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Abstract

Forgetting refers to a non-standard reasoning prob-
lem concerned with eliminating concept and role
symbols from description logic-based ontologies
while preserving all logical consequences up to the
remaining symbols. Whereas previous research has
primarily focused on forgetting concept symbols, in
this paper, we turn our attention to role symbol for-
getting. In particular, we present a practical method
for semantic role forgetting for ontologies express-
ible in the description logic ALCOQH.(V), i.e., the
basic description logic ALC extended with nomi-
nals, qualified number restrictions, role inclusions
and the universal role. Being based on an Acker-
mann approach, the method is the only approach so
far for forgetting role symbols in description logics
with qualified number restrictions. The method is
goal-oriented and incremental. It always terminates
and is sound in the sense that the forgetting solution
is equivalent to the original ontology up to the for-
gotten symbols, possibly with new concept definer
symbols. Despite our method not being complete,
performance results of an evaluation with a proto-
typical implementation have shown very good suc-
cess rates on real-world ontologies.

1 Introduction

The origins of interest in forgetting can be traced back to the
work of Boole on propositional variable elimination and the
seminal work of Ackermann [Ackermann, 1935] who recog-
nized that the problem amounts to the elimination of existen-
tial second-order quantifiers. In logic the problem has been
studied as the (dual) uniform interpolation problem [Visser,
1996; D’ Agostino and Hollenberg, 2000; Herzig and Mengin,
2008], a notion related to the Craig interpolation problem, but
stronger. In computer science the importance of forgetting
can be found in the knowledge representation literature [Lin
and Reiter, 1994; Lang et al., 2003; Delgrande and Wang,
2015], specification refinement literature [Bicarregui et al.,
2001] and the area of description logic-based ontology engi-
neering [Botoeva er al., 2016; Wang et al., 2008; 2010; 2014;
Konev et al., 2009a; 2009b; 2013; Lutz and Wolter, 2011;
Lutz et al., 2012; Grau and Motik, 2012; Ludwig and Koney,

2014; Nikitina and Rudolph, 2014]. In ontology-based infor-
mation processing, forgetting allows users to focus on spe-
cific parts of ontologies in order to create decompositions and
restricted views for in depth analysis or sharing with other
users. Forgetting is also useful for information hiding, expla-
nation generation, and ontology debugging and repair.

Because forgetting is an inherently difficult problem — it is
much harder than standard reasoning (satisfiability testing) —
and very few logics are known to be complete for forgetting
(or have the uniform interpolation property),' there has been
insufficient research on the topic (in particular on the topic of
role forgetting), and few forgetting tools are available. Recent
work has developed practical methods for computing uni-
form interpolants for ontologies defined in expressive OWL
language dialects [Koopmann and Schmidt, 2013a; 2013b;
2015b]. These methods, which are saturation approaches
based on resolution, can eliminate both concept and role sym-
bols and can handle ontologies specified in description log-
ics from ALC to ALCH and SZF. The methods have been
extended to SHQ for concept forgetting in [Koopmann and
Schmidt, 2014]. While most of this work is focused on TBox
and RBox uniform interpolation, practical methods for uni-
form interpolation for description logics ALC and SHZ with
ABoxes are described in [Koopmann and Schmidt, 2015a;
Koopmann, 2015].

An alternative approach that can perform both concept and
role forgetting is described, automated and evaluated in [Zhao
and Schmidt, 2016]. This approach is a semantic approach
which accommodates ontologies expressible in description
logics with nominals, role inverse, role inclusions, role con-
junction and the universal role. The foundation for this ap-
proach is an adaptation of Ackermann’s Lemma [Ackermann,
1935], which also provides the foundation for approaches
to second-order quantifier elimination [Doherty et al., 1997,
Nonnengart and Szatas, 1999; Gabbay er al., 2008] and modal
correspondence theory [Szatas, 1993; Conradie et al., 2006;
Schmidt, 2012].

In this paper, we follow an Ackermann approach to forget-
ting and present a practical method for semantic role forget-
ting in expressive description logics not considered so far. In

'[Konev et al., 2013] have shown that the solution of forgetting
does not always exist for ALC and £L, and the existence of a solu-
tion for forgetting a concept (role) symbol is undecidable for ALC.
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particular, the method accommodates ontologies expressible
in the description logic ALCOQH and the extension with the
universal role V. The extended expressivity enriches the tar-
get language, making it expressive enough to represent the
forgetting solution which otherwise would have been lost.
For example, the solution of forgetting the role symbol {r}
from the ontology {A:1 T >2r.B1, A, C <1r.B,} is the set
{Al C ZQV.Bl,Al M As C 21V(Bl Il ‘!Bg)}, whereas in a
description logic without the universal role, the uniform in-
terpolant is { T }, which is weaker. Being based on non-trivial
generalizations of Ackermann’s Lemma, the method is the
only approach so far for forgetting role symbols in descrip-
tion logics with qualified number restrictions. The method
is goal-oriented and incremental. It always terminates and is
sound in the sense that the forgetting solution is equivalent
to the original ontology up to the forgotten symbols, possi-
bly with new concept definer symbols. Our method is nearly
role forgetting complete for ALCOQH(V)-ontologies, and
we characterize cases where the method is complete. Only
problematic are cases where forgetting a role symbol would
require the combinations of certain cardinality constraints and
role inclusions. Despite the inherent difficulty of forgetting
for this level of expressivity, performance results of an eval-
uation with a prototypical implementation have shown very
good success rates on real-world ontologies.

2 ALCOQH(V) and Other Basic Notions

Let N¢, Ng and Ng be countably infinite and pairwise disjoint
sets of concept symbols, role symbols and individual symbols
(aka nominals), respectively. Roles in ALCOQH (V) can be
any role symbol r € Ng or the universal role V. Concepts in
ALCOQH(V) have one of the following forms:

a| T|A|-C|CAD|CUD|>mR.C|<nR.C,

where a € Ng, A € N¢g, C and D are any concepts, R is any
role, and m > 1 and n > 0 are natural numbers. Additional
concepts and roles are defined as abbreviations: 1 = —T,
A= —V,3JR.C = >1R.C,VR.C = <O0R.-C,->mR.C =
<nR.Cand ~<nR.C = >mR.C withn = m—1. Concepts
of the form >mR.C and <nR.C are referred to as qualified
number restrictions (or number restrictions for short), which
allow one to specify cardinality constraints on roles. We as-
sume w.l.o.g. that concepts and roles are equivalent relative
to associativity and commutativity of M and LI, T and V are
units w.r.t. M, and — is an involution.

An ALCOQH(V)-ontology is mostly assumed to be com-
posed of a TBox, an RBox and an ABox. A TBox T is a finite
set of concept axioms of the form C T D (concept inclusion),
where C and D are concepts. An RBox R is a finite set of role
axioms of the form r C s (role inclusion), where r,s € Ng.
We define C = D and r = s as abbreviations for the pair of
C C Dand D C C and the pairof r C s and s C r, re-
spectively. An ABox A is a finite set of concept assertions of
the form C(a) and role assertions of the form R(a, b), where
a,b € Ng, C is a concept, and R is a role. In a description
logic with nominals, ABox assertions can be equivalently ex-
pressed as TBox axioms, namely, C(a) as a C C and R(a, b)
as a C JR.b. Hence, in this paper, we assume w.l.0.g. that an
ontology contains only TBox and RBox axioms.

The semantics of ALCOQH(V) is defined in terms of an
interpretation T = (AZ,.T), where AT is a non-empty set
(the domain of the interpretation), and -Z is the interpretation
Junction, which assigns to every nominal a € Ng a singleton
a’ C A7, to every concept symbol A € Ng a set AT C AT,
and to every role symbol » € Ng a relation r~ C AZ x AZ.
The interpretation function -Z is inductively extended to con-
cepts and roles as follows:

TE=AT  vi=ATx AT (=O)F = AR\t

cnbDf=c*np* (CubDf=c*ubD*
(>mR.C)" = {x € AT | #{(x,y) € R" |y € C*} > m}
(<nR.C)* = {z € AT | #{(x,y) € RT |y € CT} <n},

where #{-} denotes the cardinality of the set {-}.

A concept axiom C C D is true in an interpretation Z, and
we write Z = C C D, iff CT C DZ. A role axiom 7 C s
is frue in an interpretation Z, and we write Z = r C s, iff
rZ C sT. I is a model of an ontology O iff every axiom in O
is true in Z. In this case we write Z |= O.

Our method works with TBox and RBox axioms in clausal
normal form. We assume w.l.0.g. that a TBox literal is a con-
cept of the form a, —a, A, - A, >mR.C or <nR.C, where
a € No, A € Ng, m > 1andn > 0 are natural numbers, C'is
any concept, and R is any role. A TBox clause is a disjunc-
tion of a finite number of TBox literals. An RBox clause is a
disjunction of a role symbol and a negated role symbol. TBox
and RBox clauses are obtained by clausification of TBox and
RBox axioms, where in the latter case role negation is intro-
duced. This is done for consistency in presentation, replacing
role inclusion by disjunction as the main operator. Nominals
are treated as regular concept symbols in our method, because
we are only concerned with role forgetting in this paper.

An axiom (clause) that contains a designated (concept or
role) symbol S is called an S-axiom (S-clause). An occur-
rence of S is assumed to be positive (negative) in an S-axiom
(S-clause) if it is under an even (odd) number of explicit and
implicit negations. For instance, 7 is assumed to be positive
in >mr.A and s C r, and negative in <nr.Aandr C s. A
set N of axioms (clauses) is assumed to be positive (negative)
w.r.t. S if every occurrence of S in N is positive (negative).

3 Definition of Forgetting, Ackermann’s
Lemma and Obstacles to Role Forgetting

Forgetting can be defined in two ways that are closely related:
one is analogous to model inseparability (i.e., a semantic no-
tion based on model-conservative extensions; see e.g. [Konev
et al., 2013]), which preserves equivalence up to certain sig-
natures, and the other is via uniform interpolation (i.e., a syn-
tactic notion based on deductive-conservative extensions; see
e.g. [Visser, 1996]), which preserves logical consequences;
see [Botoeva et al., 2016] a survey for their interrelation.
Our notion of forgetting is a semantic notion. By sig (X))
and sigr(X) we denote the sets of respectively the concept
and role symbols occurring in X (excluding nominals), where
X ranges over axioms, clauses, sets of axioms, and sets of
clauses. Let 7 € NR be any role symbol, and let Z and Z’ be
any interpretations. We say Z and Z' are equivalent up to r,
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or r-equivalent, if T and Z' coincide but differ possibly in the
interpretations of r. More generally, Z and 7’ are equivalent
up to a set Y. of role symbols, or Y-equivalent, if T and 7'
coincide but differ possibly in the interpretations of the sym-
bols in . This can be understood as follows: (i) Z and Z’
have the same domain, i.e., AT = AIl, and interpret every
concept symbol and every individual symbol identically, i.e.,
AT = AT forevery A € Ng and a” = o forevery a € No;
(ii) for every role symbol » € Ng not in 2, 7T =T,
Definition 1 (Role Forgetting for ACCOQH(V)) Let O be
an ALCOQH(V)-ontology and let 3 be a subset of sigg(O).
An ontology O’ is a solution of forgetting > from O, iff the
following conditions hold: (i) sigp(Q’) C sigg(O)\X, and
(ii) for any interpretation T: T = O’ iff T' = O, for some
interpretation T' Y-equivalent to T.

It follows from this that: (i) the original ontology O and the
forgetting solution (O are equivalent up to (the interpretations
of) the symbols in X.. Also (ii) forgetting solutions are unique
up to equivalence, that is, if both @’ and O are solutions of
forgetting 3 from O, then they are logically equivalent.

In this paper, X is always assumed to be a set of symbols to
be forgotten. The symbol in 3 under current consideration for
forgetting is referred to as the pivot in our method. An axiom
(clause) that contains an occurrence of the pivot is referred to
as a pivot-axiom (pivot-clause).

Given an ontology O and a set X of concept and role sym-
bols, computing a solution of forgetting ¥ from O can be
reduced to the problem of eliminating single symbols in X.
This can be based on the use of a monotonicity property found
in [Ackermann, 1935], referred to as Ackermann’s Lemma.
For ontologies, Ackermann’s Lemma can be formulated as
the following theorem. The proof is an easy adaptation of
Ackermann’s original result [Gabbay et al., 2008].

Theorem 1 (Ackermann’s Lemma) Let O be an ontology
that contains axioms ay C S, ...,a, C S, where S € Ng (or
S € Ng), and the o; (1 < i < n) are concepts (or roles)
that do not contain S. If O\{a; C S, ...,a, C S} is nega-
tive w.rt. S, then OF | |, is a solution of forgetting {S}
from O (i.e., Conditions (i) and (ii) of Definition 1 hold),
where OF |||\, denotes the ontology obtained from O by
substituting oy U ... Uy, for every occurrence of S in O.

In Ackermann-based approaches, e.g., [Szatas, 2006; Con-
radie et al., 2006; Schmidt, 2012; Zhao and Schmidt, 2015;
20161, the lemma is often used as the following rule:

O\{1 CS,..,0,CS},n CS,...,ap, TS

S
Oalu...uan

ey

The idea of Ackermann’s Lemma is based on a notion of
‘substitution’, which can informally yet intuitively be under-
stood as follows: given an ontology O with S € sigg(O) (or
S € sigr(0)) being the pivot, if there exists a concept (or a
role) « such that S ¢ sig(«) and « defines S w.r.t. O, then
we can substitute this definition for every occurrence of S
in O (S is thus eliminated from ). This lemma also holds,
when the inclusions are reversed, i.e., S C «aq,...,S C ay,
and the polarity of S in the rest part of O is switched, i.e.,
O\{S C ay,...,S C ay,} is positive w.r.t. S .
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A crucial task in Ackermann-based approaches, therefore,
is to find a definition of the pivot w.r.t. the present ontology,
that is, to reformulate all pivot-axioms with positive occur-
rences of the pivot being in the form o T S (or dually, with
negative occurrences of the pivot being in the form S C «),
where S ¢ sig(a). In the context of this paper where axioms
are represented in clausal form, this means reformulating all
pivot-clauses with positive occurrences of the pivot being in
the form —a U S (or dually, with negative occurrences of the
pivot being in the form =S Ul «), where S ¢ sig(a).

In the case of concept forgetting, a concept symbol (or a
negated concept symbol) deep inside a clause could be moved
outward by using Galois connections between Vr and Vr—
(e.g., a TBox clause —A LI Vr.S can be equivalently rewritten
as (Vr—.—A) U S, where r~ denotes the inverse of ), or by
exploiting the idea of Skolemization (e.g., an ABox clause
—a U 3r.—S can be equivalently rewritten as —a Ll Ir.b and
—b U —S, where b is a fresh nominal). This is explained in
detail in the work of [Conradie et al., 2006; Schmidt, 2012;
Zhao and Schmidt, 2015; 2016].

In the case of role forgetting, since every role symbol that
occurs in a TBox clause is always preceded by a role restric-
tion operator (i.e., a number restriction in this work), it is not
obvious how to reformulate the TBox pivot-clauses. Thus a
direct approach based on Ackermann’s Lemma does not seem
feasible for role forgetting in ontologies with TBoxes.

How then to do role forgetting? For the translation of on-
tologies in first-order logic, there are no such obstacles. We
could apply Ackermann’s Lemma for first-order logic (e.g., as
in the DLS algorithm of [Doherty er al., 1997]) to eliminate a
single role symbol. Such an indirect approach requires suit-
able back-translation however, which is absent at present for
expressive description logics. Translating first-order formulas
into equivalent description logic expressions is not straight-
forward, in particular when number restrictions are present
in the target language. For example, the solution of forget-
ting the role symbol {r} from {A; U>2r.B;, A, U<1r.B>} in
quantifier-free first-order logic is the set:

{Vz(Ai(z) v Bi(f1(2))), Vo(A1(z) V Bi(f2(2))),
Vz(Ai(z) V fi(z) & f2(z)),
Va(Ai(z) V A2(x) V B2 (fi(2)) V 2 Ba(fa(x)))},

where fi(x) and f2(x) are Skolem terms, and fi(z) % f2(x)
is an inequality. Because of the presence of the Skolem terms
and the inequality, it is not clear whether this solution can be
expressed equivalently in a description logic.

4 Our Ackermann-Based Approach to
Eliminating A Single Role Symbol

In this section we present our approach to eliminating a single
role symbol from a set of TBox and RBox clauses expressible
in ALCOQH(V). Itis a direct approach based on non-trivial
generalizations of Ackermann’s Lemma. The approach has
two key ingredients: (i) transformation of the present clause
set into reduced form, and (ii) a set of Ackermann rules. The
Ackermann rules reflect the generalizations of Ackermann’s
Lemma and allow a single role symbol to be eliminated from
a set of clauses in reduced form.
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Ackermann I Ackermann IT
PE() P () PL(r) Pr(r)
N,Ciu>zir.Dy,...,Co U>Tymr. Dy, s U, .. 28, LT N, EiU<yir.Fy,...,EnU<ynr.Fp,t1 U—=r, . ..ty U7
N,BLOCK(PE(r),0), BLOCK (P (r),0) N, BLOCK(PF(r), (), BLOCK(Px (r),0)

Ackermann IIT
PE() PL(r) Pr(r)
N,CiU>zir.Dy,...,Coo US>Tpr. Dy, By U <o FYy, . B U<ypr.Fp,ti U=, ...ty U7
N,BLOCK(PE(r), E1 U <y17.F1), ..., BLOCK(PL(r), En, U <ynr.F,),BLOCK(PE(r),t1 U —r), ..., BLOCK(PF (7), t, L —7)

Ackermann IV
P () PL(r) Pr (1)
N, =siUr, ...,=s, Ur, By U<yir.F1, ..., Ey U<ynr.Fn,t1 U—=r, ... t, U-r
N, BLOCK(PS (1), By U <y17.F1), ..., BLOCK(PZ (1), Bn U <ynr.F,), BLOCK(PZ (1), t1 U =), ..., BLOCK(P (1), tw U —r)

Ackermann V
PE(r) P () P0(r) Po(r)
N,CiU>z17.D1,...,Cop U2 Dy, =81 U, .., —s, Ur, By ULO0r.Fy, ..., Ey U<0r.Fp, t1 U=, ...ty U -7
N, BLOCK(P°(r), C1 U >217.D1), ..., BLOCK(P; " (7), Cp LU 207Dy,
BLOCK(P;°(r), ~s1 U7), ..., BLOCK(P;°(r)), =50 U ),
BLOCK(Pg(r),C1 U>z17.D1), ..., BLOCK(P (1)), Crn U > 7. D),
BLOCK(Pg(r),—s1Ur),..., BLOCK(P (7)), ns, UT)

Notation in Ackermannrules (1 <i<m,1<j<n,1<k<wv 1< <w):

1. BLOCK (P (r), 0) denotes the set {C1 U >z1V.Dy, ..., Cr U >2mV.Din }. 2. BLOCK(PZ (r), 0) denotes 0.
3. BLOCK(PL(r), () denotes the set { E1 U <y1—V.Fi,..., Ep U <y,—V.F,}. 4. BLOCK(Px (1), 0) denotes 0.
5. BLOCK(P5(r), E; U <y;r.F;) denotes the union of following sets, where m = |P£(r)|:

Ground BLock: {C1 U >z1V.Dy,...,Cp U >z, V.Dp }

Ist-tier BLOoCcK: |J {E; UC;U>(z; —y;)V.(D; M —F;)} for any 4 such that z; > y;

1<i<m

2nd-tier BLOCK: U {Ej [ Cil L 07;2 L Zwv.(Dil Il Diz) (] Z(:L'Zl + XTiy —Y; — (l‘ — 1))V.((D¢1 [ D’iQ) Il —\Fj) L
1<iy<ia<m

>1v.((Di, U Di,) M—F;) |z € {1,...,zmin}} for any ¢, and i such that z;, + x4, > y;, where Zmin denotes the minimum of z;,,

Ti, and Tiy + iy — Yj.

mth-tier BLOCK: {E; UCh U... UC, U>zV.(DiMN..NDp)U>(x14+...+2m—y; — (@ —=1))V.(D1U...UDy)N—F;)U
U>1v.((D1U...UDp) N =F;) |z e {l,...,zmn}} if 21 + ... + m > y;, where Zmin denotes the minimum of z1, ..., Tm

and z1 + ... + T — Yj.

6. BLOCK(P(r),t; U —r) denotes the set: {C1 U >z1t,. D1, ..., Cy U >Timty.Din }.

7. BLOCK(P} (), Ej U <y;7.F;) denotes the set: {E; LI <y;s1. F77 oo By U<yjsy. Fj}

8. BLOCK(P; (7), t; L —r) denotes the set: {—s1 Uy, ..., sy Ut}

9. BLOCK(P;"°(r), C; L >z;r.D;) denotes the union of following sets, where n = [P (r)|:

Ground BLocK: {C; U >x;V.D;}

1st-tier BLOCK: U {CZ L Ej L ZmZV(DZ [l —‘Fj)}

1<j<n
2nd-tier BLOCK: U A{CiUE; UE;,U>zV.(D;N—F; N—F;,)}
1<j1<j2<n
nth-tier BLock: {C; UE 1 U...UE, U>z;V.(D; M —FiM...M—F,)}
10. BLOCK(P5%(r), =1, LI 7) denotes the set: { F1 U <0si.Fi, . .., En U <0si.Fy }.
11. BLOCK(P% (7), C; U >x;r.D;) denotes the set: {C; U >x5t1.D;, ..., Ci U >zt D}
12. BLOCK(Px (), =sk LI ) denotes the set: {¢1 L —sg, ..., tw U —\sk}.

Figure 1: Ackermann rules for eliminating 7 € Ng from a set of clauses in reduced form. In the rules we assume that r ¢ sigg (N).
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4.1 Transformation into Reduced Form

Definition 2 (Reduced Form) For r € Ng the pivot, a TBox
pivot-clause is in reduced form if it has the form E'LI >mr.F
or EU<nr.F, where E and F are concepts that do not con-
tain r, and m > 1 and n > 0 are natural numbers. An RBox
pivot-clause is in reduced form if it has the form -S U r or
S U -7, where S € Ngand S # r. A set N of clauses is in
reduced form if all pivot-clauses in N are in reduced form.

The reduced forms incorporate all basic forms of TBox and
RBox clauses in which a role symbol could occur. While an
RBox pivot-clause is always in reduced form, this is not true
for a TBox pivot-clause. A TBox pivot-clause not in reduced
form has the form F LI >mS.F or E LU <nS.F, where S can
be any role (including the pivot role symbol), and E and F’
are concepts with at least one of them containing the pivot;
(<1r.A) U (<3s.>2r.B) is such an example. Transforming
a TBox pivot-clause into reduced form is not always possible
unless definer symbols are introduced. Definer symbols are
auxiliary concept symbols that do not occur in the present on-
tology [Koopmann and Schmidt, 2013b], and are introduced
as follows: let A/ be a set of clauses not in reduced form,
and let Np C Nc be a set of definer symbols disjoint from
sigo (N). Definer symbols are used as substitutes, incremen-
tally replacing ‘E” and ‘F” for every TBox pivot-clause not
in reduced form until neither ‘E” nor ‘F” contain the pivot. A
new clause =D LU F is added to V for each replaced subcon-
cept I/, anew clause =D, LI F is added to AV for each replaced
subconcept F' immediately under a >-restriction, and a new
clause D3 U F is added to \V for each replaced subconcept I
immediately under a <-restriction, where Dy, D5, D3 € Np
are fresh definer symbols. N is thus transformed into a set of
clauses in reduced form. For the example mentioned above,
this means that D; and Dy are introduced to replace <1r.A
and >2r. B, respectively, which yields D; LI <3s.D4 and two
additional clauses =D LI<1r.A and DsLI>2r. B. The original
clause is thus represented by these three clauses in reduced
form (to which an Ackermann rule can be applied).

Theorem 2 Using definer introduction as described above,
any ALCOQH(V)-ontology can be transformed into a set of
clauses in reduced form. The transformation preserves equiv-
alence up to the introduced definer symbols.

4.2 Ackermann Rules

Let \V be a set of TBox and RBox clauses exhibiting all dif-
ferent reduced forms, for r € sigg(N') the pivot. We refer to
the clauses of the form C'LI >myr.D and the form C LI <nr.D
as positive TBox premises and negative TBox premises of the
Ackermann rules, respectively. We refer to the clauses of the
form —S Ul r and the form S LI —r as positive RBox premises
and negative RBox premises of the Ackermann rules, respec-
tively. By PF(r) and P (r) we denote respectively the sets
of positive TBox premises and negative TBox premises. By
P (r) and Px (r) we denote respectively the sets of positive
RBox premises and negative RBox premises. By P*(r) and
P~ (r) we denote respectively the union of PX(r) and P (r),
and the union of P (r) and Px (r).

The Ackermann rules, shown in Figure 1, are based on an
idea of ‘combination’. Specifically, the idea is to combine
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all positive premises P (r) with every negative premise a(r)
in P~ (r) (or dually, to combine all negative premises P~ (r)
with every positive premise a(r) in P*(r)). The result is a
finite set of clauses, denoted by BLOCK(P (™) (r), a(r)). It is
observed that the result obtained from combining P (r) with
a negative premise is always identical to the union of the re-
sults obtained from combining respectively P (r) and P (r)
with that premise (and the dual also holds). We therefore treat
every combination of P*(r) with a negative premise as two
separate combinations in our Ackermann rules (same for the
dual), so that it can be understood better from which premises
a resulting BLOCK of clauses is obtained.

For different PF(r), P (r), Pr(r), Pr(r), and a(r), the
combination is performed as 12 distinct cases (see Figure 1).
For most cases, the idea is analogous to that of Ackermann’s
Lemma (and its dual), where the pivot is eliminated by substi-
tuting its definition found w.r.t. the present premises for every
occurrence of the pivot in these premises. Only for Cases 5
and 9, the combination has a different flavor; their idea is il-
lustrated with two concrete examples.

Case 5: Combining P (r) with a negative TBox premise in
Pr(r), e.g., E; U <y;r.F; (1 < j < n),yields a set of TBox
clauses, denoted by BLOCK(PE(r), E; U <y;r.F}).

Example 1 Combining P; (r) ={A1U>2r.B1, A2 U >1r.B2}
with {A U <1r.B} yields a set BLOCK(P(r), A Ul <1r.B) that
contains the following subsets of clauses:

Ground BLOCK: {A; U >2V.By, A; U >1V.By}

Ist-tier BLOCK: {A U A; U >1v.(B1 M —-B)}

2nd-tier BLOCK: {AUA; U A U>1V.(B1 M By) U >2V.((B1 U
BQ) M —\B) L zlv.((Bl L BQ) M —\B)

Case 9: Combining P;°(r) with a positive TBox premise in
PE(r), e.g., C; U>zir.D; (1 < i < m), yields a set of TBox
clauses, denoted by BLOCK(P;"°(r),C; U >z;7.D;). In this
case, P;°(r) denotes the set of negative TBox premises of
the form E U <0r.F (i.e., cardinality constraints are 0).

Example 2 Combining P, (r) = {A1U<0r.B1, A2U<0r.Bz}
with {A U >2r. B} yields a set BLOCK(P}’O(T), AU >2r.B) that
contains the following subsets of clauses:

Ground BLocK: {A U >2v.B}

Ist-tier BLOCK: {A U A1 U>2vV.(BMN—-B1)}

2nd-tier BLOCK: {A U A1 U Ay U >2V.(BM =B M—Bs)}

How are the Ackermann rules used? For a set \V of clauses
in reduced form, depending on which kinds of premises the
set NV contains, we apply different Ackermann rules (to the
premises in AV to eliminate the pivot). Specifically, if A con-
tains only positive premises, we apply the Ackermann I rule.
If A contains only negative premises, we apply the Acker-
mann II rule. If A/ contains only positive TBox premises, as
well as negative premises, we apply the Ackermann III rule.
If AV contains only positive RBox premises, as well as nega-
tive premises, we apply the Ackermann IV rule. If A/ contains
both positive TBox and RBox premises, as well as negative
premises, we apply the Ackermann V rule. Note that there is
a gap in the scope of the rules in the Ackermann V rule; it is
applicable only to the cases where all negative TBox premises
(if they are present in V) are of the form E U <Or.F.

Theorem 3 Let T be any ALCOQH(V)-interpretation. For
r € Ng the pivot, when an Ackermann rule is applicable, the
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conclusion of the rule is true in I iff for some interpretation T’
r-equivalent to T, the premises are true in T'.

This implies that the conclusion of an Ackermann rule is a
solution of forgetting the pivot from the premises of the rule.

5 Description of the Forgetting Method

Given an ontology O of axioms and a set X of role symbols to
be forgotten, the forgetting process in our method comprises
three main phases (see Figure 2): the conversion of O into a
set N of clauses (the first phase), the >-symbol elimination
phase (the central phase), and the definer elimination phase
(the final phase). It is assumed that as soon as a forgetting
solution is computed, the remaining phases are skipped.

Convert O into ,| Transform AV into
set A/ of clauses reduced form
[Z={r,...m}(<i< n)>
Elimination of
definer symbols

Figure 2: Main phases in the forgetting process

Ontology O

i

Forgetting
solution O’

Apply Ackermann
to eliminate r;

i

Input: Given as input to the method are an ALCOQH(V)-
ontology O of axioms and a set &2 C sigg(Q) of role symbols
to be forgotten. An important feature of the method is that 3-
symbols can be flexibly specified.

The first phase: The first phase of the forgetting process
internalizes all ABox assertions in O (if they are present) into
TBox axioms, and then transforms O into a set A/ of clauses
using standard clausal form transformations.

The central phase: Central to the forgetting process is the
Y-symbol elimination phase, which is an iteration of several
rounds in which the elimination of »-symbols is attempted.
Specifically, the method attempts to eliminate the 3-symbols
one by one using the approach as described in the previous
section. In each elimination round, the method performs two
steps. The first step transforms every TBox pivot-clause (not
in reduced form) into reduced form, so that one of the Acker-
mann rules can be applied. The second step then applies the
Ackermann rule to the pivot-clauses to eliminate the pivot.
Upon the intermediate result being returned at the end of each
round, the method repeats the same steps in the next round for
the elimination of the remaining symbols in Y (if necessary).
If a 3-symbol has been found ineliminable from the present
ontology (i.e., none of the Ackermann rules is applicable to
the current reduced form), the method skips the current round
and attempts to eliminate another symbol in 3.

The final phase: To facilitate the transformation of TBox
pivot-clauses (not in reduced form) into reduced form, definer
symbols might have been introduced during the elimination
rounds. The final phase of the forgetting process attempts to
eliminate these definer symbols by using Ackermann-based
rules for concept forgetting, which are very similar to the rule
in (1) (and its dual); for details see [Koopmann and Schmidt,

2014; Zhao and Schmidt, 2015; 2016]. This allows definer
symbols in many cases to be eliminated, because occurrences
of one polarity of any definer symbol will be top-level occur-
rences. There is no guarantee however that all definer sym-
bols can be eliminated, even if we use the generalization of
Ackermann’s Lemma involving the use of fixpoint operators.
In practice, most real-world ontologies are normalized and
therefore in reduced form, which means that for such ontolo-
gies definer introduction and elimination are obsolete.
Output: What the method returns as output at the end of
the forgetting process is a finite set O’ of clauses. If O’ does
not contain any symbols in ¥, then the method was successful
(in computing a solution of forgetting 3 from O). The follow-
ing theorem states termination and soundness of the method.

Theorem 4 For any ALCOQH(V)-ontology O and any set
Y C sigr(O) of role symbols to be forgotten, the method al-
ways terminates and returns a finite set O' of clauses. (i) If O’
does not contain any symbols in ¥ or any newly-introduced
definer symbols, then O’ is a solution of forgetting ¥ from O
(ie., O is equivalent to the original ontology O up to the
symbols in X3). (ii) If O’ does not contain any symbols in ¥
but it contains newly-introduced definer symbols, then O’ is
a solution of forgetting 3. from O in an extended language
(and O and O are equivalent up to the symbols in ¥, as well
as the newly-introduced definer symbols present in O').

The method may return an ‘O’ that still contains some -
symbols. In this case, the method was not successful. This is
because there is a gap in the scope of the rules in the Acker-
mann V rule, as mentioned before Theorem 3.

Theorem 5 Given an ALCOQH(V)-ontology O in clausal
form and a subset ¥ of sigg(O), our method is guaranteed
to compute a solution of forgetting 3 from O, possibly with
concept definer symbols, iff any one of the following condi-
tions holds for each r € X.: (i) O does not contain any RBox
axioms of the form =S Ur for S # r; (ii) O does not con-
tain any TBox axioms with number restrictions of the form
>mr.D for m > 1; or (iii) O does not contain any TBox ax-
ioms with number restrictions of the form <nr.D forn > 1.

An explanation of Case (ii) is the following: let O be an
ALCOQH(V)-ontology in clausal form, and let ¥ be a sub-
set of sigg (O). For r € ¥ the pivot, if O does not contain any
TBox axioms with number restrictions of the form >mr.D
for m > 1, then there will be no positive TBox premises oc-
curring in O (when O is transformed into reduced form). O is
thus in the form suitable for application of the Ackermann IV
rule. Explanations of Cases (i) and (iii) are similar, i.e., O of
Cases (i) and (iii) in reduced form are suitable for application
of the Ackermann III and Ackermann V rules, respectively.

6 Evaluation and Empirical Results

To gain insight into the practical applicability of the method,
we implemented a prototype in Java using the OWL-APIL?
and evaluated it on two corpora of slightly adjusted real-world
ontologies from the NCBO BioPortal repository.> The exper-
iments were run on a desktop computer with an Intel® Core™

Zhttp://owlapi.sourceforge.net/
*http://bioportal bioontology.org/

1359



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

17-4790 processor, four cores running at up to 3.60 GHz and
8 GB of DDR3-1600 MHz RAM.

Ontology | TA | RA| CS | RS | IS > < | Expressivity
PANDA 102 44 99 49 0 4 20 ALCIQH(D)
OPB 973 | 68 9 | 59 | 0 179 | 140 | ALCIOQH(D)
ROO 1285 | 296 | 1183 | 209 | 0O 278 0 SHIQ(D)
EPO 1995 | 131 | 1388 | 44 | 0 | 322 78 SHIQ(D)
SDO 2738 | 114 | 1382 | 77 | 59 | 1305 | 14 SHOZQ(D)

TA = TBox and ABox Axioms, RA = RBox Axioms, CS = Concept Symbols,
RS =Role Symbols, IS = Individual Symbols, > = >-restrictions, < = <-restrictions

Figure 3: Ontologies selected from NCBO BioPortal

The corpora used for our experiments were constructed as
follows. First, we selected from the NCBO BioPortal repos-
itory ontologies containing both number restrictions and role
inclusions. Then, we filtered out those containing less than 40
role symbols (since they were less challenging). As a result,
5 ontologies stood out from the repository (see Figure 3 for
their profiles). We further adjusted these 5 ontologies to the
language of ALCOQH (i.e., none of them included the uni-
versal role V). This was done by removing those axioms not
expressible in ALCOQH and using simple simulations. For
example, an exact number restriction =1r.D was simulated by
(>1r.D) 1 (<17.D), and a functional role func(r) was simu-
lated by <1r.T. In this way we obtained a corpus (Corpus I)
of 5 ALCO QH-ontologies. By removing all role inclusions
in each of the ontologies in Corpus I, we obtained another cor-
pus (Corpus II) that contained 5 ALCO Q-ontologies. Using
Corpora I and II as test data sets for our experiments, we con-
sidered how the presence of role inclusions affected the re-
sults of role forgetting, in particular, the success rates.

To fit in with real-world use, we evaluated the performance
of forgetting different numbers of role symbols from each test
ontology. In particular, we forgot 30% (i.e., a relatively small
number) and 70% (i.e., a relatively large number) of role sym-
bols in the signature of each test ontology. The symbols to be
forgotten were randomly chosen. We ran the experiments 50
times on each ontology and averaged the results to verify the
accuracy of our findings. A timeout of 100 seconds was im-
posed on each run of the experiment (unit of time: sec.).

Y (30%) Corpus I Corpus I1
Ontology | DI | Time SR GC | DI | Time SR GC
PANDA 0 0.576 | 100% | 0.0% O 0.571 | 100% | 0.0%
OPB 0 1.734 100% | 4.2% 0 1.695 100% | 4.3%
ROO 0 4.674 | 100% | 0.0% 0 4.339 | 100% | 0.0%
EPO 0 7.183 100% | 7.1% 0O 7.171 100% | 7.3%
SDO 0 | 18325 | 71.1% | 7.3% 0 | 17.817 | 69.4% | 7.7%

¥ (70%) Corpus I ‘ Corpus 1T
PANDA 0 1.267 | 100% | 0.0% 0O 1.252 | 100% | 0.0%
OPB 0 3.937 | 100% | 6.1% 0O 3.869 | 100% | 6.5%
ROO 0 9.663 | 100% | 0.0% 0 9.602 | 100% | 0.0%
EPO 0 | 15.874 | 100% | 8.2% 0 | 15.389 | 100% | 8.5%
SDO 0 |39.196 | 321% | 8.5% 0 | 38.084 | 30.9% | 8.9%

DI = Definers Introduced, SR = Success Rate, GC = Growth of Clauses

Figure 4: Results of forgetting 30% and 70% of role symbols

The results are shown in Figure 4, which is rather revealing
in several ways. The most encouraging result was that our im-
plementation was successful (i.e., forgot all symbols in X)) in

all test ontologies (within a short period of time) except in the
case of SDO, despite role inclusions being present in them.
This was unexpected, but there are obvious explanations (for
the 100% success rate cases): inspection revealed that these
ontologies did not contain axioms with number restrictions of
the form <nS.D for n > 1, and the likelihood of ¥-symbols
occurring positively in the RBox axioms was very low. What
was as expected was that definer symbols were not introduced
in the test ontologies (as most real-world ontologies were by
design flat and therefore already in reduced form). This gave
us best benefits of using our Ackermann approach. Because
of the nature of the Ackermann III and V rules, forgetting a
role symbol could lead to growth of clauses in the forgetting
solution, which was however modest (see the GC column in
Figure 4) compared to the theoretical worst case (i.e., 2" — 1
for n the cardinality of PF). In the case of SDO the ‘has-
Part’ role occurred positively in more than 50 different TBox
clauses in reduced form. This means that if ‘hasPart’ was cho-
sen as one of the X-symbols to be forgotten, then there were
more than 50 positive TBox premises in the ontology SDO in
reduced form (i.e., n > 50), which led to a blow-up of clauses
in the forgetting solution (i.e., >2°° — 1 clauses). Indeed, the
failures on SDO were due to space explosion caused by the
high frequency of the ‘hasPart’ role. We found that without
this role in X2, the success rate was 100%.

7 Conclusion and Future Work

In this paper, we have presented a practical method of seman-
tic role forgetting for ontologies expressible in the description
logic ALCOQH (V). The method is the only approach so far
for forgetting role symbols in description logics with number
restrictions. This is very useful from the perspective of ontol-
ogy engineering as it increases the arsenal of tools available
to create decompositions and restricted views of ontologies.
We have shown that the method is terminating and is sound in
the sense that the forgetting solution is equivalent to the orig-
inal ontology up to the forgotten symbols, sometimes with
new concept definer symbols. Although our method is not
complete, performance results of an evaluation with a proto-
typical implementation have shown very good success rates
on two corpora of real-world biomedical ontologies.

Though the focus of this paper has been the problem of role
forgetting, (non-nominal) concept forgetting can be reduced
to role forgetting by substituting >1r.T for every occurrence
of the concept symbol one wants to forget, where 7 is a fresh
role symbol, and then forgetting {r}. For example, forgetting
the concept symbol { B} from {—~ALI>1s.B} can be reduced to
forgetting the role symbol {r} from {=AL>1s.>1r.T}. Thus
our method also provides an incomplete approach to concept
forgetting for ALCOQH (V)-ontologies.

A natural next step for future work is to extend the method
to accommodate transitive properties on roles, though it is re-
alized when forgetting role symbols, the interaction between
transitivity and role inclusions can lead to results where it is
not clear how to represent them finitely [Koopmann, 2015].
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