network matrix are 0.11% and 0.001%
respectively. In order to reduce the computational expenses,
we applied the algorithm to a uniformly randomly selected
subset of the users and items. These reduced matrices retain
the original density and are a representative sample. In all the
experiments, 80% of the datasets are used for training and the
remaining 20% are used for evaluation. Each model training
is repeated for 30 times and the average values are used.

3.2 Results

To analyse the interaction of the components, as mentioned
before, we first optimise the hyper-parameters and learning
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rates for the 32 models that account for 32 combinations
of the 5 components. Then we use the optimised hyper-
parameters for each model combination to train the model
using TCSFVSVD and evaluate the error on the test set. The
MAE values and RMSE values obtained on the Ciao, Epin-
ions, and Flixster datasets have been compared with those
of TrustSVD in the tables 1, 2, and 3 respectively. We also
applied t test to determine whether the improvements are sta-
tistically significant.

As we see, in terms of MAE, the proposed method achieves
significantly better results than TrustSVD, in all the combina-
tions that include B (Bias) on the Ciao and Flixster datasets.
However, on the Epinions dataset, almost all the combina-
tions that exclude B achieve significantly better results than
TrustSVD. This suggests that B has rather deteriorating ef-
fect on the Epinions dataset. In terms of MAE, the model that
includes all the components achieves the lowest error on the
Ciao dataset. However on the Epinions dataset, the model that
only includes FVP achieves the lowest error. On the Flixster
dataset, the model including the FVP, SI, and B components
gets the highest accuracy. In terms of RMSE, the model that
only includes CP, T, and B achieves the highest accuracy on
the Ciao and Flixster datasets, and the model that includes
FVP and SI performs the best on the Epinions dataset.

Furthermore, by considering the interaction plots for ev-
ery pair of variables, we notice that there are two-way inter-
actions between FVP and SI, SI and T on the Ciao dataset,
between FVP and T and CP and B in the Epinions dataset,
and between FVP and B, and FVP and T on the Flixster
dataset. We also illustrate the interaction plots for the ma-
jor two-way interactions observed in the three datasets. The
non-parallel lines in these figures graphically demonstrate the
existing interactions. These figures show the average RMSE
of the model for the cases where the model includes or ex-
cludes the two components involved in the interaction. From
Fig. 4a, we notice that the addition of FVP improves the ac-
curacy regardless of whether the model includes SI or not.
We also notice that when SI is helpful at the presence of FVP.
When FVP is not present, the exclusion of SI gets a better
accuracy. The same kind of interaction in Fig. 5a is observed
between FVP and T on the Epinions dataset. Fig. 4b however
shows a different kind of interaction between SI and T. We
can see that when T is present, the inclusion of SI deteriorates
the accuracy, while in case T is not present, the inclusion of
SIimproves the accuracy. Therefore, the helpfulness of SI ac-
tually depends on whether the component T is present or not.
In Fig. 5b, we notice that when B is present, the addition of
CP improves the accuracy. However, when B is switched off,
the inclusion of CP only worsens the accuracy. This means
that CP is only helpful when B is also modelled. We can also
see that in general, regardless of whether B is switched on
or not, the model is better off without any of the components
B and CP. Fig. 6a, shows that the inclusion of B regardless
of FVP improves the accuracy of the model. This figure also
shows that addition of FVP is helpful when B is switched off.
However, when B is switched on, adding FVP slightly wors-
ens the accuracy of the model. Fig. 6b illustrates a different
type of interaction, where adding FVP always improves the
accuracy. This figure also shows that the inclusion of T wors-
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ens the accuracy, regardless of whether FVP is switched on or
off. It also reveals that the exclusion of T results in a higher
accuracy improvement in case FVP is switched on.

From the results, we can conclude that different component
combinations should be employed in different datasets. As
we observed, various types of interactions can exist between
preference components in different datasets. Therefore, the
interaction effects of the components should be taken into
consideration in order to achieve the best performance.

4 Related Work

Recommender systems can be broadly classified into content-
based and collaborative filtering (CF) systems. Content-
based filtering, also referred to as cognitive filtering, origi-
nates in information retrieval and text processing, and rec-
ommends items based on a comparison between the content
of the items and a user profile. CF approaches on the other
hand predict the preferences of a user by collecting pref-
erence information from many users. These methods are
widely adopted to build recommender systems and can be
broadly classified into memory-based and model-based ap-
proaches. Model-based CF learns the parameters of a model
and only stores those parameters. Algorithms in the cate-
gory of model-based CF include the clustering, aspect and
latent factor models [Ma et al., 2008; Jiang er al., 2012;
Aghdam et al., 2015].

Latent factor models as an example of model-based col-
laborative filtering explain the ratings by characterising both
users and items on a number of latent factors which are in-
ferred from the rating patterns. Recently, latent factor models
based on matrix factorisation have gained much popularity as
they usually outperform traditional memory-based methods,
and have achieved higher performance in some benchmark
datasets [Koren et al., 2009].

Incorporating user and item bias values into latent factor
models have been proposed by Koren [2009; 2011]. Accord-
ing to Koren, user and item biases tend to capture much of
the observed signal in user-item ratings data. He proposed a
model called SVD++, that incorporated the implicit feedback
from the user-item ratings as well as user and item biases into
the probabilistic matrix factorisation.

There are only a few recommender systems that consider
conditional preferences. Liu er al. [2015] proposed a latent
factor model that does not require domain knowledge, and
rather directly captures the conditional preferences from the
user ratings. Using the movielens dataset, they showed that
most of the users’ preferences in rating-based recommender
systems are conditional. Then they proved that quadratic
polynomial can model the conditional preferences that cannot
be captured by the linear function used in conventional latent
factor models based on matrix factorisation. They showed
how to integrate the proposed quadratic approximation model
of conditional preferences into ListPMF [Liu et al., 2014] in
order to obtain more accurate results.

Zhang et al. [2014] proposed a model to capture the users’
preferences over feature values from user reviews. They used
phrase-level sentiment analysis on user reviews to extract ex-
plicit item features and user opinions (sentiments) and pro-
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MAE RMSE

Components Model TrustSVD  t value pvalue Sig. Model TrustSVD tvalue pvalue Sig.
None 1.4275 1.1508 24.6290  0.0000 yes  1.6772  1.3969 25.1063  0.0000  yes
B 1.1032 1.1508 -7.7055  0.0000 yes  1.3725  1.3969 -3.6063  0.0006 yes
T 1.4252 1.1508 22.8287  0.0000 yes  1.6774  1.3969 25.2688 0.0000  yes
TB 1.1086 1.1508 -6.5056  0.0000 yes  1.3733  1.3969 -3.5415  0.0008 yes
SI 1.4152 1.1508 23.4468  0.0000 yes  1.6698  1.3969 22.7944  0.0000  yes
SIB 1.1116 1.1508 -4.8783  0.0000 yes  1.3731  1.3969 -3.0958  0.0031  yes
SIT 1.4225 1.1508 23.8483  0.0000 yes  1.6700  1.3969 24.5632  0.0000  yes
SITB 1.1215 1.1508 -4.4167  0.0000 yes  1.3815  1.3969 -2.3212 0.0238  yes
CP 1.3965 1.1508 21.7273  0.0000 yes  1.6506  1.3969 25.6979  0.0000  yes
CPB 1.1362 1.1508 -2.1803  0.0333 yes  1.4458  1.3969 7.8582  0.0000 yes
CPT 1.3753 1.1508 20.3797  0.0000 yes  1.6239  1.3969 20.9376  0.0000  yes
CPTB 1.1079 1.1508 -6.0150  0.0000 yes 13714  1.3969 -3.7379  0.0004  yes
CP SI 1.3868 1.1508 21.2223  0.0000 yes  1.6279  1.3969 20.9090  0.0000  yes
CPSIB 1.1234 1.1508 -4.0826  0.0001 yes  1.3843  1.3969 -1.8253  0.0731  no

CPSIT 1.3560 1.1508 16.7996  0.0000 yes  1.6101  1.3969 18.5375  0.0000  yes
CPSITB 1.2487 1.1508 12.1932  0.0000 yes  1.4996  1.3969 13.9836  0.0000 yes
Fvp 1.3702 1.1508 19.4127 ~ 0.0000 yes  1.6204  1.3969 20.2715  0.0000  yes
FVPB 1.1154 1.1508 -4.8547  0.0000 yes  1.3781  1.3969 -2.6843  0.0095  yes
FVPT 1.3525 1.1508 19.1287  0.0000 yes  1.6006  1.3969 19.9911  0.0000 yes
FVPTB 1.1223 1.1508 -4.0554  0.0002 yes  1.3833  1.3969 -1.8287  0.0727 no

FVP SI 1.3630 1.1508 19.7696  0.0000 yes  1.6118  1.3969 18.7106  0.0000  yes
FVP SIB 1.1194 1.1508 -3.8211  0.0004 yes  1.3826  1.3969 -2.0094  0.0492  yes
FVPSIT 1.3368 1.1508 15.2481  0.0000 yes  1.6051  1.3969 16.3300  0.0000 yes
FVPSITB 1.1118 1.1508 -5.7295  0.0000 yes 1.3746  1.3969 -3.4459  0.0011  yes
FVP CP 1.3475 1.1508 17.0897  0.0000 yes  1.5907  1.3969 17.0615  0.0000 yes
FVP CPB 1.1147 1.1508 -5.3312  0.0000 yes 1.3773  1.3969 -2.9649  0.0044  yes
FVPCPT 1.3386 1.1508 14.4214  0.0000 yes  1.5803  1.3969 14.5007  0.0000  yes
FVPCPTB 1.1217 1.1508 -4.0294  0.0002 yes 1.3816  1.3969 -2.1205  0.0383  yes
FVP CP SI 1.3025 1.1508 13.5713  0.0000 yes  1.5670  1.3969 15.6979  0.0000  yes
FVP CPSIB 1.1086 1.1508 -4.9167  0.0000 yes  1.3768  1.3969 -2.4427  0.0180  yes
FVPCPSIT 1.3081 1.1508 13.2102  0.0000 yes  1.5790  1.3969 16.6703  0.0000  yes
FVPCPSITB 1.1021 1.1508 -6.0648  0.0000 yes 1.3738  1.3969 -3.1400  0.0027  yes

Table 1: The results of t-test for each model combination against TrustSVD for the Ciao dataset

MAE RMSE
Components Model TrustSVD  t value pvalue Sig. Model TrustSVD tvalue pvalue Sig.
None 0.8919 0.9242 -14.7896  0.0000  yes 1.1912  1.1912 -0.0366  0.9710 no
B 0.9213 0.9242 -1.2188  0.2279  no 1.1924  1.1912 0.5134  0.6096 no
T 0.8903 0.9242 -16.4499 0.0000 yes 1.1918  1.1912 0.3185  0.7515  no
TB 0.9219 0.9242 -0.8563  0.3956  no 1.1929  1.1912 0.6549  0.5152  no
SI 0.8923 0.9242 -13.9091 0.0000 yes 1.1921  1.1912 03913 0.6970  no
SIB 0.9219 0.9242 -0.8809  0.3821 no 1.1924  1.1912 0.4819  0.6317 no
SIT 0.8932 0.9242 -16.4361 0.0000  yes 1.1930 1.1912 09123  0.3660 no
SITB 0.9231 0.9242 -0.5085  0.6130  no 1.1947  1.1912 1.4135  0.1629 no
cp 0.8923 0.9242 -15.4226  0.0000  yes 1.1897  1.1912 -0.7630  0.4487 no
CPB 0.9196 0.9242 -1.9628  0.0545  no 1.1898  1.1912 -0.5410  0.5907 no
CPT 0.8926 0.9242 -16.1177 0.0000  yes 1.1921  1.1912 0.4440  0.6589 no
CPTB 0.9193 0.9242 -1.9537  0.0557  no 1.1900  1.1912 -0.5330  0.5961 no
CP SI 0.8938 0.9242 -16.4465 0.0000 yes 1.1918  1.1912 0.2864  0.7756  no
CPSIB 0.9226 0.9242 -0.6287  0.5321 no 1.1946  1.1912 1.3634  0.1781 no
CPSIT 0.8937 0.9242 -13.7415 0.0000  yes 1.1918  1.1912 0.2725  0.7864 no
CPSITB 0.9224 0.9242 -0.7115  0.4798  no 1.1926  1.1912 0.4988  0.6199 no
Fvp 0.8895 0.9242 -16.1290  0.0000  yes 1.1883  1.1912 -1.4123  0.1634  no
FVPB 0.9226 0.9242 -0.6281  0.5325  no 1.1925  1.1912 0.5279  0.5996 no
FVPT 0.8905 0.9242 -15.9989 0.0000 yes 1.1862  1.1912 -2.0161  0.0485  yes
FVPTB 0.9182 0.9242 -2.4315  0.0182  yes 1.1896  1.1912 -0.6164  0.5402 no
FVP SI 0.8912 0.9242 -15.2663 0.0000 yes 1.1856 1.1912 -2.1763  0.0338  yes
FVP SIB 0.9214 0.9242 -1.0594 02940 no 1.1936  1.1912 0.9937  0.3245 no
FVPSIT 0.8922 0.9242 -14.9977 0.0000 yes 1.1897  1.1912 -0.6744  0.5027 no
FVPSITB 0.9201 0.9242 -1.7241  0.0900  no 1.1918  1.1912 0.2361  0.8142 no
FVP CP 0.8947 0.9242 -16.1379  0.0000  yes 1.1927  1.1912 0.6804  0.4990 no
FVP CPB 0.9180 0.9242 -2.9121  0.0052  yes 1.1896  1.1912 -0.7657  0.4471  no
FVPCPT 0.8904 0.9242 -16.0818 0.0000  yes 1.1857  1.1912 -2.2216  0.0303  yes
FVPCPTB 0.9207 0.9242 -1.4380  0.1558  no 1.1932  1.1912 0.8964  0.3738 no
FVP CP SI 0.8933 0.9242 -16.9729 0.0000  yes 1.1880  1.1912 -1.4328  0.1573  no
FVPCPSIB  0.9190 0.9242 -2.0765  0.0424  yes 1.1893  1.1912 -0.8747  0.3854 no
FVPCPSIT  0.8931 0.9242 -15.8001 0.0000  yes 1.1878  1.1912 -1.6135  0.1122  no
FVPCPSITB 0.9192 0.9242 -1.9090  0.0614  no 1.1881  1.1912 -1.3097  0.1955  no

Table 2: The results of t-test for each model combination against TrustSVD for the Epinions dataset
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MAE RMSE
Components Model TrustSVD  t value p value Sig. Model TrustSVD tvalue pvalue Sig. 1.0800- B
None 0.8425  0.7910 19.9469  0.0000 yes 1.0687  0.9932 272935 0.0000  yes -0
B 07802 0.7910 550999 0.0000 yes 0.9947  0.9932 08913 03767 no 1.0600- T 1
T 0.8426  0.7910 17.5169  0.0000 yes 1.0729  0.9932 39.9944  0.0000  yes —

TB 07812 0.7910 441499 0.0001  yes 09933 09932 0.0095 09925 no =1.04004

SI 0.8441  0.7910 252272 0.0000 yes 1.0722 09932 427515 0.0000  yes g

SIB 07774 0.7910 55178 0.0000 yes 09926  0.9932 03129 07555  no 21.0200-

SIT 0.8413  0.7910 202648 0.0000 yes 1.0702  0.9932 29.1248  0.0000  yes

SITB 07823 0.7910 3.6435  0.0006 yes 09940  0.9932 04329  0.6667 no 1.00004

cp 0.8457  0.7910 261998  0.0000 yes 1.0698  0.9932 34.8148  0.0000  yes —

CPB 07807  0.7910 440814 0.0002 yes 09917 09932 -0.8123 04200 no 0.9800-

CPT 0.8448  0.7910 224132 0.0000 yes 1.0701  0.9932 33.1685 0.0000  yes 0 |

CPTB 0.7784  0.7910 51980 0.0000 yes 0.9895  0.9932 -1.6860  0.0978  no FVP

CPsI 0.8463  0.7910 239656  0.0000 yes 1.0705  0.9932 28.5411  0.0000  yes

CPSIB 0.7799  0.7910 -5.3745  0.0000 yes 0.9922  0.9932 -0.5437  0.5888  no (a) FVP-B

CPSIT 0.8504  0.7910 26,1554  0.0000 yes 1.0706  0.9932 253960 0.0000  yes 1.03204 7 T
CPSITB 07814 0.7910 445509  0.0000 yes 09931 09932 ©0.0912 09277 no \ o
FVP 0.8141  0.7910 75863  0.0000 yes 1.0501  0.9932 18.8726  0.0000  yes 1.0300- L
FVP B 07774  0.7910 -6.6830  0.0000 yes 09944 09932 05983 05521  no

FVPT 08136 0.7910 6.4479  0.0000 yes 1.0480  0.9932 17.3676  0.0000  yes 1.0280-

FVPTB 07776  0.7910 -6.4858  0.0000 yes 09948  0.9932 08192 04161 no 7

FVP SI 0.8143 07910 6.6098  0.0000 yes 1.0516  0.9932 18.7214  0.0000  yes § L0260

FVP SIB 07733 0.7910 7.6412 0.0000 yes 0.9945  0.9932 0.6670 05075  no :

FVPSIT 0.8201  0.7910 82561  0.0000 yes 1.0586  0.9932 18.9316 0.0000  yes

FVPSITB 07754  0.7910 61368  0.0000 yes 09953 09932 11278 02641 1o 1.0240-

FVP CP 0.8125  0.7910 6.7558  0.0000 yes 1.0466  0.9932 147821  0.0000  yes

FVP CP B 07803 0.7910 51025 0.0000 yes 09944 09932  0.6886 04938 no 102204 ‘

FVP CP T 0.8169  0.7910 73838 0.0000 yes 1.0514  0.9932 17.6998  0.0000  yes 0 1
FVPCPTB 07809  0.7910 48757 0.0000 yes 09936  0.9932 0.2039  0.8392 no Fvp

FVP CP SI 0.8218  0.7910 83818  0.0000 yes 1.0557  0.9932 18.7621  0.0000  yes (b) FVP-T

FVPCPSIB 07779  0.7910 52527 0.0000 yes 09932  0.9932 <0.0033 09974 no

FVPCPSIT 08183  0.7910 8.1475  0.0000 yes 1.0553  0.9932 19.4216  0.0000  yes

FVPCPSITB 0.7762  0.7910 -5.8009  0.0000  yes 0.9964  0.9932 1.6012  0.1150  no Figure 6: Two-way interaction effects

on the Flixster dataset

Table 3: The results of t-test for each model combination against TrustSVD for the Flixster dataset

posed EFM. The extracted explicit preferences were incor-
porated into basic probabilistic matrix factorisation in order
to improve the recommendation accuracy and explainability.
The advantage of this method over other methods based on
basic MF is that it takes the preferences over feature values
into account, which improves the accuracy. Its disadvantage
is that it operates based on user reviews and in cases when this
information is not available, it can not be applied. Further-
more, it is based on phrase-level sentiment analysis, which
ignores the context of the sentence in which a term is used.

To incorporate the influence of social friends in prefer-
ences, [Guo er al., 2013; 2016] have proposed TrustSVD.
This method incorporates the explicit and implicit influences
of ratings as well as trust between users in a social net-
work into matrix factorisation. Comprehensive experimen-
tal results have shown that TrustSVD outperforms both trust-
and rating-based methods in predictive accuracy. However,
TrustSVD does not include conditional preferences over fea-
ture values and it ignores the dynamicity of preferences.

To capture the dynamic preferences, Koren proposed
TimeSVD++ [Koren, 2010; Koren and Bell, 2011]. This
model builds on SVD++, which extends the basic matrix fac-
torisation by adding user and item biases and implicit feed-
back. In TimeSVD++, additional matrices and vectors are
added to the model, so that the dynamicity of user and item
biases and preferences over features are also modelled.

To the best of our knowledge, there is currently no model
that integrates all the aforementioned preference components
into a single model. Our work is the first attempt in modelling
all the preference components in a single recommender. This
enables us to design a model that can achieve the highest
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5 Conclusion and Future Work

In this paper, we proposed a novel hybrid latent factor model,
incorporating different components of preferences, i.e. user
and item biases, feature preferences, feature value prefer-
ences, conditional dependencies, social influence, and pref-
erence dynamicity. The proposed hybrid model employed
an Evolutionary Algorithm to optimise the model hyper-
parameters and the learning rates to be used in Gradient De-
scent. Then using two popular datasets, we showed that the
proposed method achieves significantly better results than
TrustSVD, which to the best of our knowledge, is the most
accurate state of the art recommender system. We further
analysed the interaction effects between the preference com-
ponents in those two datasets. We concluded that different
types of interactions may exist between different components
in different datasets. This finding emphasised the importance
of designing a component-based approach in preference mod-
elling, which enables understanding of these interaction ef-
fects in different datasets and domains, in order to achieve
the highest accuracy.

An interesting future direction that we want to follow is
related to quantifying the significance of the components and
their interactions in different datasets and domains.
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