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Abstract

In this paper we provide a general, unifying frame-
work for probabilistic belief revision. We first in-
troduce a probabilistic logic called p-logic that is
capable of representing and reasoning with basic
probabilistic information. With p-logic as the back-
ground logic, we define a revision function called
p-revision that resembles partial meet revision in
the AGM framework. We provide a representation
theorem for p-revision which shows that it can be
characterised by the set of basic AGM revision
postulates. P-revision represents an “all purpose”
method for revising probabilistic information that
can be used for, but not limited to, the revision
problems behind Bayesian conditionalisation, Jef-
frey conditionalisation, and Lewis’s imaging. Im-
portantly, p-revision subsumes the above three ap-
proaches indicating that Bayesian conditionalisa-
tion, Jeffrey conditionalisation, and Lewis’ imag-
ing all obey the basic principles of AGM revision.
As well our investigation sheds light on the corre-
sponding operation of AGM expansion in the prob-
abilistic setting.

1 Introduction

Since an agent acquires new information all the time, a key
question is how such new information affects the agent’s be-
liefs. This is the main subject of study in the area of belief
change [Girdenfors, 1988; Peppas, 2008]. The dominant ap-
proach in belief change is the AGM framework [Alchourrén et
al., 1985; Girdenfors, 1988], which represents the agent’s be-
liefs and input information as formulas of some background
logic that subsumes classical logic.

In daily life, we most often deal with uncertain informa-
tion, and quite often degrees of uncertainty are involved and
play an essential role. For instance, we may decide to stay at
home if the weather forecast says “the chance of a thunder
storm is 90%” but we may seriously consider outdoor activ-
ities if the chance is 10%. More importantly, upon acquir-
ing new information, the degree of uncertainty of our beliefs
may change. For instance, the chance of an average Amer-
ican developing Type 1 diabetes by age 70 is 1%; however
upon learning that the person has an immediate relative who
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has Type 1 diabetes, the chance rises to 10%—20%. Since the
AGM framework does not take into account explicit measures
of uncertainty, this kind of change is beyond its scope.' In
this paper, we aim to develop a belief revision framework that
deals with changes to degrees of uncertainty, among others.

To reach this aim, a crucial first step is to represent de-
grees of uncertainty properly. The most common representa-
tion of uncertainty in artificial intelligence is via probabilities,
or more precisely probability functions which assign proba-
bilities to propositional formulas. Also there are some estab-
lished methods for incorporating new information into a prob-
ability function. The standard method is Bayesian condition-
alisation or conditionalisation for short, which handles new
information of the form “the probability of ¢ is 1,” where ¢
represents some event. The best known generalisation of con-
ditionalisation is Jeffrey conditionalisation |Jeffrey, 1965],
which also handles new information with a degree of uncer-
tainty such as “the probability of ¢ is 0.3.” Neither condi-
tionalisation nor Jeffrey conditionalisation is defined for the
case where the probability of ¢ is initially zero. Lewis [1976]
introduced a method called imaging that can handle such a
“zero-probability” case. But imaging without further gener-
alisation cannot handle new information with an associated
degree of uncertainty.

We can identify at least two issues with the above methods.
First, they assume that an agent’s beliefs are represented by
a single probability function, which means the agent has to
know the exact probability for every event before any of the
methods can be applied. In many cases, this is impossible, as
very often we only have an estimation of the probability for
a limited number of events. Second, each of these methods
is limited in one way or another: either it handles only new
information that is certain (i.e. imaging, conditionalisation)
or only new information with non-zero initial probability (i.e.
conditionalisation, Jeffrey conditionalisation).

We address both issues in our approach. The key is to deal
with uncertainty through a probabilistic logic, which we call
p-logic. Instead of probability functions, it is more natural
and intuitive to work with individual probability statements
such as “the probability of ¢ is 40%”; “the probability of ¢ is

! Arguably, the entrenchment based approach in the AGM frame-
work [Girdenfors and Makinson, 1988] captures some forms of un-
certainty, but it neither represents explicit degrees of uncertainty nor
changes to such degrees.
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twice as likely as that of 1”; or “the probability of ¢ is 20%
more likely than that of ¢”. P-logic, which originates from
[Fagin et al., 1990], is capable of representing and reasoning
with such probability statements. As opposed to probability
functions, p-logic can deal with incomplete information.

In our approach, we represent an agent’s beliefs by a log-
ically closed set of p-logic formulas called a p-belief set,
which captures exactly the probabilistic information known
to the agent. Then we define a variant of partial meet revi-
sion functions [Alchourrén et al., 1985], called p-revision, for
incorporating p-logic formulas into a p-belief set. P-revision
is an “all purpose” revision method in that it can handle all
forms of new information expressible by p-logic. P-revision
is also well-behaved: we provide a representation theorem
which shows that the class of p-revision functions can be
characterised by the p-logic analogues of the basic AGM re-
vision postulates.

An interesting outcomes of our approach is that we can
show that each of the three methods, conditionalisation, Jef-
frey conditionalisation, and imaging, is equivalent to some
suitably-restricted class of p-revision functions. So, although
these methods are devised in different contexts and were pro-
posed long before the AGM framework, they all obey the ba-
sic principles of revision in the AGM framework. Moreover,
our approach helps explicate the counterpart of AGM expan-
sion in the probabilistic setting.

2 P-Logic

P-logic can be seen as a syntactically restricted version of
the logic given in [Fagin et al., 1990] for reasoning about
probabilities.> Roughly speaking, a p-logic formula, called a
p-formula, represents a constraint on the probabilities of some
events.

Events are represented using formulas of classical propo-
sitional logic. Let A be a finite set of propositional atoms.
The propositional language £ is defined using the standard
set of Boolean connectives, based on the atoms in .4 and the
constants T and L. We write propositional atoms as lower
case Roman letters (a, b, c, . . .) and propositional formulas as
lower case Greek letters (¢, 1, ...). Let C'n be the classical
consequence operator. We denote a propositional interpreta-
tion or possible world as w or p possibly with a subscript,
and sometimes as a bit vector such as 011 . .. which indicates
that a is assigned false, b is assigned true, c is assigned true,
and so on. For a set of propositional formulas S, we denote
its set of models as |.S|. For a propositional formula ¢, [{¢}|
is abbreviated to |¢|. The set of all possible worlds is denoted
Q. Ifw € |¢|, we say ¢ is true in w and w is a ¢-world.

With events represented by propositional formulas, we
represent constraints on their probabilities with atomic p-
formulas which take one of the following three forms:

L p(¢) =t
2. p(¢) e p(y)
3. p(@) ap(y) +t

2wherein all events are measurable.

where ¢,9 € L, <€ {<,>,=} and t, ¢ are rational num-
bers such that 0 < ¢ < 1 and 0 < c¢. A p-formula is a con-
junction of atomic p-formulas (e.g., (p(¢) > 0.4) A (p(¢) =
p(¥) + 0.2)). We write p-formulas as upper case Greek let-
ters (@, U, .. .) and denote the set of all p-formulas as Lp. The
three forms of atomic p-formulas are also referred as Cate-
gory 1, 2, and 3 p-formulas and constrain, respectively, the
probability of a single event, the ratio between probabilities
of two events, and the difference between probabilities of two
events.? Our intention is that each category captures a specific
type of commonly encountered constraints on probabilities of
events.

Not all constraints are, however, covered here. For instance
p-logic does not support inequalities involving more than two
events (e.g., p(¢) + 3 - p(vp) = 2 - p(J)) or arbitrary Boolean
combinations of inequalities (e.g., (p(¢) = 0.3) V (p(¢) =
0.4)). While restricted, p-formulas is in our opinion sufficient
to capture most “commonsense’ probability constraints. Also
it will be clear that p-logic is more than enough for repre-
senting the revision process behind conditionalisation, Jeffrey
conditionalisation, and imaging. Hence, the restricted syntax
of p-logic demonstrates that not much formal machinery is
needed from the probability standpoint to capture the three
methods in a revision setting.

The basic semantic element for p-logic is a probability
function. A probability function P : £ — [0,1] is a func-
tion that satisfies the Kolmogorov axioms:

e 0K P(¢) < 1forallg € L,
e P(T)=1,and
o P(¢pV 1) = P(¢p)+ P(¢) whenever ~¢p € Cn(¢p).

We denote the set of all probability functions as P. The letter
P is reserved to denote a probability function throughout the
paper. P satisfies an atomic p-formula

1. p(¢) ba tiff P(¢) it
2. p(d) >4 ¢ p(¥) iff P(¢) > ¢~ P(¢); and

3. p(@) pap(y) + tiff P(¢) > P(¢) + 1.

P satisfies a p-formula ® A W iff it satisfies ® and W. P satis-
fies a set of p-formulas iff it satisfies all p-formulas in that set.
Let X be a set of p-formulas and ® a p-formula. If P satisfies
X, then it is called a p-model of X. The set of p-models of
X is denoted as || X ||. We abbreviate ||[{®}|| by ||D||. We say
X (respectively ®) is consistent iff || X || # 0 (respectively
[|®|| # 0); and X entails ® under p-logic, denoted X =p @,
iff || X || C ||®]|. The logical closure of X, denoted cl(X), is
such that

A(X) ={® € Lp| X 5 D).

A p-belief set B is a logically closed set of p-formulas, that
is B=cl(B). The letter B is reserved to denote a p-belief set
throughout the paper.

In many cases, it is more convenient to work with proba-
bilities of possible worlds instead of propositional formulas.
So we write P(w1,...,wy) or P(|¢|) as a “shorthand” for

3Note that the p-formula p(¢) > p(2) is both a Category 2 and
a Category 3 p-formula.
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P(¢) where |¢| = {w1,...,w,}. Similarly, p(wy, ... ,w,) or
p(|¢|) is a shorthand for p(¢) where |¢| = {w1,...,wn}

The following example helps to illustrate the specifics of
p-logic.

Example 1. Ler A = {a,b}. Then Q = {11,00,10,01}.
Consider the Category 1 p-formula p(11) > 0.5 (shorthand
Sor: p(a ANb) = 0.5). Suppose the probability function P is
such that P(11) = 0.7, and P(10) = P(01) = P(00) = 0.1.
Then P satisfies p(11) > 0.5 since P(11) > 0.5. Note that
p(11) =2 0.5 |=p p(11) > c for any ¢ < 0.5, since any P that
satisfies p(11) > 0.5 has P(11) > 0.5 which means, by basic
inequality, P(11) > cfor any ¢ < 0.5.

Working with logics like p-logic offers several advantages
over probability functions. While a probability function is a
complex structure that encapsulates the probabilistic informa-
tion for all events, with p-logic we have the flexibility to deal
with each piece of information separately. Also with p-logic,
one can deal with incomplete information. Hence the prob-
ability of some events can be given without specifying the
probability of all events. As well a constraint can be placed
on an event (such as the fact that its probability is less than
0.4) without giving the exact probability. At the same time,
one can clearly specify a complete probability function using
only atomic p-formulas of any category.

3 P-Revision Functions

In this section, we consider how to revise a p-belief set by a
p-formula. To begin, we define probabilistic expansion in the
same way as AGM expansion. The probabilistic expansion of
B by ®, denoted B + @, is such that

B+®=cl(BU{®)).

Probabilistic expansion gives trivial results when & is incon-
sistent with B. To devise a non-trivial method, we follow the
construction of partial meet revision in the AGM framework.*
In revising B by &, we first determine the maximal subsets
of B that are consistent with ®; we call these subsets the re-
mainder sets of B with respect to ®.

Definition 1. The set of remainder sets of B with respect to
D, denoted B | @, is such that X € B | ® iff

1. X C B,
2. X U{®} is consistent, and
3. If X C X' C B, then X' U {®} is inconsistent.

We then select some of the “best” remainder sets. The inter-
section of these “best” remainder sets is expanded by ® to
form the revision outcome. The decision on which remain-
der sets to select is modelled by a selection function. A func-
tion v is a selection function for B iff (B | ®) is a non-
empty subset of B | ®, unless B | ® is empty, in which
case y(B | ®) = (). Then p-revision functions are defined as
follows.

4Strictly speaking, in the AGM framework, partial meet revision
is constructed indirectly from a (partial meet) contraction via the
Levi identity. Here we employ an equivalent, direct, construction of
partial meet revision.

Definition 2. A function * : 2%* x Lp — 2% is a p-revision

function iff
Bx®=(1v(BLl®) +o

where 7y is a selection function for B.

For properties of p-revision function, consider the follow-
ing postulates:

B x ® is a p-belief set.
® e Bxd.
Bx®C B+ .

1)

Px2)
*3)

P« 4) If B+ ® is consistent, then B + & C B x ®.

P %5) B« ® is inconsistent iff ® is inconsistent.

)

(P
(
(P
(
(
( Ifo=V,thenB+x®=BxV.

Px6

(Px1) -
AGM revision postulates. We show that (P % 1) —
fully characterise the class of p-revision functions.

Theorem 1. A function x : 2°° x Lp
Sunction iff it satisfies (P 1) — (P * 6).

For revising probabilistic information, p-revision has at
least three advantages over the previously mentioned classi-
cal methods such as conditionalisation. First, an agent’s be-
liefs are modelled as a p-belief set, which does not have to
contain the probabilistic information for all events; therefore,
p-revision does not require the agent to be “probabilistically
omniscient” to start with. Second, new information is mod-
elled as a p-formula; therefore, p-revision can accommodate
more forms of new information than the classical methods.
Thirdly, p-revision can handle the “zero-probability” cases
that are undefined for conditionalisation and Jeffrey condi-
tionalisation.

(P « 6) are the p-logic versions of the six basic
(P *6)

25% is a p-revision

4 Equivalence with Conditionalisation,
Jeffrey Conditionalisation, and Imaging

Due to the richness of p-logic, the problems behind many
approaches to revising probabilistic information can be rep-
resented as sub-problems of those behind p-revision. In this
section, we demonstrate that conditionalisation, Jeffrey con-
ditionalisation, and imaging are each equivalent to specific
p-revision functions.

4.1 Conditionalisation & Jeffrey
Conditionalisation
Conditionalisation is one of the most common methods for

revising probability functions. The conditionalisation of P on
¢, denoted P, is defined as

PloAp) .

_— fP
prw)={ P =0

undefined  otherwise.

The input ¢ is understood as “the probability of ¢ is 1.” Jef-
frey conditionalisation is the best known generalisation of
conditionalisation. It deals with changes to a probability func-
tion induced by an input of the form “the probability of ¢ is ¢”
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where 0 < ¢ < 1. For simplicity we write the input as ¢ = c.
The Jeffrey conditionalisation of a probability function P on
¢ = ¢, denoted P(;Z:C, is defined as

Pi_o(¥) = c-PJ(¥) + (1=c) - P2 (¥)

in the general case, with special conditions attached to avoid
division by zero.’ It is easy to see that when ¢ = 1 this reduces
to conditionalisation.

Since we can represent a probability function P by a p-
belief set B that has P as the only p-model, and the expres-
sion “the probability of ¢ is ¢” as the p-formula p(¢) = ¢, the
Jeffrey conditionalisation of P on ¢ = ¢ corresponds to the
problem of revising B by p(¢)=c where || B|| = { P}, which
is a sub-problem for p-revision functions. We show that there
are p-revision functions that yield an equivalent outcome to
Jeffrey conditionalisation on this problem.

As its distinguishing feature, Jeffrey conditionalisation
does not affect the probability ratios among formulas that im-
ply ¢ and among those that imply —¢.

Lemma 1. If P(a) > 0, P(3) > 0 and either both o |= ¢
and B = ¢ or both o |= —¢ and 5 |= —¢, then

Pj_(a)  P(a)

PL_.(B) ~ P(B)

The key here is to formulate this ratio-preserving feature as
a restriction to the selection functions for p-revision. To this
end, we introduce the notion of ratio-formulas.

Definition 3. A p-formula of Category 2, p(a) = ¢ - p(B), is
a ratio-formula for ¢ iff 0 < ¢ and either both o = ¢ and
B ¢orbotha |=—¢and B = —¢.

A ratio-formula for ¢ is a Category 2 p-formula that de-
scribes the ratios between probabilities of propositional for-
mulas that imply ¢ or those that imply —¢. So if @ = ¢ but
B F ¢, then p(a) = ¢ - p(B) is not a ratio-formula for ¢.
In revising B by p(¢) = ¢ where ||B|| = {P}, in order to
keep the profile of probability ratios for ¢ and —¢ untouched,
we have to preserve all ratio-formulas for ¢ in B, which we
denote as R4 (B). We can show that R (B) together with the
new information p(¢) = ¢, give us the Jeffrey conditionalisa-
tion of P on ¢ = c.

Lemma 2. If||B|| = {P}, then
1Rs(B) U{p(9) = c}|| = {Pi_.}-

In relation to p-revision, there is a remainder set of B with
respect to p(¢) = c that contains R,;(B).

Lemma 3. Let ||B|| = {P}. Then there exists some element
X in B | (p(¢) = c) such that Ry(B) C X.

Thus, according to Lemma 2, if the selection function for B
picks a single remainder set that contains R4 (B), then the
p-revision function yields an equivalent outcome to Jeffrey
conditionalisation.

SHere we follow [Halpern, 2005] and require that if ¢ > 0, then
P(¢)>0 and similarly if 1—c >0, then P(—¢) > 0. Also c- P (1))
is taken to be 0 if ¢ = 0, even if P(¢) = 0. Similarly (1—c)-P¥, ()
is taken to be 0 if 1 —¢ = 0, even if P(—¢) = 0.
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Theorem 2. Let||B|| = {P}. Then there is a p-revision func-
tion * such that

1B (p(¢) = o)l = {Pj_.}.
Since Jeffrey conditionalisation generalises conditionalisa-
tion, the equivalence result also applies to conditionalisation.
The following example illustrates the equivalence between a
p-revision function and Jeffrey conditionalisation.

Example 2. Ler Q = {11,00,10,01}, |¢| = {11,00}, and
P be a probability function such that P(11) = P(10) =
P(01) = 0.2 and P(00) = 0.4. Then the Jeffrey conditional-
isation of P on the input that “the probability of ¢ is 0.3,” de-
noted P¢>J:o‘3’ is such that P(;]ZO‘S(IO) = (.35, P(‘;:O_S(Ol) =
0.35, P 4(11) = 0.1, and PJ_, ,(00) = 0.2.

The Jeffrey conditionalisation corresponds to the revision
of the p-belief set B by the p-formula p(¢) = 0.3 where
[|B|| = {P}. The set of ratio-formulas for ¢ in B, denoted
Rp(9), is such that Rg(¢) = {p(10) = p(01),p(10,01) =
3.p(11), p(11,00) = 1.5-p(00)}. Note that |-¢| = {10,01}.
Since Rp(9) is consistent with p(¢) = 0.3, there is a remain-
der set of B with respect to p(¢) = 0.3 that contains Rg(¢).

Let x be a p-revision function where the selection func-
tion vy for B is such that v(B | p(¢) = 0.3) = {X}
and Rp(¢) C X. Then we have B x (p(¢) = 0.3) =
(X U{p(¢) = 0.3)}). Note that p(11) = 2 - p(00) together
with p(¢) = 0.3 entail p(11) = 0.1 and p(00) = 0.2. Also
p(@) = 0.3 entails p(—¢) = 0.7; and p(10) = p(01) together
with p(—¢) = 0.7 entail p(10) = 0.35 and p(01) = 0.35. So
the only probability function that satisfies B * (p(¢) = 0.3)
is Pq{:().g.

4.2 Imaging

Imaging, introduced in [Lewis, 1976], is the starting point for
many works on probabilistic belief revision [Ramachandran
et al., 2010; Chhogyal et al., 2014; Rens et al., 2016]. In con-
trast to Jeffrey conditionalisation, imaging gives non-trivial
results for the “zero-probability” case. Lewis makes the as-
sumption that for each possible world w and each consistent
propositional formula ¢, there is a ¢-world, denoted wg, that
is closest to w among the ¢-worlds. The image of a probabil-
ity function P on ¢ is obtained by shifting the original prob-
ability of each world w over to wg. As in conditionalisation,
the input ¢ is understood as “the probability of ¢ is 1.”

While there is only one way to do Jeffrey conditionalisa-
tion, there are many ways to do imaging; and each is deter-
mined by how, for each consistent ¢ € £ and each w € ,
w is assigned a closest ¢-world. According to [Lewis, 1976],
the only restriction for such an assignment is that if w € |¢|,
then wg =w, that is the closest ¢-world to any ¢-world is the
¢-world itself. We model the assignment of closest world by
a function I : Q x £ —  such that I(w, ¢) gives us the
closest ¢-world to w and

1. I(w,¢) € |¢| and
2. I(w, ¢) = w whenever w € |¢|.

We call such functions closest world functions.
Now the imaging process can be captured precisely by a
image function defined as follows.
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Definition 4. A function o : P x L — P is an image function

iff
EQ P(p)  ifw e |9l
Py(w) = { wll(u)
0 otherwise

where the probability function Pg is the outcome of o on P

and ¢, and I is a closest world function. We say o is deter-
mined by I.

From now on, we work with image functions rather than the
general notion of imaging, as the former is precise on how the
imaging is done.

Similar to the case of Jeffery conditionalisation, we can
represent a probability function P by a p-belief set B that has
P as the only p-model; and the expression “the probability of
¢ is 17 as the p-formula p(¢) = 1. So for an image function
o, the problem behind P o ¢ corresponds to the problem of
revising B by p(¢) = 1 where ||B|| = {P}; this is again a
sub-problem of p-revision functions. We next show the equiv-
alence of some p-revision functions with the image function.

The imaging process can be characterised by a number of
probability shifts, one shift for each world w that “benefits”
from the probability movement in the imaging process. We
can picture such a shift for a beneficiary world w as consist-
ing of two steps: (a) identify all worlds, including w, whose
(relevantly) closest world is w, and (2) shift their combined
probability mass to w. The key here is to formulate such prob-
ability shifts as restrictions on the selection functions under-
lying p-revision. To this end, we introduce the notion of a
shift-formula.

Definition 5. A p-formula of Category 1, p(a) = ¢, is a shift-
formula for ¢ iff |a| N |@| is a singleton.

The intention here is that, given the desired outcome P(¢) =
1, for each ¢-world w we identify a sentence « such that |«
contains exactly those worlds each of which has w as its clos-
est world among |¢|. It is easily noted that, in such a case,
|a| N |¢| = {w} is a singleton. The resultant probability of w
(due to imaging) is the total probability it will receive from
members of |a/, and ¢ is intended to capture that total. Since
we have a shift-formula p(«) = ¢ for every ¢-world w, we
can capture every shift of probability behind P o ¢. We ac-
cordingly define the shift-set for ¢ (with respect to P and 1)
as the set of such relevant shift-formulas:

Definition 6. The shift-set for ¢ with respect to P and 1,
denoted SL(¢), is a set of shift formulas. A shift formula
p(a) = cisin SL() iff there exists w € |¢| such that

L |af ={p € Q[I(u,¢) = w}, and

2. ¢ = P(a).

The following lemma shows that our intuition on capturing

the shift of probability through a shift-set is correct. That is,
Pg, where the image function o is determined by I, is the

only p-model of SL(¢) and p(¢) = 1.

Lemma 4. Let o be an image function that is determined by

1. Then
1S (¢) U {p(¢) = 1}|| = {Pg}.

In relation to p-revision, we have that if B is a p-belief set
that has P as the only p-model, then there is a remainder set
of B with respect to p(¢) = 1 that contains SL(¢).

Lemma 5. Let ||B|| = {P}. Then there exists element X in
B | (p(¢) = 1) such that Sh(¢) C X.

It follows then from Lemma 4 that if the selection function
for B picks a single remainder set that contains S (¢), then
the p-revision function yields an outcome equivalent to the
imaging-function o.

Theorem 3. Let o be an image function, and ||B|| = {P}.
Then there is a p-revision function x such that

1B+ (p(¢)=1)|| = {Pg}.

The following example illustrates the equivalence between a
p-revision function and an image function.

Example 3. Let Q = {11,00,10,01} and |¢| = {11,00}. Let
P be a probability function such that P(11) = P(00) = 0,
P(10) = 0.3, and P(01) = 0.7. Let o be an image func-
tion where the associated closest world function I is such
that 1(10,¢) = 11 and I(01,¢) = 00. Then we have
P3(11) = 0.3,P5(00) = 0.7, P3(10) = 0, and P5(01) = 0.

The problem behind P o ¢ corresponds to the the revision of
the p-belief set B by the p-formula p(¢) = 1 where ||B|| =
{P}. The shift-set for ¢ with respect to P and I, denoted
SL(¢), is such that SL(¢) = {p(01,00) = 0.7,p(10,11) =
0.3}. Since SL(¢) is consistent with p(¢) = 1, there is a
remainder set of B with respect to p(¢) = 1 that contains
Sh(6).

Let x be a p-revision function where the selection function
7 for B is such that v(B | p(¢) = 1) = {X} and S5(¢) C
X. Then we have Bx(p(¢) = 1) = cl(XU{p(¢) = 1}). Note
that since || = {00,11}, we have p(01,00) = 0.7 together
with p(¢) = 1 entail p(00) = 0.7; p(10,11) = 0.3 together
with p(¢) = 1 entail p(11) = 0.3; and p(¢) = 1 entails
p(10) = 0 and p(01) = 0. So the only probability function
that satisfies B * (p(¢) = 1) is P3.

5 A Note on Probabilistic Expansion

It is generally accepted, starting with [Girdenfors, 1988], that
the probabilistic analogue of AGM expansion is conditional-
isation. In both the cases, exposure to evidence that does not
contravene current knowledge leads to a new consistent be-
lief state which incorporates both the old and the new knowl-
edge; however, if the evidence “contradicts” old knowledge,
the agent lands in the “epistemic hell”. In the case of AGM
expansion the epistemic hell is the inconsistent set C'n(L),
and in case of conditionalisation it is an undefined belief state.
Neither of these approaches employs any mechanism to re-
solve inconsistency. Note in particular that, in the probability
setting, a piece of evidence with non-zero prior does not con-
travene current knowledge since there is at least one world
with a non-zero probability mass that satisfies the evidence.
However, when a probabilistic belief state P is represented
by a p-logic belief set B, the picture we get of conditionali-
sation alters drastically. Consider the conditionalisation of P
by ¢ when P(¢) = 0.3. Here the conditionalisation outcome
is properly defined, and hence would be considered a case of
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probabilistic expansion. In the context of p-logic, however,
this conditionalisation would correspond to incorporation of
the evidential sentence p(¢) = 1 into B where, presumably,
B has p(¢) =0.3 as a member. Since no probability function
can satisfy both p(¢) = 0.3 and p(¢) = 1, if we were to em-
ploy “expansion”, we would expand to inconsistency. How-
ever conditionalisation demands otherwise, and what corre-
sponds to conditionalisation in the context of p-logic is in-
stead a proper p-revision function that involves resolving in-
consistency. Hence we contend that it is our probabilistic ex-
pansion, namely a set union operation follow by logical clo-
sure, and not conditionalisation, that is the appropriate for-
mulation of AGM expansion in a probabilistic setting.

We note that Voorbraak [1999] also claims that condition-
alisation is different from AGM expansion, and his main ar-
gument is that AGM expansion aims to reduce ignorance
whereas conditionalisation aims to reduce uncertainty.

6 Related Work

In contrast to p-revision, most approaches to probabilistic be-
lief revision deal with changes to a single probability function
induced by input of the form “the probability of ¢ is 1”.

Apart from the classical methods mentioned previously,
Girdenfors [1988] also provides a revision method for prob-
ability functions that adheres to the AGM framework. The
main idea is that, in revising P by ¢, first pick a probability
function @) such that Q(¢) > 0 then take the conditionalisa-
tion of () on ¢ (i.e., Q;‘) as the revision outcome. In addition
to revision, Gérdenfors also discusses the corresponding op-
erations of AGM contraction and expansion for probability
functions. The approach by Chhogyal et al. [2014] is based
on imaging. The authors propose various ways of assigning
the closest worlds that are intuitively appealing, and evaluate
their methods against some AGM-style revision postulates.
Also based on the idea of imaging, the corresponding opera-
tion of AGM contraction is studied in [Ramachandran et al.,
2010] for probability functions.

An approach that is closer to ours is by Rens ef al. [2016]
which works with a syntactically-restricted version of p-logic.
To be precise, their language is restricted to a subset of Cat-
egory 1 p-formulas. Since a set of such p-formulas may have
more than one satisfying probability function, an agent’s be-
liefs are modelled as a set of probability functions. They fo-
cus on a generalisation of imaging called general imaging
[Gérdenfors, 1988]. While imaging assumes that a possible
world w has a single most-similar ¢-world (viz. wg), gen-
eral imaging allows multiple most-similar worlds. In revis-
ing {Py,...,P,} by ¢, the approach of Rens et al. [2016]
is to obtain the (general) image of P; on ¢ for 1 < 7 < n,
then take the set of imaging outcomes as the revision out-
come. Frequently there is an infinite set of satisfying proba-
bility functions. Their main contribution is the identification
of a finite set of boundary probability functions among the
infinite set, such that revision of the finite set gives an identi-
cal outcome to revision of the infinite set. Note that although
their logic allows one to express new information with a de-
gree of uncertainty, their revision method, like imaging, han-
dles only new information of the form “the probability of ¢ is
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1. Also concerning changes to a set of probability functions,
Grove and Halpern [1998] articulate some desirable proper-
ties and evaluate several revision methods over the proper-
ties. The methods they considered however can not handle
the “zero-probability” case.

In [Boutilier, 1995] an agent’s beliefs are captured by a
Popper function [Popper, 2002] that takes the notion of con-
ditional probability as the primitive. In this setting, Boutilier
[1995] discusses issues of iterated belief revision. In [Del-
grande, 2012], an agent’s belief is modelled as a tuple that
consists of a probability function and a confidence level c.
Then methods for incorporating new and uncertain informa-
tion with a confidence level exceeds c are introduced. Lind-
strom and Rabinowicz [1989] discussed ways of dealing with
the non-uniqueness problem, that is a belief set can be associ-
ated with many different probability functions. Kern-Isberner
[2001] brings conditionals and entropy measures into consid-
eration for probabilistic belief revision. Bona et al. [2016]
investigate ways of consolidating probabilistic information
through belief base contraction [Hansson, 1999]. Noticeably,
their approach is based on a syntactically-restricted version
of p-logic (i.e., subset of Category 1 p-formulas). Chhogyal
et al. [2015] give a concrete construction of Girdenfors’ con-
traction method through argumentation.

7 Conclusion

In this paper, we have proposed p-logic, which is capable
of representing and reasoning with some commonly encoun-
tered probability assertions. This allows us to deal with uncer-
tainty in a more natural and familiar way. This also allows us
to refer to each item of probabilistic information separately,
which makes it easy to represent the change of information
when our beliefs represented as p-formulas are revised.

With p-logic as the basis for dealing with uncertainty,
we proposed p-revision, which is an “all purpose” revision
method that complies with all the basic AGM revision postu-
lates. We show that p-revision subsumes conditionalisation,
Jeffrey conditionalisation, and imaging, which are the classi-
cal methods for revising probability functions. Significantly,
the result implies that although these classical methods were
introduced much earlier than the AGM framework, they all
obey the basic principles of AGM revision.

We note that Category 3 p-formulas are redundant in es-
tablishing the correspondence of p-revision with the classi-
cal methods. Our results show that Category 2 p-formulas
are sufficient to capture the revision process of Jeffrey con-
ditionalisation and Category 1 p-formulas alone are sufficient
for imaging. Whether there are meaningful revision methods
whose representation requires Category 3 p-formulas is an in-
teresting question that we will explore in our future work.
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