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Abstract

A key problem in crowdsourcing is the aggre-
gation of judgments of proportions. For exam-
ple, workers might be presented with a news
article or an image, and be asked to identify
the proportion of each topic, sentiment, object,
or colour present in it. These varying judg-
ments then need to be aggregated to form a
consensus view of the document’s or image’s
contents. Often, however, these judgments are
skewed by workers who provide judgments ran-
domly. Such spammers make the cost of acquir-
ing judgments more expensive and degrade the
accuracy of the aggregation. For such cases, we
provide a new Bayesian framework for aggre-
gating these responses (expressed in the form of
categorical distributions) that for the first time
accounts for spammers. We elicit 796 judg-
ments about proportions of objects and colours
in images. Experimental results show compa-
rable aggregation accuracy when 60% of the
workers are spammers, as other state of the art
approaches do when there are no spammers.

1 Introduction

The emergence of crowdsourcing platforms such as Ama-
zon Mechanical Turk (AMT), Crowdflower and oDesk,
has impacted a number of domains. In particular in ar-
eas such as sentiment analysis, citizen science, and dig-
ital humanitarianism, it is now possible to collect low-
cost judgments rapidly with reduced reliance on domain
experts. These judgments usually take the form of sin-
gle or multiple discrete labels, but can be any meta-
data attached to an item. A key problem of interest
in this area is the aggregation of judgments of propor-
tions [Varey et al., 1990; Ho et al., 2016]. Text cate-
gorisation offers an example scenario. In this context,
the task is to assign categories for a text document
whose content may cover multiple topics or evoke var-
ious sentiments [Blei et al., 2003]. The documents are
assigned to humans who provide a judgment about the
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proportion of each category. For example, if a worker
believes that 1/2 of a document evokes anger, 1/4 sur-
prise, and 1/4 disgust, he will submit the following judg-
ment {anger:50%, surprise:25%, disgust:25%}. Another
domain of interest is digital humanitarianism. Satellite
imagery is increasingly used to map deforestations and
natural disasters rapidly by volunteers. However, im-
age quality is often poor, due to cloud obstruction or
low resolution, with features that are difficult to iden-
tify precisely by the volunteers. A volunteer who be-
lieves 3/4 of the image consists of rubble and 1/4 of
undamaged buildings would provide the following judg-
ment {rubble:75%, undamaged:25%}.

While collecting judgments from individual workers is
appealing, such methods raise issues of reliability, due to
the unknown incentives of the participants. There are
likely to be malicious workers (i.e. spammers) who pro-
vide judgments randomly. For example, in the sentiment
analysis domain, workers may provide as many random
judgments as possible for quick financial gain [Difallah
et al., 2012]. Similarly, in the digital humanitarian do-
main, malicious volunteers may provide misleading re-
ports to divert the attention of ecologists or emergency
services. It has been estimated that up to 45% of workers
on crowdsourcing platforms may fall into this category
[Vuurens et al., 2011]. Thus, reliably aggregating multi-
ple judgments from crowd workers is non–trivial.

To address these challenges, we regard the problem
of judging proportions as one of probabilistic modelling
where the judgments from the workers are categorical
distributions [Oakley, 2010; Geng, 2016]. Now, a number
of approaches have been proposed to aggregate probabil-
ity distributions. Specifically, label distribution learning
[Geng, 2016] is a comprehensive framework for design-
ing algorithms that infer distributions. While general
in nature, it fails to explicitly address the problem of
spammers. Simpler methods such as opinion pools are
perhaps the most commonly used approach. In partic-
ular, the linear opinion pool (LinOp) [Bacharach, 1979]
and the logarithmic opinion pool [Weerahandi and Zidek,
1981] are the most popular methods. They aggregate
individual workers’ judgments using a weighted arith-
metic average and a weighted geometric average respec-
tively. They are simple and frequently yield useful re-
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sults with a moderate amount of computation. Alter-
natively, approaches based on confusion matrices, such
as IBCC [Kim and Ghahramani, 2012] and CBCC [Ve-
nanzi et al., 2014], have been shown to produce more
accurate aggregations when faced with spammers com-
pared to single weight methods [Ipeirotis et al., 2010].
Here, a confusion matrix is a square stochastic matrix
where each row represents the worker’s accuracy of a
given category. It is this breakdown of the workers’ ac-
curacy per category that overcomes the limitation of us-
ing single weights. However, to date, these models only
address settings where documents have a single category
chosen among multiple alternatives. When faced with
documents with multiple categories, such models infer
inaccurate aggregation and workers’ ability.

To address these shortcomings, we extend IBCC to
deal with settings where documents have multiple cate-
gories. Specifically, we seek to aggregate multiple work-
ers’ judgments of the proportion of those categories. We
elicit these judgements in the form of categorical distri-
butions from each worker, and use these distributions
as input to our model. We then sample and weight
(through the workers’ confusion matrices) each distri-
bution repeatedly to obtain multiple discrete observa-
tions for a single document by the same worker. This
sampling step is crucial to enable the use of confusion
matrices to identify spammers, while avoiding the con-
straint of classifying documents into a single category as
found in IBCC. A by-product of using confusion matri-
ces is that it enables the classification of spammers from
diligent workers. This is key to improving the aggre-
gation accuracy as spammers can be removed from the
original dataset; and can further be excluded from the
pool of available workers in future crowdsourcing cam-
paigns. Furthermore, our approach is sufficiently flex-
ible to learn the workers’ ability in both unsupervised
and semi-supervised settings. In particular, the former
approach learns the workers’ ability and the documents’
proportion simultaneously, making it especially suitable
when the ground truth is not available. On the other
hand, if the true proportion is known for some of the
documents, performance can be improved on new docu-
ments using this limited training data.

In more detail, we make the following contributions to
the state of the art: (i) we define a Bayesian model that
jointly learns, for the first time, the per category accura-
cies of individual workers, together with the distribution
associated with each document; (ii) we empirically show
that our model outperforms existing methods on three
real-world datasets; achieving a comparable level of ac-
curacy when 60% of the workers are spammers, as other
approaches do when there are no spammers; (iii) we show
a five times improvement in the expected number of mis-
classified spammers compared to existing methods.

The remainder of this paper is organised as follows.
We first introduce our notation and present IBCC in
Section 2. In Section 3, we detail our method. In Section
4, we present the results of our experimental evaluation.
We conclude in Section 5.

2 Preliminaries
We denote by x⊥y the fact that the random variable x is
independent of the random variable y; a ∼ means “dis-
tributed as”; and | expresses conditional probabilities.
If x is has categorical distribution we write x ∼ Cat (.).
The Kronecker delta δ (x) is 1 if x = 0; 0 otherwise.

Given this notation, IBCC assumes that each docu-
ment has a single unknown category which we want to
infer. This target category ti for document i takes a
value in j ∈ {1, · · · , J}, where J is the number of al-
ternatives. Categories are assumed to be drawn from a
categorical distribution with probability

ti ∼ Cat (κ) . (1)

Given a set of K workers, each worker k ∈ {1, · · · ,K}
submits a judgment c

(k)
i = l of the target category ti = j

for document i, where l ∈ {1, · · · , J} is the set of discrete

judgments that the worker can make. A judgment c
(k)
i

from worker k is assumed to have been generated from
a categorical distribution

c
(k)
i ∼ Cat

(
π

(k)
ti

)
. (2)

Furthermore, the workers’ judgments are assumed to be
conditionally independent given the target category ti

c
(k)
i ⊥ c({1,··· ,K}\k)

i |ti, ∀k ∈ {1, · · · ,K} .

This is the assumption commonly used in näıve Bayes
classifiers which ignore correlations between workers. It
is a reasonable assumption in crowdsourcing since work-
ers do not typically interact with each other. The prob-

abilities π
(k)
j,l are the individual error-rates of the k-th

worker. The confusion matrix

Π(k) =
{
π

(k)
1 , · · · ,π(k)

J

}
for worker k is a square stochastic matrix defined on
RJ×J capturing the probabilistic dependency between
the workers’ judgments and the consensus. Each row
represents an alternative j, while each column represents
the worker’s judgment l regarding each category. All
rows of the confusion matrix are assumed independent
within and across workers

π
(k)
i ⊥ π

({1,··· ,K}\k)
j , ∀k ∈ {1, · · · ,K} and ∀i 6= j.

This means that the workers’ ability to identify a given
category is not dependent on their ability to identify the
other alternatives. In line with Bayesian inference, the
parameters κ and Π are random variables. Therefore, a
conjugate Dirichlet prior distribution is assigned to the
parameter vector κ, such that

κ ∼ Dir (ν) (3)

where the hyperparameter ν ∈ RJ can be viewed as
pseudo-counts of prior observations; that is, the number
of documents in each category across the corpus. A con-
jugate Dirichlet prior distribution is similarly introduced
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Figure 1: Factor graph of MBCC [Dietz, 2010].

over the parameter π
(k)
j with hyperparameter α

(k)
j such

that

π
(k)
j ∼ Dir

(
α

(k)
j

)
. (4)

The set of hyperparameters α
(k)
j form a matrix

A(k) =
{
α

(k)
1 , · · · ,α(k)

J

}
,

where each row j is a vector α
(k)
j ∈ RJ≥0. The matrix

A(k) is chosen to represent any prior level of uncertainty
in the workers’ confusion matrix, and can also be re-
garded as pseudo-counts of prior observations; that is,
the number of documents of each category that worker
k has already judged.

Now, IBCC assumes that workers classify documents
into a single category among multiple alternatives. This
limitation provides the basis for our extension.

3 Aggregating Judgments over
Multiple Categories

Our proposed model – referred to hereafter as multi-
category independent Bayesian classifier combination
(MBCC) – is a generalisation of IBCC that deals with
settings where documents have multiple categories. In
more detail, we introduce a categorical distribution (i.e.
the category proportion) with parameter Λi over the J
categories for each document i (Equation 5) instead of
the single categorical distribution κ common to all doc-
uments found in IBCC (Equation 1). Moreover, each

worker k submits a distribution Φ
(k)
i over the J cate-

gories for each document i instead of the single category

c
(k)
i required by IBCC. The confusion matrix Π(k) of

each worker k is kept unchanged from IBCC. Therefore
in this new setting, to assess the accuracy of each worker

through their confusion matrices Π(k), we need to first
independently sample the aggregated distribution Λi to
obtain a set of categories zi,n for each document i such
that

zi,n ∼ Cat (Λi) , (5)

Algorithm 1 Generative process of MBCC.
1: Input: the confusion matrices Π and the category proportions Λ
2:

3: for each document i ∈ {1, · · · , I} do
4: for each sample n ∈ {1, · · · , N} do
5: Sample zi,n ∼ Cat(Λi)
6: for each worker k ∈ {1, · · · , K} do

7: Sample c
(k)
i,n ∼ Cat

(
π(k)

zi,n

)
8: end for
9: end for

10:

11: for each worker k ∈ {1, · · · , K} do
12: for each category j ∈ {1, · · · , J} do

13: Φ
(k)
i,j = β

(k)
i,j

∑N
n=1 δ

(
c
(k)
i,n − j

)
14: where β

(k)
i,j is a normalising constant.

15: end for
16: end for
17: end for
18:

19: return Φ

for all samples n ∈ {1, · · · , N}. The vector zi of dimen-
sion N can be seen as independent target categories ti
of document i (as in IBCC) drawn from the categories
proportion in Equation 5. We subsequently match these
samples against samples from each of the workers’ dis-

tribution Φ
(k)
i to obtain

c
(k)
i,n ∼ Cat

(
π(k)
zi,n

)
(6)

for each document i. This is equivalent to running IBCC
N times with different values of the workers’ judgment

c
(k)
i drawn from their distribution Φ

(k)
i . In practice, one

can perform this sampling until the accuracy no longer
increases. Alternatively, a theoretical upper bound for
an arbitrary level of error can be calculated using Lemma
3 in [Devroye, 1983]. Thus, the joint distribution is

p (z, c,Λ,Π) =

I∏
i=1

Cat (Λi) Dir (εi)×

K∏
k=1

N∏
n=1

Cat
(
π(k)
zi,n

) J∏
j=1

Dir
(
α

(k)
j

)
, (7)

where the hyperparameter ν in IBCC has been renamed
for clarity to εi (i.e. the pseudo-count of categories for
each document i), such that

Λi ∼ Dir (εi) . (8)

The generative process, that is, the random process by

which MBCC assumes the workers’ judgment Φ
(k)
i arose,

is summarised in Figure 1 and Procedure 1. In partic-
ular, we start with the confusion matrices Π, and the
category proportions Λ sampled from Equations 4 and 8
respectively (Line 1). We then sample N categories zi,n
from each category proportion Λi from Equation 5 (Line

5). Given each category zi,n, we sample judgments c
(k)
i,n

from the workers’ zi,n-th row of their confusion matrix

Π(k) (Line 7). Finally, we find the most likely categor-

ical distributions Φ
(k)
i which generated the samples z

(k)
i

for all documents i and workers k (Line 13).
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The key inferential problem that needs to be solved in
order to use MBCC is that of computing the posterior
distribution of the latent variables z, and the parame-
ters Λ and Π given the data c, that is p (z,Λ,Π|c). To
do this, we can use approximation methods based on
statistical sampling (such as Markov chain Monte Carlo
[Geman and Geman, 1984]) or density approximation
(such as variational approximation [Jordan et al., 1999;
Attias, 2000] or Laplace approximation [Laplace, 1986]).
In particular, our implementation uses the variational
message passing algorithm [Winn and Bishop, 2005] as it
has proven itself to be superior in terms of speed and ac-
curacy compared to both sampling and density based ap-
proximation [Minka, 2013]; but other approaches could
be used if appropriate.

4 Empirical Evaluation

To evaluate the efficacy of our model, we use an in-
dependently gathered dataset, and introduce two new
datasets; all of which include ground truth from expert
annotators. We then compare performance against four
state-of-the-art benchmarks. The experiments are run in
an unsupervised setting, where the ground truth is never
exposed to the algorithms, and is only used to measure
their accuracy. The source code and datasets are avail-
able at [Augustin and Venanzi, 2017].

4.1 Datasets

Our experiments use a total of three datasets.
SemEval. This dataset contains judgments of senti-

ments within one hundred news headlines sampled from
the SemEval2007 test set [Strapparava and Mihalcea,
2007; Snow et al., 2008]. Each worker was presented with
a list of headlines, and was asked to give numeric judg-
ments between zero and a hundred for each of six senti-
ments. Ten judgments were collected for each headline
for a total of 1,000 judgments. These judgments were
obtained from 38 workers whom provided a minimum of
20 judgments each, and 26 on average. We truncate the
total number of judgments per worker to 20 to avoid dis-
crepancies in accuracy of each inferred confusion matrix.
We normalise the values submitted by each worker into
valid probability distributions by ensuring that the total
area is equal to one at any given time.

IAPR-TC12. We crowdsourced a set of 16 images
sampled from the IAPR-TC12 dataset [Escalante et al.,
2010; Augustin and Venanzi, 2017]. This is a collection
of 20,000 images of urban and rural scenes manually seg-
mented per regions. Each pixel belongs to one of six
region. We gathered a total of 21 judgments per im-
age from 21 workers. Workers were asked to estimate
the proportion of each region in the image. The ground
truth proportion for each category is calculated by di-
viding the number of pixels in the region by the total
number of pixels in the image. The workers reported
their judgments with a pie chart, enabling quick and ac-
curate judgments of proportion [Hollands and Spence,
1992].

Colours. We crowdsourced a set of 460 judgments
of the proportion of colours in the flags of 20 countries
[Augustin and Venanzi, 2017]. We asked 23 participants
to judge, from memory, the proportion of 10 colours in
each country’s flag.

The alternatives in each dataset are complete, that
is, using all the categories can always fully describe the
instance. Furthermore, although these three datasets
may already contain spammers, we augment the datasets
with additional synthetic spammers to explore the loss
of accuracy as they increase in number. Vuurens et
al. [Vuurens et al., 2011] identified four types of spam-
mers: sloppy, uniform, random and semi-random. While
sloppy workers try to the best of their abilities to com-
plete the tasks, they may be insufficiently precise in their
judgments. On the other hand, uniform spammers use
a fixed uniform judgment pattern across all documents.
Finally, random spammers provide unique meaningless
answers for each document and semi-random spammers
also answer a few questions properly. While the obvi-
ous characteristic of repeating judgment patterns can
be used to manually filter out uniform spammers, ran-
dom spammers are the most challenging to detect. For
this reason, we use a random spamming strategy where
a spammer always provides a random categorical dis-
tribution for each document. The distribution of each
spammer k for each document i shares a prior Dirichlet
distribution such that

Φ
(k)
i ∼ Dir (1) , (9)

where the pseudo-count of 1 ensures that all possible

distributions Φ
(k)
i are equally likely.

4.2 Experimental Setting

We set the parameter of the prior probability of each con-
fusion matrix for all workers and spammers to A(k) =
100× I + 1T1. This means that workers are initially as-
sumed to be reasonably accurate before seeing any data.
Using a different assumption leads to distinct aggrega-
tion accuracy profiles that will be discussed in more de-
tail in Section 4.5. Furthermore, to ensure fair com-
parison between the benchmarks, we do not adjust each
parameters ε of the prior distributions over categories
to reflect the balance of each dataset. Finally, we run
all models a hundred times each to achieve statistically
significant results at the 99% confidence level.

4.3 Benchmarks

We compare the performance of our model to four state
of the art benchmark methods.

Uniform assigns a uniform distribution for each ag-
gregated distribution (i.e. pj = 1

J for all j ∈ {1, · · · , J}),
making it independent of the dataset. These particular
values of pj maximise the entropy function of categorical
distributions. That is, if one were to guess the aggre-
gated distribution far from the ground truth on average
(given some distance metric), it can be expected to have
its error above the uniform model.
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Figure 2: Average error on the aggregated distributions Λ on the SemEval dataset when increasing: (left) the ratio of spammers
at N = 180 samples, (right) the number of samples at a ratio of spammers of 50%.

Figure 3: Average error on the aggregated distributions when increasing the ratio of spammers on: (left) the IAPR-TC12
dataset at N = 180 samples, (right) the Colours dataset at N = 330 samples.

LinOp averages the distributions provided by the
workers. Unlike IBCC and MBCC, it does not sample
the workers’ distributions to produce the discrete obser-
vations, but directly takes the distributions as input. As
there is no training set for assigning informative weights
to the workers, we assign equal weights ω(k) = 1

K to each
worker.

Median estimates the aggregated distribution by ar-
ranging the judgments for each document in ascending
order and then takes the middle judgment. Each judg-
ment is considered with equal weight for the same reason
as for LinOp. The median is a robust method against
extreme judgements since it will not give an arbitrarily
large or small result if no more than half of the judg-
ments for a document are incorrect.

IBCC combines discrete judgments from multiple
workers and models the ability of each individual worker
using confusion matrices [Kim and Ghahramani, 2012].
Although IBCC takes a single category as ground truth,
the output is a posterior distribution over the categories
which can be compared to the ground truth category
proportion.

4.4 Accuracy Metrics

To assess the accuracy of the inference, we use the Eu-
clidean distance. Specifically, we define the average error

of the aggregation on the entire dataset by

EΛ =
1

I

I∑
i=1

d (Λ∗i ,Λi) (10)

where d (.) is the Euclidean distance, I the total number
of documents, Λ∗i the ground truth distribution for doc-
ument i, and Λi the aggregated distribution provided by
the model for document i. Furthermore, we define the

deviation of the confusion matrix Π(k) of worker k to
the identity matrix I by

EΠ(k) =
J∑
j=1

d
(
Ij ,π

(k)
j

)
. (11)

Other distance metric can be used, provided that it gives
finite results when the distributions are not absolutely
continuous.

4.5 Results

We now present the results of our empirical evaluation
regarding a number of key aspects: (i) accuracy of aggre-
gation and robustness to spammers, (ii) convergence and
running time, (iii) classification of spammers. We first
consider in detail the results on the SemEval dataset,
and briefly discuss the results on the other datasets.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1415



Figure 4: ROC curves on the SemEval dataset. The ratio of
spammers is set to 50%.

Figure 2 (left) shows the average error as the ratio of
spammers increases on the SemEval dataset. To illus-
trate, a ratio of spammers of 50% means half the work-
ers in the dataset are spammers. As can be seen, MBCC
achieves a comparable aggregation accuracy when 50%
of the workers are spammers, as LinOp does when no
spammers are added. However, the added complexity of
detecting spammers in MBCC comes at a cost when the
level of spammers is low. Indeed, the highest precision
is initially produced by LinOp, but as the ratio of spam-
mers increases a crossover point is reached after which
MBCC is the most precise. The value of this crossover
point can be adjusted by varying the pseudo-counts of

prior observations A
(k)
ii on the diagonal of the workers’

confusion matrix. For high values, MBCC assumes all
workers are truthful. This is the assumption underpin-
ning LinOp, where all workers have an implicit iden-
tity matrix as their confusion matrix. In fact, for high
pseudo-counts, the performance of MBCC matches per-
fectly with LinOp regardless of the number of spammers.
On the other hand, with lower values of pseudo-counts,
MBCC allows greater flexibility to learn the spammers,
at the cost of having a greater error when there are fewer
spammers in the dataset. Therefore, the added degrees
of freedom lead to a tradeoff in accuracy at different ratio
of spammers. Furthermore, we set the number of sam-
ples N empirically. Figure 2 (right) shows the average
error of the aggregated distribution when increasing the
number of samples at a ratio of spammers of 50%. As
the number of samples increases, we observe convergence
of the error at 100 samples to values of 0.75 and 0.37 for
IBCC and MBCC respectively. Inevitably, the running
time also increases as the number of samples increases.
In particular, the running time of LinOp and Median
is typically 3ms, while that of IBCC and MBCC ranges
from 12s and 13s, to 6min and 28min respectively, across
the range of samples shown in Figure 2 (right).

We now evaluate the accuracy of the confusion matrix-
based models at classifying workers from spammers on

the SemEval dataset. To do this, we first collect the in-

ferred confusion matrix Π(k) for each worker. We then
compute the deviation EΠ(k) of each confusion matrix to
the identity matrix (Equation 11). The identity matrix
represents the confusion matrix of a perfect worker, that
is, one that always gives judgments in accordance with
the consensus. We then set a threshold on the error,
above which a worker is classified as a spammer. The
receiver operating characteristic (ROC) curves in Fig-
ure 4 capture the effect of varying the threshold of the
error. As can be seen, MBCC has an area under the
curve (AUC) of 0.99, showing a 5 times improvement
compared to IBCC in terms of the expected number of
misclassified spammers. The AUC eventually decreases
for both models at higher ratios.

We now briefly discuss the results on the two other
datasets. On the IAPR-TC12 dataset (Figure 3 (left)),
LinOp, Median and MBCC achieve equal accuracies
when no spammers are added. However, since each im-
age in this dataset is dominated by a single category,
that is, at least one category has more than 50% cover-
age in each image, IBCC performs reasonably well even
with a high ratio of spammers. This is because IBCC
always assigns a probability of one to the most likely
category, which emphasises its assumption that docu-
ments have exactly one category. In fact, as the docu-
ments’ proportion regresses to Kronecker deltas, the er-
ror from IBCC decreases. On the Colours dataset (Fig-
ure 3 (right)), the accuracy of MBCC remains a lower
bound of LinOp throughout the range of ratios of spam-
mers. However, Median initially achieves the lowest er-
ror with a crossover point with MBCC at 15% spam-
mers. This is because the judgments provided by the
workers include sufficient outliers, making the Median a
good measure of central tendency. Finally, convergence
of the error on the aggregation is reached at 100 sam-
ples for the IAPR-TC12 dataset and 150 for the Colours
dataset. Since the Colour dataset has 4 more categories
than the IAPR-TC12 datasets, it requires more samples
to achieve convergence.

5 Conclusions

We introduced a novel model for the aggregation of cate-
gorical distributions. The key innovations of our method
are the elicitation and sampling of judgments of propor-
tions in the form of probability distributions and the use
of these samples to improve on the accuracy of aggre-
gation. In particular, we showed empirically, on three
real-world datasets, that our approach outperforms ex-
isting methods by up to 28% in terms of accuracy. We
have also shown a comparable level of accuracy when
60% of the workers are spammers, as other approaches
do when there are no spammers. Finally, we improved
the expected number of misclassified spammers by up to
five times that achieved by existing methods.
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