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Abstract
Hashing is an important tool in large-scale machine
learning. Unfortunately, current data-dependent
hashing algorithms are not robust to small pertur-
bations of the data points, which degrades the per-
formance of nearest neighbor (NN) search. The
culprit is the minimization of the `2-norm, aver-
age distortion among pairs of points to find the hash
function. Inspired by recent progress in robust op-
timization, we develop a novel hashing algorithm,
dubbed RHash, that instead minimizes the `∞-
norm, worst-case distortion among pairs of points.
We develop practical and efficient implementa-
tions of RHash that couple the alternating direction
method of multipliers (ADMM) framework with
column generation to scale well to large datasets.
A range of experimental evaluations demonstrate
the superiority of RHash over ten state-of-the-art
binary hashing schemes. In particular, we show that
RHash achieves the same retrieval performance as
the state-of-the-art algorithms in terms of average
precision while using up to 60% fewer bits.

1 Introduction
Hashing, one of the primitive operations in large-scale ma-
chine learning systems, seeks a low-dimensional binary em-
bedding of a high-dimensional dataset. Such a binary embed-
ding can increase the computational efficiency of a variety of
tasks, including nearest neighbor (NN) search.

The embedding of high-dimensional data into short binary
codes naturally distorts the set of top NNs of each data point.
To minimize this distortion, a range of hashing schemes have
been developed. The simplest, random projection, projects
the data onto a lower-dimensional random subspace and then
quantizes to binary values. Random projection belongs to the
family of probabilistic, locality sensitive hashing (LSH) algo-
rithms that guarantee the preservation of the set of NN points
with small distortion [Datar et al., 2004]. The cost, however,
is that LSH requires an impractically high number of bits to
index real-world, large-scale datasets [Lv et al., 2007]. In re-
sponse, data-dependent binary hashing algorithms have been
developed that require significantly fewer bits; see [Wang et
al., 2014] for a survey.

Data-dependent hashing algorithms learn a hash function
by minimizing a measure of distortion between certain pairs
of data points [Weiss et al., 2009; 2012]. For the task of
NN search, it is sufficient to control the pairwise distor-
tion among the NNs of each point plus a few additional
points [Kulis and Darrell, 2009]. Given a pair of data points
(xi,xj) in the ambient space and their corresponding em-
bedded binary codes (hi,hj) in the Hamming space, de-
fine the pairwise distortion function δij = L(xi,xj ;hi,hj),
where L(·) is a chosen loss function. The lion’s share of
data-dependent hashing algorithms use an `2-norm loss func-
tion, which minimizes the average of the square of pair-
wise distortions ‖δ‖22 =

∑
(i,j)∈Ω δ

2
ij over a set of selected

pairs of points Ω [Jiang and Li, 2015; Kong and Li, 2012;
Kulis and Darrell, 2009; Liu et al., 2011; Weiss et al., 2009;
2012].

Unfortunately, the loss functions employed by the hash-
ing community to date, including the `2-norm loss, are not
robust to perturbations of the data points. Indeed, the `2-
norm average distortion is well-known to be sensitive to small
disturbances and noise [Chatterjee and Hadi, 2009]. In this
paper, we argue that alternative norms, in particular the `∞-
norm (which measures worst-case distortion) [Du and Parda-
los, 2013; Hartley and Schaffalitzky, 2004; Xu et al., 2009],
are more robust to small perturbations and thus more appro-
priate for designing data-dependent hash functions.

To elucidate the strong effect of the loss function on the
robustness of a hashing function, we compare the hash func-
tions learned using the `2- and `∞-norm losses on a subset of
the MNIST dataset of handwritten digit images [LeCun and
Cortes, 1998]. For visualization purposes, we project the data
points onto the first two principal components and compute
the optimal 1-dimensional binary embeddings generated by
minimizing the `2-norm distortion and the `∞-norm distor-
tion ‖δ‖∞ = max(i,j)∈Ω |δij | with |Ω| = 50. Figure 1(a)
shows the `2- and `∞-optimal embeddings that we learned
from a grid search. Figure 1(b) summarizes an experiment
where we add a small amount of white Gaussian noise to each
data point before computing the optimal embeddings. We see
that the `2-optimal embedding is increasingly less robust than
the `∞-optimal embedding as the amount of noise grows.

The robustness of the `∞-optimal embedding translates di-
rectly to improved NN preservation. Continuing the MNIST
example from above but with no added noise, Figure 1(c) il-
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Figure 1: Comparison of the robustness and nearest neighbor (NN) preservation performance of embeddings based on minimizing the `2-
norm (average distortion) vs. the `∞-norm (worst-case distortion) on a subset of the MNIST handwritten digit dataset projected onto its first
two principal components. The subset consists of the 50 NN (in the 2-dimensional ambient space) of the centroid q of the cluster of “8”
digits. (a) Optimal embeddings for both distortion measures computed using a grid search over the orientation of the line representing the
embedding. (b) Robustness of the embedding orientations to the addition of a small amount of white Gaussian noise to each data point.
This plot of the mean square error of the orientation of the `2-optimal embedding divided by the mean square error of the orientation of the
`∞-optimal embedding indicates that the latter embedding is significantly more robust to perturbations in the data points. (c) Comparison of
the top-5 NNs of the query point q obtained in the ambient space using the `∞- and `2-optimal embeddings (no added noise). (d) Projections
of the data points onto the `∞- and `2-optimal embeddings (no added noise).

lustrates that the top-5 NNs of the query point q are severely
damaged by the `2-optimal embedding but are left unscathed
by the `∞-optimal embedding. Figure 1(d) provides some
insight into the reason. The `2-norm (average distortion) op-
timal embedding does not preserve some of the distances be-
tween the digits “3”, “5”, and “9” and the digit “8” and thus
projects some of them into the same neighborhood close to q.
In contrast, the `∞-norm (worst-case distortion) optimal em-
bedding preserves these harder distances and thus preserves
the set of original NNs of q with minimal distortion.

Inspired by the robustness of the `∞-norm distortion [Du
and Pardalos, 2013; Hartley and Schaffalitzky, 2004; Xu et
al., 2009], we propose Robust Hashing (RHash), the first
hashing algorithm that learns robust binary hash codes by
minimizing the `∞-norm of the pairwise distances vector
‖δ‖∞ = max(i,j)∈Ω |dH(hi,hj) − d(xi,xj)|, where d and
dH denote the Euclidean and Hamming distances, respec-
tively. The robustness of `∞-norm distortion stems from its
dependence on only the pairwise distortions that are hard-
est to preserve. As long as the hardest pairwise distortions
are not affected, small perturbations do not alter the outcome
of the embedding. In other words, in the NN retrieval task,
where we only care about the distortions of NN pairs, the
hardest pair to preserve is the deal-breaker. We emphasize
that the worst-case distorted NN pair (under an embedding)
is the hardest NN pair to be preserved and not the farthest pair
nor a pair of outliers.

1.1 Contributions
We make four distinct contributions in this paper. First, con-
ceptually, we advocate minimizing the more robust worst-
case `∞-norm distortion measure rather than the more prosaic
`2-norm distortion.

Second, algorithmically, since `∞-norm minimization
problems are computationally challenging, especially for
large datasets, we develop two accelerated and scalable al-
gorithms to find the optimal robust embedding. The first,
Robust Hashing (RHash), is based on the alternating direc-
tion method of multipliers (ADMM) framework [Boyd et al.,
2011]. The second, RHash-CG, is based on an accelerated
greedy extension of the RHash algorithm using the concept
of column generation [Dantzig and Wolfe, 1960]. RHash-CG
can rapidly learn hashing functions from large-scale data sets
that require the preservation of billions of pairwise distances.

Third, theoretically, since current data-dependent hashing
algorithms do not offer any probabilistic guarantees in terms
of preserving NNs, we develop new theory to prove that, un-
der natural assumptions regarding the data distribution and
with a notion of hardness of NN search (dubbed the k-order
gap), RHash preserves the top NNs with high probability.

Fourth, experimentally, we demonstrate the superior per-
formance of RHash over ten state-of-the-art binary hashing
algorithms using an exhaustive set of experimental evalua-
tions involving six diverse datasets and three different per-
formance metrics (distance preservation, Hamming distance
ranking, and Kendall’s τ ranking performance). In partic-
ular, we show that RHash achieves the same retrieval per-
formance as state-of-the-art algorithms in terms of average
precision while using up to 60% fewer bits. Our experi-
ments clearly show the advantages of the `∞-norm formu-
lation compared to the more classical `2-norm formulation
that underlies many hashing algorithms [Kong and Li, 2012;
Kulis and Darrell, 2009]. Our formulation also outperforms
recently developed techniques that assume more structure in
their hash functions [Heo et al., 2012; Yu et al., 2014].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1387



We note that the `∞-norm has been exploited in the hash-
ing literature before; however, these works are in sharp con-
trast to the RHash objective and algorithm. For example,
antisparse coding [Jégou et al., 2012] uses the `∞-norm to
directly learn binary codes and bypass quantization. More re-
cently, the `∞-norm has been used to train a deep supervised
hashing algorithm [Wang et al., 2016]. In contrast, we im-
pose the `∞-norm on the NNs of the dataset in order to learn
a robust unsupervised hashing algorithm, which is completely
different from the above approaches.

2 Robust Hashing via `∞-norm Distortion
In this section, we formulate the RHash algorithm. We
pick a simple formulation for data dependent binary hash
function that embeds a data point x ∈ RN into the low-
dimensional Hamming space H = {0, 1}M by first multi-
plying it by an embedding matrix W ∈ RM×N and then
quantizing the entries of the product Wx to binary values:
h(Wx) = (1 + sgn(Wx))/2. The function sgn(·) operates
element-wise on the entries of Wx, transforming the real-
valued vector Wx into a set of binary codes depending on
the sign of the entries in Wx.

2.1 Problem Formulation
Consider the design of a binary embedding f that maps Q
high-dimensional data vectors X = {x1,x2, . . . ,xQ} in the
ambient space RN into low-dimensional binary codes H =
{h1,h2, . . . ,hQ} in the Hamming space with hi ∈ {0, 1}M ,
where hi = f(xi), i = 1, . . . , Q, and M � N . Define the
distortion of the embedding by

δ = inf
λ>0

sup
(i,j)∈Ω

|λdH(hi,hj)− d(xi,xj)|, (1)

where d(xi,xj) denotes the Euclidean distance between the
data points xi, xj , dH(hi,hj) denotes the Hamming distance
between the binary codes hi and hj , Ω indexes the set con-
taining a selected pair of points (more details in section 3),
and λ is a positive scaling variable. The distortion δ measures
the worst-case deviation from perfect distance preservation
[Plan and Vershynin, 2014]. Define the secant set S(X ) as
S(X ) = {xi − xj : (i, j) ∈ Ω}, i.e., the set of pairwise dif-
ference vectors indexed by Ω. Let |S(X )| = |Ω| denote the
size of the secant set [Hegde et al., 2015].

RHash minimizes the worst-case distortion parameter δ via
the following optimization:

minimize
W,λ>0

sup
(i,j)∈Ω

∣∣∣λ‖h(Wxi)− h(Wxj)‖22 − ‖xi − xj‖2
∣∣∣ .
(2)

Since the squared `2-distance between a pair of binary codes
is equivalent to their Hamming distance up to a scaling factor
that can be absorbed into λ, we can rewrite the above opti-
mization as

(P∗) minimize
W,λ>0

‖λv′(W)− c‖∞, (3)

where v′ ∈ N|Ω| is a vector containing the pairwise
Hamming distances between the embedded data vectors
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Figure 2: Empirical convergence behavior of the RHash algorithm.
Both the maximum distortion parameter δ and the loss function
||λv− c||∞ that approximates δ decrease and converge as the num-
ber of iterations increases. We see that the RHash loss function
closely matches the behavior of the actual distortion parameter in
each iteration.

‖h(xi)− h(xj)‖22, and c is a vector containing the pairwise
`2-distances between the original data vectors. Intuitively,
the `∞-norm objective optimizes the worst-case distortion
among NN’s distances.

Problem (P∗) has a combinatorial computational complex-
ity of O(Q2M ). Following the standard approach [Kulis and
Darrell, 2009], we approximate the hash function h(·) by the
sigmoid function σ(x) = (1+e−x)−1. This enables us to ap-
proximate (P∗) by the following optimization with a smooth
objective:

(P) minimize
W,λ>0

‖λv(W)− c‖∞, (4)

where v ∈ R|Ω|+ is a vector containing the pairwise `2 dis-
tances between the embedded data vectors after the sigmoid
relaxation

∥∥(1 + e−Wxi)−1 − (1 + e−Wxj )−1
∥∥2

2
. The sig-

moid function operates element-wise on Wxi. In practice we
use a more general definition of the sigmoid function, defined
as σα(x) = (1 + e−αx)−1, where α is the rate parameter that
controls how closely it approximates the non-smooth function
h(·). We formally characterize the approximation quality in
Lem. 2 of the appendix A.

2.2 The RHash Algorithm
We now outline the steps that RHash takes to solve the op-
timization (P). We apply the alternating direction method of
multipliers (ADMM) framework [Boyd et al., 2011] to con-
struct an efficient algorithm. We introduce an auxiliary vari-
able u to arrive at the equivalent problem:

minimize
W,u,λ>0

‖u‖∞ subject to u = λv(W)− c. (5)

The augmented Lagrangian form of this problem can be writ-
ten as minimize

W,u,λ>0
‖u‖∞ + ρ

2‖u− λv(W) + c + y‖22 , where

ρ is the scaling parameter in ADMM and y ∈ R|Ω| is the
Lagrange multiplier vector.

The RHash algorithm proceeds as follows. First, the vari-
ables W, λ, u, and Lagrange multipliers y are initialized ran-
domly. Then, at each iteration, we optimize over each of the
variables W,u, and λwhile holding the other variables fixed.
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More specifically, in iteration `, we perform the following
four steps until convergence:

• Optimize over W via W(`+1)←arg min
W

1
2

∑
(i,j)∈Ω(u

(`)
ij −

λ(`)‖ 1
1+e−Wxi

− 1

1+e−Wxj
‖22 +‖xi − xj‖22 +y

(`)
ij )2, where

λ(`) denotes the value of λ in the `th iteration. We also
use u(`)

ij and y(`)
ij to denote the entries in u(`) and y(`) that

correspond to the pair (xi,xj) in the dataset X . We show
in our experiments below that using the accelerated first-
order gradient descent algorithm [Nesterov, 2007] to solve
this subproblem results in good convergence performance
(see Figure 2).

• Optimize over u while holding the other variables fixed;
this corresponds to solving the proximal problem of the `∞-
norm u(`+1)←arg min

u
‖u‖∞+ρ

2‖u−λ
(`)v(`+1)+c+y(`)‖22.

We use the low-cost algorithm described in [Studer et al.,
2014] to perform the proximal operator update.

• Optimize over λ while holding the other variables fixed;
this corresponds to a positive least squares problem, where
λ is updated as λ(`+1)←arg min

λ>0

1
2‖u

(`+1)−λv(`+1) + c+

y(`)‖22.We perform this update using the non-negative least
squares algorithm.

• Update y via y(`+1)←y(`) +η(u(`+1)−λ(`+1)v(`+1) +c),
where the parameter η controls the dual update step size.

2.3 Accelerated RHash for Large-scale Datasets
The ADMM-based RHash algorithm is efficient for small-
scale datasets (e.g., for secant sets of size |S(X )| < 5000
or so). However, the memory requirement of RHash is
quadratic in |X |, which could be problematic for applications
involving large numbers of data points and secants. In re-
sponse, we develop an algorithm that approximately solves
(P) while scaling very well to large-scale problems. The key
idea comes from classical results in optimization theory re-
lated to column generation (CG) [Dantzig and Wolfe, 1960;
Hegde et al., 2015].

The optimization (5) is an `∞-norm minimization prob-
lem with an equality constraint on each secant. The Karush-
Kuhn-Tucker (KKT) condition for this problem states that,
if strong duality holds, then the optimal solution is entirely
specified by a (typically very small) portion of the constraints.
Intuitively, the secants corresponding to these constraints are
the pairwise distances of kNNs that are harder to preserve in
the low-dimensional Hamming space. We call this set of se-
cants the active set. In order to solve (P), it suffices to find
the active secants and solve the RHash optimization with that
much smaller number of active constraints. To leverage the
idea of the active set, we iteratively run RHash on a small sub-
set of all of the secants that violate the distance preservation,
as detailed below:

• Solve (P) with a small random subset S0 of all of the se-
cants S(X ) using RHash to obtain the initial estimates Ŵ,
δ̂, and λ̂ of the parameters. Identify the active set Sa. Fix
λ = λ̂ for the rest of the algorithm.

• Randomly select a new subset Sv ⊂ S of secants that vi-
olate the distance preservation condition using the current
estimates of Ŵ, δ̂, and λ̂. Then, form the augmented secant
set Saug = Sa ∪ Sv.

• Solve (P) with the secants in the set Saug using the RHash
algorithm.

We dub this approach RHash-CG. RHash-CG iterates over
the above steps until no new violating secants are added to
the active set. Since the algorithm searches over all secants
for violations in each iteration, RHash-CG ensures that all of
the constraints are satisfied when it terminates.

A key benefit of RHash-CG is that only the set of active
secants (and not all of the secants) needs to be stored in mem-
ory. This leads to significant improvements in memory com-
plexity over competing algorithms, since the size of the se-
cant set grows quadratically with the number of data points
and can quickly exceed the system memory capacity in large-
scale applications. The `∞-norm distortion function enables
RHash to leverage the simple CG approach in order to scale to
larger datasets, another advantage of `∞-norm for large-scale
hashing.

2.4 RHash and NN Preservation Guarantee
Now that we have fully described the RHash algorithm, we
develop a theory that bounds the probability of preserving all
kNNs as a function of the `∞-norm distortion measure δ min-
imized by RHash.

Inspired by the definition of relative contrast [He et al.,
2012], we define a more generalized measure of data separa-
bility to preserve kNN that we call the k-order gap ∆k :=
d(x0,xk+1) − d(x0,xk), where x0 is a query point and xk
and xk+1 are its kth and k + 1st NNs, respectively. We for-
mally show that, if the data is sufficiently separable (∆k is
large), then RHash preserves all kNNs with high probability
under assumptions that are typical in the NN search literature
[He et al., 2012] (see the appendix A for the proof).

Theorem 1. Assume that all of the data points are indepen-
dently generated from a mixture of Gaussians distribution,
i.e., xi ∼

∑P
p=1 πpN (µp,Σp). Let x0 ∈ RN denote a query

data point in the ambient space, and let the other data points
xi be ordered such that d(x0,x1) < d(x0,x2) < . . . <
d(x0,xQ). Let δ denote the `∞-norm distortion parame-
ter in RHash, and let c denote a positive constant. Then, if
Ex[∆k] ≥ 2δ +

»
1
c log Qk

ε , then RHash preserves all kNNs
of the query point x0 with probability at least 1− ε.

3 Experiments
In this section, we validate the RHash and RHash-CG algo-
rithms via experiments using a range of synthetic and real-
world datasets, including three small-scale, three medium-
scale, and one large-scale datasets. We use three metrics to
compare RHash against ten state-of-the-art binary hashing al-
gorithms, including binary reconstructive embedding (BRE)
[Kulis and Darrell, 2009], spectral hashing (SH) [Weiss et al.,
2009], anchor graph hashing (AGH) [Liu et al., 2011], multi-
dimensional spectral hashing (MDSH) [Weiss et al., 2012],
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Figure 3: Comparison of the RHash and RHash-CG algorithms against several baseline binary hashing algorithms using three small-scale
datasets (Q = 100). The performance of RHash-CG closely follows that of RHash, and both outperform all of the other algorithms in
terms of the maximum distortion δ (superior NN distance preservation), mean average precision MAP of training samples (superior retrieval
performance), and Kendall’s τ rank correlation coefficient (superior ranking preservation).
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Figure 4: Comparison of RHash and RHash-CG against several
state-of-the-art binary hashing algorithms in preserving distances
on MNIST data. (a) RHash-CG outperforms the other algorithms
in minimizing the distance distortion parameter on unseen data δtest.
(b) RHash and RHash-CG provide better distance preservation guar-
antee with a small sacrifice to universality.

scalable graph hashing (SGH) [Jiang and Li, 2015], PCA
hashing (PCAH), isotropic hashing (IsoHash) [Kong and Li,
2012], spherical Hamming distance hashing (SHD) [Heo et
al., 2012], circulant binary embedding (CBE) [Yu et al.,
2014], and locality-sensitive hashing (LSH) [Indyk and Mot-
wani, 1998].

3.1 Performance Metrics and Datasets
We compare the algorithms using the following three metrics:

Maximum distortion δ = inf
λ>0
||λv̂ − c||∞, where the vec-

tor v̂ contains the pairwise Hamming distances between the
learned binary codes. This metric quantifies the distance
preservation after projecting the training data in the ambient
space into binary codes. We also define the maximum dis-
tortion for unseen test data δtest, which measures the distance
preservation on a hold-out test dataset using the hash function
learned from the training dataset.

Mean average precision (MAP) for NN preservation in the
Hamming space. MAP is computed by first finding the set
of kNNs for each query point in a hold-out test data set in
the ambient space Lk and the corresponding set LkH in the
Hamming space and then calculating the average precision
AP = |Lk ∩ LkH|/k. We then report MAP by calculating the
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mean value of AP across all data points.
Kendall’s τ ranking correlation coefficient. We first rank

the set of kNNs for each data point by increasing distance
in the ambient space as T (Lk) and in the Hamming space
as T (LkH). The Kendall τ correlation coefficient is a scalar
τ ∈ [−1, 1] that measures the similarity between the two
ranked sets T (Lk) and T (LkH) The value of τ increases as the
similarity between the two rankings increases and reaches the
maximum value of τ = 1 when they are identical. We report
the average value of τ achieved across all data points in the
training dataset.

To compare the algorithms, we use the following standard
datasets from computer vision: Random consists of indepen-
dently drawn random vectors in R100 from a multivariate
Gaussian distribution with zero mean and identity covariance
matrix. Translating squares is a synthetic dataset consisting
of 10×10 images that are translations of a 3×3 white square
on a black background [Hegde et al., 2015]. MNIST is a col-
lection of 60,000 28 × 28 greyscale images of handwritten
digits [LeCun and Cortes, 1998]. Photo-Tourism is a cor-
pus of approximately 300,000 image patches represented us-
ing scale-invariant feature transform (SIFT) features [Lowe,
2004] in R128 [Snavely et al., 2006]. LabelMe is a collec-
tion of over 20,000 images represented using GIST descrip-
tors in R512 [Torralba et al., 2008]. Peekaboom is a collec-
tion of 60,000 images represented using GIST descriptors in
R512 [Torralba et al., 2008]. Following the experimental ap-
proaches of the hashing literature [Kulis and Darrell, 2009;
Norouzi and Fleet, 2011], we pre-process the data by sub-
tracting the mean and then normalizing all points to lie on the
unit sphere.

3.2 Small- and Medium-scale Experiments
We start by evaluating the performance of RHash and RHash-
CG using a subset of the first three datasets. Small-scale
datasets enable comparisons between the asymptotic behav-
iors of the algorithms in preserving distances in a regime
where number of bits is high enough (compared to the total
number of NNs) to preserve a large portion of NN distances.

Experimental Setup. We randomly select Q = 100 data
points from the Random, Translating squares, and MNIST
datasets. We then apply the RHash, RHash-CG, and all of
the baseline algorithms on each dataset for different target
binary code word lengths M from 1 to 70 bits. We set the
RHash and RHash-CG algorithm parameters to the common
choice of ρ = 1 and η = 1.6. To generate a hash function of
length M for LSH, we draw M random vectors from a Gaus-
sian distribution with zero mean and an identity covariance
matrix. We use the same random vectors to initialize RHash
and the other baseline algorithms. In the NN preservation ex-
periments, to demonstrate the direct advantage of minimizing
`∞-norm over `2-norm, we followed the exact procedure de-
scribed in BRE [Kulis and Darrell, 2009] to select the training
secants, i.e., we apply the RHash algorithm on the lowest 5%
of the pairwise distances (which are set to zero as in BRE)
combined with the highest 2% of the pairwise distances.

We follow the continuation approach [Wen et al., 2010]
to set the value of α. We start with a small value of α (e.g.,
α = 1), in order to avoid becoming stuck in bad local minima,
and then gradually increase α as the algorithm proceeds. As
the algorithm moves closer to convergence and has obtained
a reasonably good estimate of the parameters W and λ, we
set α = 10, which enforces a good approximation of the sign
function (see Lem. 2 in the appendix A for an analysis of the
accuracy of this approximation).

Results. The plots in the top row of Figure 3 illustrate the
value of the distortion parameter δ as a function of the num-
ber of projections (bits) M . The performance of RHash
and RHash-CG closely follow each other, indicating that
RHash-CG is a good approximation to RHash. Both RHash
and RHash-CG outperform the other baseline algorithms in
terms of the distortion parameter δ. Among these baselines,
LSH has the lowest distance preservation performance, which
should be expected, since random projections are oblivious to
the intrinsic geometry of the training dataset.

To achieve δ = 1, RHash(-CG) requires 60% fewer bits
M than CBE and BRE. RHash(-CG) also achieves better dis-
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Table 1: Comparison of RHash-CG against several baseline binary hashing algorithms on the large-scale MNIST+rotation dataset with over
5 billion secants |S(X )|. We tabulate the Hamming ranking performance in terms of mean average precision MAP for different sizes of the
dataset. All training times are in seconds.

MAP / Top-500 Training time (s)
Training size Q 1k 10k 100k 240k 240k

Secant size |S(X )| 100k 10M 1B 5B 5B

RHash-CG 52.79 (±0.15) 54.69 (±0.18) 54.93 (±0.23) 55.52 (±0.11) 541.43
CBE 38.70 (±1.18) 38.12 (±1.34) 38.50 (±2.05) 38.53 (±0.83) 68.94
SPH 44.33 (±0.74) 44.24 (±0.61) 44.37 (±0.71) 44.32 (±0.63) 184.46
SH 40.12 (±0.00) 39.37 (±0.00) 38.79 (±0.00) 38.26 (±0.00) 3.05

MDSH 41.06 (±0.00) 41.23 (±0.00) 40.80 (±0.00) 40.39 (±0.00) 15.00
AGH 45.81 (±0.34) 47.78 (± 0.38) 47.69 (±0.41) 47.38 (±0.32) 4.49
SGH 51.32 (±0.07) 51.33 (±0.20) 51.01 (±0.23) 50.66 (±0.76) 5.89
BRE 48.33 (±0.65) 50.67(±0.33) – – 18685.51

PCAH 39.90 (±0.00) 38.53 (±0.00) 38.81 (±0.00) 37.50 (±0.00) 0.08
IsoHash 50.91 (±0.00) 50.90 (±0.00) 50.72 (±0.00) 50.55 (±0.00) 2.82

LSH 33.69 (±0.94) 33.69 (±0.94) 33.69 (±0.94) 33.69 (±0.94) 2.29× 10−4

tance preservation performance asymptotically, i.e., up to δ ≈
0.5, given a sufficient number of bits (M ≥ 70), while for
most of the other algorithms the performance plateaus after
δ = 1. RHash’s superior distance preservation performance
extends well to unseen data. RHash achieves the lowest dis-
tortion on a test dataset δtest compared to the other hashing
algorithms (Figure 4).

The plots in the middle and bottom row of Figure 3 show
the average precision for retrieving training data and the
Kendall’s τ correlation coefficient respectively, as a function
of the number of bits M . We see that RHash preserves a
higher percentage of NNs compared to other baseline algo-
rithms as M increases, with better average ranking among
k = 10 NNs. We see that RHash preserves a higher per-
centage of NNs and achieves a better average ranking perfor-
mance compared to other baseline algorithms.

Next, we showcase the performance of RHash-CG on the
three medium-scale, real-world datasets used in [Kulis and
Darrell, 2009; Norouzi and Fleet, 2011], including Photo-
tourism, LabelMe, and Peekaboom for the task of data re-
trieval. From each dataset we randomly select Q = 1000
training points, following the setup in BRE [Kulis and Dar-
rell, 2009], and use them to train RHash-CG and the other
baseline algorithms. We then randomly select a separate set
of Q = 1000 data points and use it to test the performance of
RHash-CG and other baseline algorithms in terms MAP with
k = 50. Figure 5 illustrates the performance of RHash-CG on
these datasets. RHash-CG outperforms all of the baseline al-
gorithms by large margins in Hamming ranking performance
in terms of MAP with top-50 NNs.

3.3 Large-scale Experiments
To demonstrate how RHash-CG scales to large-scale datasets,
we use the full MNIST dataset with 60,000 training images
and augment it with three rotated versions of each image (ro-
tations of 90◦, 180◦, and 270◦) to create a larger dataset with
Q = 240,000 data points. Next, we construct 4 training sets
with 1,000, 10,000, 100,000, and 240,000 images out of this
large set. We train all algorithms with M = 30 bits and com-
pare their performance on a test set of 10,000 images. The
results for all algorithms are given in Table 1; we tabulate

their performance in terms of MAP for the top-500 NNs.1
The performance of RHash-CG is significantly better than the
baseline algorithms and, moreover, improves as the size of the
training set grows.

4 Discussion
We have demonstrated that our worst-case, `∞-norm-
based, Robust Hashing (RHash) algorithm is superior to
a wide range of algorithms based on the more traditional
average-case, `2-norm. Despite its non-convexity and non-
smoothness, RHash admits an efficient optimization algo-
rithm that converges to a high-performing local minimum.
Moreover, RHash-CG, the accelerated version of RHash,
provides significant memory advantages over existing algo-
rithms; the memory requirement of RHash-CG is linear in the
number of active secants rather than the total number of se-
cants, a significant advantage over the existing reconstructive
hashing methods which minimize the reconstruction error be-
tween the original distances in ambient space and the Ham-
ming distances in embedded space. Our experiments with
six datasets, three metrics, and ten algorithms have demon-
strated the superiority of RHash over other state-of-the-art
data-dependent hashing algorithms. Thus, our results provide
a strong motivation for exploring `∞-norm and other worst-
case formulations for robust binary hashing.

A Proof of Theorem 1
Here, we prove Thm. 1 on the performance of RHash for k
nearest neighbor (kNN) preservation.

We start with a result that bounds the error of the sigmoid
approximation in RHash.
Lemma 2. Let x be a Gaussian random variable distributed
as x ∼ N (µ, σ2). Define the distortion of the sigmoid ap-
proximation at x by |h(x)− σα(x)|. Then, the expected dis-
tortion is bounded by

Ex[|h(x)− σα(x)|] ≤ 1

σ
√

2πα
+ 2e−(

√
α+c/ασ2),

1BRE fails to execute on a standard desktop PC with 12 GB of
RAM due to the size of the secant set.
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where c is a positive constant. As α → ∞, the expected
distortion→ 0.

Proof. It is easy to see that the maximum distortion
|h(x)− σα(x)| occurs at x = 0. Therefore, among different
values of µ, µ = 0 gives the largest distortion, since the den-
sity of x peaks at x = 0. Therefore, we bound the distortion
at setting µ = 0, which is an upper bound of the distortion
when µ 6= 0. By definition (1) above, h(x) can be written as

h(x) =

ß
1 if x ≥ 0
0 otherwise.

When x ∼ N (0, σ2) and we set x0 = 1√
α

, we can write

Ex[|h(x)− σα(x)|] =

∫ ∞
−∞
|h(x)− σα(x)| N (x; 0, σ2)dx

= 2

∫ ∞
0

(h(x)− σα(x))N (x; 0, σ2)dx (6)

= 2

∫ x0

0

(h(x)− σα(x))N (x; 0, σ2)dx

+ 2

∫ ∞
x0

(h(x)− σα(x))N (x; 0, σ2)dx

≤2

∫ x0

0

1

2
N (x; 0, σ2)dx+2

∫ ∞
x0

1

1 + eαx0
N (x; 0, σ2)dx

(7)

≤ x0√
2πσ

+ 2
e−cx

2
0/σ

2

1 + eαx0
(8)

≤ 1

σ
√

2πα
+ 2e−(

√
α+c/ασ2), (9)

where c is a positive constant. In (6), we used the fact
that σα(x) and h(x) are symmetric with respect to the
point (0, 1

2 ). (7) follows from the properties of the sig-
moid function; (8) follows from the Gaussian concentration
inequality [Ledoux and Talagrand, 1991]; and (9) follows
from the inequality 1/(1 + eαx0) ≤ e−αx0 . The fact that
Ex[|h(x)− σα(x)|] → 0 as α → ∞ is obvious from the
bound above.

Proof of Thm. 1

In order to prove Thm. 1, we need the following Lemma:

Lemma 3. Let x0, . . . ,xN and ∆k be defined as in Thm. 1.
Then, there exists a constant c such that P (∆k − Ex[∆k] <

t) ≤ e−ct2 for t > 0.

Proof. Since the data points x0, xk and xk+1 are in-
dependently generated from a finite mixture of Gaussian
distributions, the random variable of their concatenation
y = [xT0 ,x

T
k ,x

T
k+1]T ∈ R3N is sub-Gaussian [Wainwright,

2009]. Then, we have
∆k(y) = ‖x0 − xk+1‖2 − ‖x0 − xk‖2

= ‖
( I 0 0

0 0 0
0 0 −I

)
y‖2 − ‖

( I 0 0
0 −I 0
0 0 0

)
y‖2

≤ ‖
( 2I 0 0

0 −I 0
0 0 −I

)
y‖2 ≤ 2‖y‖2,

where we have used the triangular inequality in the second
to last step, the Rayleigh-Ritz theorem, and the fact that the
maximum singular value of the diagonal matrix above is 2.
This means that ∆k(y) is a Lipschitz function of y. Thus,
by Talagrand’s inequality [Ledoux and Talagrand, 1991], we
have that P (∆k − Ex[∆k] < −t) ≤ e−ct

2

for some positive
constant c and t > 0, since y is sub-Gaussian.

We are now ready to prove Thm. 1.

Proof. Let E denote the event that the set of top-k NNs is
not preserved in the Hamming space. Then, we have E =
∪em,n, where em,n denotes the event that dH(x0,xm) >
dH(x0,xn), with m ∈ {1, . . . , k} and n ∈ {k + 1, . . . , Q}.
Then, using the union bound, we have

P (E) ≤
∑
m,n

P (em,n) ≤ k(Q− k)P (ek,k+1)

= k(Q− k)P (dH(x0,xk) > dH(x0,xk+1))

= k(Q− k)P (dH(x0,xk+1) < dH(x0,xk)),

where we have used the fact that the most probable among all
em,n events is the one corresponding to the order mismatch
between the kth and k + 1st NN. Now, note that the RHash
output δ satisfies maxi,j |dH(xi,xj) − d(xi,xj)| ≤ δ2. Ob-
serve that ∆k = d(x0,xk+1)−d(x0,xk) ≥ 2δ is a sufficient
condition for dH(x0,xk+1) ≥ dH(x0,xk), since

dH(x0,xk+1)− dH(x0,xk)

≥ d(x0,xk+1)− δ − d(x0,xk)− δ
≥ 2δ − 2δ = 0

by the triangular inequality. This leads to
P (dH(x0,xk+1) < dH(x0,xk))

= 1− P (dH(x0,xk+1) ≥ dH(x0,xk))

≤ 1− P (∆k ≥ 2δ) = P (∆k < 2δ).

Combining all of the above with Lem. 3, the probability that
the k NN is not preserved is bounded by
P (E) ≤ k(Q− k)P (dH(x0,xk+1) < dH(x0,xk))

≤ k(Q− k)P (∆k < 2δ)

= k(Q− k)P (∆k − Ex[∆k] < −(Ex[∆k]− 2δ))

≤ k(Q− k)e−c(Ex[∆k]−2δ)2

≤ kQe−c(Ex[∆k]−2δ)2 .

Now, by letting kQe−c(Ex[∆k]−2δ)2 ≤ ε, we have that the
requirement for the top-k NNs to be exactly preserved with
probability at least 1− ε is Ex[∆k] ≥ 2δ +

»
1
c log Qk

ε .
2Here we assume λ = 1 without loss of generality.
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