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Abstract

In our research, we consider transfer learning sce-
narios where a target learner does not have access to
the source data, but instead to hypotheses or mod-
els induced from it. This is called the Hypothesis
Transfer Learning (HTL) problem. Previous ap-
proaches concentrated on transferring source hy-
potheses as a whole. We introduce a novel method
for selectively transferring elements from previous
hypotheses learned with Support Vector Machines.
The representation of an SVM hypothesis as a set
of support vectors allows us to treat this informa-
tion as privileged to aid learning during a new task.
Given a possibly large number of source hypothe-
ses, our approach selects the source support vec-
tors that more closely resemble the target data, and
transfers their learned coefficients as constraints on
the coefficients to be learned. This strategy in-
creases the importance of relevant target data points
based on their similarity to source support vectors,
while learning from the target data. Our method
shows important improvements on the convergence
rate on three classification datasets of varying sizes,
decreasing the number of iterations by up to 56%
on average compared to learning with no transfer
and up to 92% compared to regular HTL, while
maintaining similar accuracy levels.

1 Introduction

Hypothesis transfer learning (HTL) aids the learning of a
new classification task by exploiting source hypotheses or
models learned on previous tasks. HTL attempts to remedy
drawbacks of typical transfer learning [Pan and Yang, 20101,
since in general it requires availability of instances, features
or parameters, and of domain adaptation [Daumé III, 2009;
Duan et al., 2009; Gong et al., 2012; Hoffman et al., 20121,
a technique that requires source data during transfer. The
source for transfer in HTL are prior models. Therefore, it
is possible to transfer even when source data is unavailable or
difficult to access.

In HTL source hypotheses are usually transferred as a
whole. The new function is driven towards a linear combi-
nation of these sources. Most common methods propose to
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use source hypotheses for predicting target data [Yang er al.,
2007; Kuzborskij et al., 2015; Mozafari and Jamzad, 2016;
Wang and Hebert, 2016], to learn contributions or weights of
source hypotheses [Tommasi er al., 2014; Kuzborskij et al.,
2015; Wang and Hebert, 2016] or to assign importances to
these sources [Yang er al., 2007]. Some others transfer from
a single source hypothesis [Oneto et al., 2015].

The problem of partially using source hypotheses to aid
learning of a new task has been, to the best of our knowledge,
utterly ignored. Here we propose AccGenSVM, a technique
that selectively transfers from source hypotheses trained with
an SVM, the state-of-the-art technique in HTL. The trans-
ferred information corresponds to previous coefficients. This
information is used as upper-bounds of the coefficients to be
learned on the target task. We exploit the fact that source sup-
port vectors represent a summary of source data, and transfer
coefficients only when we find similarities between source
support vectors and target data.

We propose to treat the elements of source hypotheses as
privileged information at training time [Vapnik and Izmailov,
2016]. Recent works relying on this concept cover a wide
variety of cases and application areas (for example [Zhou et
al.,2016]). A learning algorithm provides privileged or addi-
tional information to encourage faster or more accurate learn-
ing. This information is commonly represented as additional
features for the target data. Here we propose to represent it as
upper-bounds on the coefficients that need to be learned on a
target task. This decision is based on the fact that, in SVM,
a higher coefficient is an indication of the importance of a
data point in the final function [Cristianini and Shawe-Taylor,
2000].

AccGenSVM uses source hypotheses and transfers learned
coefficients as a means to emphasize target data points lying
close to source support vectors. Learning is still based on
the target data, though subject to modified constraints as in-
dicated by the extra-information. This strategy resembles
importance weighting on training data [Lapin er al., 2014],
where different data points get distinct weights depending
on its relevance for the objective function. The challenge of
SVM learning with weighted training data is precisely how to
establish these weights.

The Kullback-Leibler divergence metric is used to filter
source hypotheses. This allows AccGenSVM to select source
hypotheses that might contain source support vectors from
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Method ‘What to transfer When to transfer How to transfer
A-SVM As an additional term that represents a linear
[Yang et al., 20071 When a source hypothesis is combination of previous hypotheses.
PMT-SVM a good predictor of target Directly, one source to one target.
[Aytar and Zisserman, 20111, data.
similarly in [Oneto et al., 2015]
MMKT Source coefficient As indicated by an additional term that minimizes As an additional term along with
[Tommasi et al., 20141, vectors as a whole. the leave-one-out error. a linear combination of previous hypotheses.
GreedyTL As indicated by a greedy search on the As new features, and an additional term for

[Kuzborskij et al., 20151,
used by [Valerio et al., 2016]

hypotheses set.

their total contribution.

MT-SVM
[Wang and Hebert, 2016]

As far as required by the
optimization procedure.

As an additional term that needs to be learned.

HMCA
[Mozafari and Jamzad, 2016]

One-dimensional
vector.

As indicated by a similarity measure
between source and target data.

Directly in one dimension.

AccGenSVM (ours) Selected elements

of source hypotheses.

When there exist source support vectors
similar to target data.

As upper-bounds of coefficients to be learned, following
principles of [Vapnik and Izmailov, 2016] and [Lapin et al., 2014].

Table 1: HTL in previous works and ours.

which to transfer. We then compare source support vectors
with the target data using a Fast k-Nearest Neighbors (FNN)
method [Beygelzimer et al., 2013], and make a decision of
whether to transfer afterwards.

Our approach is useful when source data is scarce or diffi-
cult to access, and related hypotheses are available. Further-
more, this method can be very useful when the target data dis-
tribution is slightly distinct from the source hypotheses. For
example, when small changes over time cause new concepts
to arise or old concepts to evolve. AccGenSVM can iden-
tify which source support vectors resemble parts of the target
data. Domains like image classification or object recognition
for data captured with different devices, patient or customer
classification at different locations, or simply models with
changing distributions are good candidates for this method.

Our main contributions are:

o A selective HTL method that follows principles of learn-
ing with privileged information. This additional infor-
mation corresponds to source data points defining the
decision boundary, support vectors, and their learned co-
efficients. These are used for two purposes: to decide
when to transfer and to reinforce the importance of rel-
evant target data points. Hence, our formulation looks
similar to learning with importance weighting on train-
ing data, and our method provides a means to learn these
weights using source hypotheses and their support vec-
tors.

e A method for HTL that selects and uses source support
vectors as required. It treats every source hypothesis in-
dependently, and performs a transfer only when neces-
sary, still learning the new function from the target data.

e A method that only relies on availability of source hy-
potheses. It does not require to learn new terms, to
predict target data using source hypotheses nor to have
source data available. AccGenSVM deals effectively
with a large number of source hypotheses and varying
sizes of transfer level data.

2 Related Work

Transfer learning (TL) has been an increasingly active re-
search area over the last few decades. With an aim to
achieve faster or more accurate learning [Pan and Yang,
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2010], typical settings of TL are based on transferring in-
stances (instance-based), finding shared feature representa-
tions between sources and target data (feature representation-
based), transferring parameters (parameter-transfer) or trans-
ferring common knowledge (knowledge-based transfer), in
homogeneous or heterogeneous domains. More recently, do-
main adaptation has captured a lot of attention as an op-
tion for learning in the presence of changing distributions.
Most common domain adaptation solutions [Dai et al., 2007,
Daumé III, 2009; Duan et al., 2009; Gong et al., 2012;
Hoffman et al., 2012] require availability of source data since
their main purpose is to correct or learn common representa-
tions between sources and target.

HTL has arisen as an alternative when models are available
but source data is not. A number of theoretical [Kuzborskij
and Orabona, 20131, experimental [Yang et al., 2007; Aytar
and Zisserman, 2011; Tommasi et al., 2014; Kuzborskij et
al., 2015; Oneto et al., 2015; Mozafari and Jamzad, 2016;
Wang and Hebert, 2016] and application-specific methods
[Valerio e al., 2016] have been proposed. These works pro-
vide similar solutions for the problems of what, when and
how to transfer (see Table 1). All of them use source hypothe-
ses as black-boxes. Moreover, most of them require the pre-
diction of target data to evaluate how well a source hypothesis
fits the target task, whereas others establish the importance of
each source hypothesis by learning some additional term or
through a user-defined parameter.

One of the first and most well-known attempts in HTL, A-
SVM [Yang et al., 20071, learns a new function with an addi-
tional A term that controls the contribution of source hypothe-
ses. This term represents the predictions of target instances
using these sources. Accurate predictions on the training data
imply that the new function should be biased towards previ-
ous hypotheses. The importance of each hypothesis for the
target task can be also decided based on a user-defined pa-
rameter or on some similarity feature. A similar method is
proposed in PMT-SVM [Aytar and Zisserman, 2011], an evo-
lution of A-SVM. As in [Oneto et al., 20151, transfer is per-
formed between one source hypothesis and one target.

Another method, GreedyTL, uses a greedy search to find
the best set of source hypotheses for transferring [Kuzborskij
et al., 2015]. Still source hypotheses must be used to predict
target data. As in [Tommasi et al., 2014], an additional 3 term
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must be learned while optimizing the objective function. A
distinguishing characteristic of GreedyTL is that it finds the
best combination of weights for source hypotheses, without
learning a new function from the target data.

Mozafari and Jamzad [2016] simplify the HTL problem to
a one-dimensional setting between one source hypothesis and
one target task, for homogeneous and heterogeneous transfer.
They removed the need to predict target data by means of
source hypotheses or by learning additional terms. Instead, a
similarity metric must be calculated between source and tar-
get data, and consequently the source data must be available.

Wang and Hebert [2016] establish the contribution of each
source hypothesis through an additional term that must be
learned during the optimization procedure. Although this
term controls the contribution of each source hypothesis, still
these hypotheses are treated as a whole without distinguish-
ing among their elements and the information that these might
distinctly contribute to the target task.

The opportunity for learning by selectively transferring
from source hypotheses is still unexplored. If fragments of
each hypothesis can be transferred when appropriated for a
target task, the learning process can have flexibility to learn
from target data while being supported by source hypotheses
only as necessary. It is possible to find a solution to a learning
problem by explicitly exploiting the commonalities between
source hypotheses and target data, while still considering the
particularities of the target data. This could lead to learning
faster or with higher accuracy on the new task.

3 AccGenSVM

For a classification task, generally an instance space X and a
set of labels Y are available. Every example (z, y) is said to
be i.i.d. drawn from an unknown distribution P on X x Y.
The task is to learn a function f := X — Y from a set of
hypotheses H, that predicts Y (class) well for new instances,
with the lowest expected loss £(f) := E4(Y - f(z)). An SVM
solution can be found by solving a (soft margin) optimization
problem, by the dual function [Scholkopf and Smola, 2002]:

n 1 n
mng(a) = Zai 3 Z a0y K (i, 25)
;:1 1,7=1 (1)
s.t.Zyiai =0,Vio<a; <C

=1

where n is the number of data points, K corresponds to
the kernel function and C' is the upper-bound on coeffi-
cients o to be learned. In recent years, the concept of
learning with privileged information has arisen as an option
for faster or more accurate learning when additional infor-
mation is available at training time [Vapnik and Izmailov,
2016]. The dual function for learning with privileged in-
formation can be optimized to [Pechyony and Vapnik, 2011;
Lapin et al., 2014]:

1—
max F'(a) — ;F(a)
n 2
st1'@=0,> yia; =0,¥i0< o, <C+w

i=1
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where F'(«) is obtained by Eq. 1 and F'(@) by a dual function
that depends both on the privileged information space and the
coefficients « (see [Pechyony and Vapnik, 2011; Vapnik and
Izmailov, 2016] for details). The coefficients learned on the
space of the privileged information, &, serve as upper-bounds
of the coefficients « on the space of the new task.

A connection between learning with privileged information
and learning with weighted training data using SVM has been
theoretically demonstrated [Lapin er al., 2014]. In weighted
learning, the influence of a data point (z,y) on the final de-
cision function can be increased or decreased using weights.
The dual function to optimize can be, then:

max F'(a)

n 3)
s.t. Zyio‘i =0,Vi0<a; <¢;

i=1

where F'(«) is found by Eq. 1, now subject to the modified
constraint «; < ¢;, with ¢; corresponding to the weight of
a particular data point x;. Lapin, Hein and Schiele [2014]
proved that by setting ¢; = C + @5, weighted learning be-
comes similar to learning with privileged information.

Finally, from the representer theorem [Schélkopf er al.,
20011, a solution to a learning problem using SVM is:

fl@) =" @y K (7, ) “
=1

where a; is the learned coefficient for a support vector T;
with class y;. x is the set of new points to be predicted us-
ing this function. We rely on this hypothesis representation
for the transfer task: from every source hypothesis, their sup-
port vectors T will be used to decide when to transfer, given
their similarity with the target data, while their coefficients
o will be transferred and used to obtain upper-bounds on the
coefficients to be learned (as stated in Eqgs. 5 and 6 below).

3.1 Problem Formulation for Selective HTL

Given a possibly large set of source hypotheses, H, each hy-
pothesis obtained with SVM by Eq. 1 and represented as in
Eq. 4, the problem of HTL is that of using H to aid learning
of a new function. This function is typically learned by reg-
ularizing the distance between the set of coefficients learned
on the target data, o, and a linear combination of the coeffi-
cients learned for the source hypotheses, @. This solution is
not selective among source hypotheses, and usually requires
the prediction of target data using previous hypotheses, which
is expensive when a large number of hypotheses are available.

AccGenSVM uses an alternative selective approach for
transferring from source hypotheses. Each source support
vector from the hypothesis set H can distinctly contribute to
the new learning task, and therefore their coefficients & can be
transferred individually. This contribution is represented as
upper-bounds on coefficients to be learned, and consequently
the problem becomes similar to weighted learning with SVM
and learning with privileged information [Lapin ef al., 2014]:
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n n
max F(a) = ;ai - ;E;l aia;yiy; K (i, ;)
n sv (5)
s.t.Zyiai =0,V1 0 < a; < C+eci,ci= Za}c
i=1 k=1

For a specific coefficient «;, a modified constraint, ¢;, is
then learned from the privileged information, as represented
by coefficients @ from the corresponding subset of similar
source support vectors of size sv. This subset will be deter-
mined as explained in our solution. The new constraint can be
learned from the source hypotheses, and allows some target
data points to contribute more to the maximization problem,
thus implying their importance for the target task. We intro-
duce a term, s;/|H|, that balances the expected importance
of a target data point:

n 1 n
mgxzai ) Z oioyiy; K (2, ;)
i=1

i,j=1

s.t.iZyiaizo,ViOgai§C+ci,c,': 5i ok
1=1
where s; corresponds to the number of previous hypothe-
ses contributing to ¢;, as found by our method, from the set
of available source hypotheses of size |[H|. As in weighted
learning with SVM, the AccGenSVM solution is unique and
satisfies the convexity requirements according to the Karush-
Kuhn-Tucker conditions [Lapin er al., 2014].

Figure 1 provides a graphical example of our selective HTL
method. hy and hy are source hypotheses with different deci-
sion boundaries. For a new target task, our approach is able to
identify common regions between target data and source hy-
potheses, and then to transfer coefficients as explained. Re-
gions that are specific to the new data will be learned by the
regular SVM, thus preserving the particularities of target data
during the new learning task.

3.2 Selective HTL

A solution to Eq. 6 can be summarised in two phases. The
first one is intended to select source hypotheses and elements
for transfer, from a possibly large number of these sources;
the second phase transfers coefficients and obtains new upper-
bounds for relevant target data points. Our approach is de-
tailed in Algorithm 1, and works as follows.

Phase 1 - Selection of elements for transfer.

1. Based on sequential minimal optimization (SMO) as an
SVM solver [Bottou and Lin, 2007], AccGenSVM se-
lects a pair of candidate target data points, x; and z;,
one positive and one negative in binary classification. At
every iteration, this method will gather privileged infor-
mation from source hypotheses for these two data points.

2. The set H of source hypotheses is filtered using KL
divergence. KL divergence is an information-theoretic
metric for determining how divergent two probability
distributions are. Every source hypothesis is compared
to the target distribution, and then the subset of source
hypotheses below a threshold is selected.
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Figure 1: An example for selective HTL

3. FNN [Beygelzimer er al., 2013] is used to find the source
support vectors, T, that more closely resemble the two
target data points selected in Step 1, using the subset of
source hypotheses selected in Step 2. Feature selection
is performed as a previous step to speed up FNN.

Phase 2 - Transfer.

1. As a result from Phase 1, AccGenSVM obtains ¢; and
¢;, upper-bounds for «; and «; based on the coefficients
@ from similar source support vectors.

2. AccGenSVM considers the number of contributing
source hypotheses and balances new upper-bounds as in
Eq. 6. The more source hypotheses contributing to an
upper-bound, the higher this upper-bound will be for the
corresponding target data point.

Algorithm 1: Pseudo-code for transfer with AccGenSVM

Data: Target data X, source hypotheses H
Result: Upper-bounds of coefficients to be learned o;up, ajup
xi, x; — selected points by working set selection
Yi,y; < corresponding classes for selected points
ci, ¢ < 0; 84,85 < 0; up, ayup < C
// Phase 1
forall i in H do
if KL(h,X) < threshold then
forall =, in h do
if T, close to x; and y;, = y; then
| i+ ci+an
end
else if z;, close to x; and y;, = y; then
‘ cj ¢+ ap
end
end
Si8i+1;85 < s;+1

end

end

// Phase 2
agup +— C + i
|H|

Sj
ojup <+ C 4+ =c¢;
|H]

The computational complexity of learning an SVM using
SMO is i * O(n), with ¢ iterations and n target data points
[Chang and Lin, 2011]. The FNN step increases this to a
worst case i * O(n x log(N)). Here n depends on the num-
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ber of points evaluated, which is smaller for faster conver-
gence rates. Filtering hypotheses adds a constant O (| H|) that
depends on the number of available source hypotheses. In
terms of convexity, the algorithm behaves like learning an
SVM with weighted training data [Lapin er al., 2014].

4 Experiments

Here, we present experiments and discuss results for binary
classification using AccGenSVM and other publicly available
HTL methods for homogeneous transfer.

4.1 Datasets

Caltech256 is a benchmark dataset on image recognition,
with 30,607 instances and 256 independent classes plus
a clutter class. We exclude the clutter class, and work
with 29,780 instances. ImageNet is a large benchmark
dataset, with 14,197,122 instances and around 21,841 dif-
ferent classes. We work with 117 classes and 163,666 in-
stances. Office is a small dataset that contains images from
three different domains, with 93 classes and 4,652 instances.
The number of instances per class varies for each dataset (see
Table 2). For all datasets, we use available bag-of-words rep-
resentations containing 1,000 features [Tommasi and Tuyte-
laars, 2014]. Features were scaled to [-1,1].

4.2 Experimental Set-Up

For each dataset, we extract binary random samples without
replacement in two levels:

e Transfer level: we extract random samples of sizes 10%,
20% and 30% for training. We select 3 classes as posi-
tives and the rest as negatives, in a binary fashion, from
each dataset. Positive classes are selected by their fre-
quency (most frequent, least frequent and moderately
frequent). We also select independent random binary
samples of size 20%, 30%, and 50% as test sets. We
perform 30 repetitions for all sampling configurations.

e Source hypotheses level: we extract 10%, 20% and
30% binary random samples for training hypotheses as
sources. Positive classes of these samples are different,
but related, to one of our three positives on the transfer
level. Though for experiments we explicitly select re-
lated positives on this level, it is important to note that
this step is not always necessary. AccGenSVM can filter
hypotheses according to their relatedness with the trans-
fer level data, as explained in Algorithm 1. KL diver-
gence is used as a pre-step to select related positives
from the original datasets. We also perform 30 repe-
titions for this sampling procedure. Models for these
samples are trained using regular SVM.

For simplicity, we select 10 random samples for every pos-
itive class and every sample size of every dataset at the trans-
fer level. We then train 10 models, one for each sample, using
AccGenSVM, previous works and scenarios of learning with-
out transfer. Experiments are performed using different per-
centages of hypotheses as sources (i.e. using 10%, 25%, 50%
and 100% of the available hypotheses), selected randomly.

Method Office Caltech256 ImageNet
(min. 7, (min. 80, (min. 121,
max. 100) max. 800) max. 2252)
TH 87.02 £ 1.64 | 89.88 £2.22 | 79.25 £ 3.63
SH 72.99 £ 7.19 | 73.08 £ 7.45 | 72.57 £7.48
S+TH 77.02 +6.64 | 79.88 £ 5.37 | 76.25 + 7.89
A-SVM 87.02 £ 2.10 | 90.99 £+ 2.67 | 80.68 £ 4.43
GreedyTL 78.31 £ 5.83 | 89.64 £+ 6.83 ——
AccGenSVM | 85.66 +2.08 | 93.11 £+ 1.50 | 83.94 + 3.10

Table 2: Prediction accuracy of AccGenSVM and other methods,
using all source hypotheses (100%). Maximum and minimum num-
ber of instances per class for the original datasets are also shown.

These models are tested on corresponding test samples. We
perform this procedure for every repetition (i.e. 30 times).

Based on a sensitivity analysis of the regularization param-
eter C' and the y parameter for the RBF kernel, we set C' = 1
and v = 1/f, with f number of features. We use a KL di-
vergence threshold of 0.3 for all datasets. For FNN, we work
with 3 nearest neighbours.

AccGenSVM! is built on top of LibSVM [Chang and Lin,
2011], using available KL divergence [Hausser and Strimmer,
2014] and FNN implementations [Beygelzimer et al., 2013].

4.3 Results

Our results are compared against learning from models
trained for samples on the transfer level using regular SVM
(TH), models trained for samples on the source hypotheses
level (SH) and models trained for samples on the transfer
and corresponding source hypotheses level (S+TH). Results
are also compared to two available previous works, A-SVM?
[Yang et al., 2007] and GreedyTL? [Kuzborskij et al., 2015].
We provide further discussion for other methods.

Table 2 shows average results for prediction accuracy, for
each dataset, using all of the available source hypotheses. For
Caltech256, AccGenSVM outperforms TH by around 3%,
SH by 20%, SH+T by 13%, A-SVM by 2% and GreedyTL
by around 4%.

For ImageNet, AccGenSVM surpasses TH and A-SVM by
similar percentages as Caltech256, while outperforms SH by
around 12% and SH+T by around 7%. This might be due
to tighter relations between classes on the original ImageNet
dataset, which make SH and SH+T better predictors for trans-
fer level data. As an example, in our experiments with Ima-
geNet we had coffee mug as a positive class on the transfer
level, and mug as a positive class on the source hypotheses
level, two highly related classes. For Caltech256, we had air-
planes class on the transfer level. This class is known to be
related with various classes on the original dataset [Griffin et
al., 2007] but not so strongly. It is important to remark that
our selective method can transfer in both cases.

For ImageNet, methods for weighting sources such as
GreedyTL fail to find a solution for large sample sizes on

!Software available at: https:/github.com/nanarosebp/
PhDProject/tree/master/AccGenSVM

“We use the maximum supported by A-SVM software, 5 sources.

3Since this method does not train a new model, we do not mea-
sure its convergence rate.
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Figure 2: Prediction accuracy of our method vs. learning with no
transfer (TH, SH, S+TH) and previous works. AccGenSVM is in
the group with higher accuracy for small and medium-size datasets.

Method 10% of sources 25% of sources 50% of sources 100% of sources
2 TH 38.76 £ 7.40 39.07 £7.87 38.79 £ 7.66 40.04 £7.44
& A-SVM 118.07 £ 9.99 118.07 £9.99 118.07 £ 9.99 121.07 £+ 9.69
© | AccGenSVM 25.37 £9.00 25.07 +9.38 24.99 +8.87 24.37 £9.58
©
E TH 55.05 £ 9.94 55.11 £ 10.74 55.11 £ 10.93 54.85 £9.94
2 A-SVM 286.32 + 138.57 284.45 +134.44 259.33 £ 131.30 265.36 £+ 140.33
= | AccGenSVM 24.22 + 8.67 21.55 £+ 9.09 21.41 £8.01 20.37 £ 8.41
8]
> TH 228.04 + 46.20 230.42 + 47.10 228.04 + 48.46 229.47 £ 47.19
3 A-SVM 1210.00 £ 258.46 | 1179.40 £ 242.38 | 1139.01 £ 233.19 | 1210.00 & 233.19
E AccGenSVM | 185.14 4 30.53 178.78 £+ 27.84 178.77 £ 26.26 171.09 + 28.23
=

Table 3: Convergence rate measured as the number of iterations be-
fore a solution is found, for the three datasets, using different per-
centages of available source hypotheses.

the transfer level (“~” in Table 2). For Office, AccGenSVM
results lie on the border of TH and A-SVM. Error rates of
AccGenSVM are similar to TH and A-SVM, on the three
datasets. Methods involving models based on source data
(SH), source and transfer level data (S+TH) and source
weighting (GreedyTL) have higher standard deviations. The
more source hypotheses, the better our results (see Figure 2).

We also measure the convergence rate as the number of
iterations before a solution is found. For the three datasets,
AccGenSVM is able to find a solution with fewer itera-
tions compared to its counterparts (TH and A-SVM). Table 3
shows an average decrease of up to 56% versus TH for at least
one dataset, and up to 92% versus a regular HTL method.
Even worst-case scenarios based on error rates show that
AccGenSVM can learn at least 68% faster than regular HTL.
A faster convergence rate can be achieved with AccGenSVM
even with a small number of source hypotheses. In terms of
execution time, our method performs similarly for small sam-
ple sizes. These results position our work as an effective im-
plementation of the concept of privileged information, where
it is expected that additional information facilitates faster con-
vergence [Vapnik and Izmailov, 2016]. Similar accuracy lev-
els with a faster convergence rate also indicate a higher slope
in the learning curve [Tommasi et al., 2014].

Finally, we test the stability of AccGenSVM in changing
distributions. These tests are focused on Caltech256. We
generate concept drift by randomly changing attributes val-
ues and then moving the distribution of the transfer level data
(i.e. changing a given number of attributes values for a given
number of instances, both of them randomly selected, and as
indicated by the level of concept drift). From Figure 3, as the
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Figure 3: Concept drift stability of AccGenSVM at different drift
levels (X is the drift level where transfer stops).

level of drift increases, our method achieves a prediction ac-
curacy closer to learning with no transfer. Furthermore, when
the distribution on the transfer level reaches a high percentage
of concept drift (70%), AccGenSVM stops transferring and
performs as learning with no transfer. As the transfer level
data changes, it becomes more dissimilar to the source hy-
potheses, and hence a selective method like ours will choose
not to transfer. Highly changing data distributions have a neg-
ative effect on regular HTL methods, since they use entire
source hypotheses.

Discussion on other methods. Some of the existing TL
methods address challenges like finding common feature rep-
resentations, a problem that is not within the scope of our
method [Pan and Yang, 2010]. One of the most referenced
works, [Daumé III, 2009], is known to underperform when
the source and the target data are very similar in terms of
features [Pan and Yang, 2010], a strength in our case. GFK
[Gong et al., 2012], for instance, uses KL divergence for
ranking source domains, though still requires to compare
source data and target data. Others like DTMKL [Duan et al.,
2012] are based on similar concepts to regular HTL: learning
linear combinations of sources (data, in this case) and learn-
ing additional terms. Other HTL approaches like [Mozafari
and Jamzad, 2016] still rely on source data, while [Wang and
Hebert, 2016] uses A-SVM to solve one of its minimization
sub-problems, and therefore will depend on its results.

5 Conclusion and Future Work

We have proposed a selective approach for HTL, that distin-
guishes and selects parts of source hypotheses to transfer. Our
method relies on the concept of privileged information and
gives flexibility for a new task to learn a model with avail-
able training data. AccGenSVM maintains the prediction ac-
curacy for TL scenarios with training data of varying sizes.
Faster convergence rates can be achieved when learning a new
model is supported by privileged information, represented in
previous hypotheses and their support vectors.

A research avenue is to reduce the execution time of
AccGenSVM for large datasets, as well as to analyse its gen-
eralization properties. A feasible extension is the consolida-
tion of new and old concepts within a broader concept learn-
ing system, as supported by selective transfer methods. The
problem of selectively transferring between heterogeneous
domains is also a promising area. Finally, we aim to extend
our approach to lifelong learning problems where source hy-
potheses are made available over time.
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