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Abstract
Semantic Segmentation (SS) partitions an image
into several coherent semantically meaningful part-
s, and classifies each part into one of the pre-
determined classes. In this paper, we argue that
existing SS methods cannot be reliably applied to
autonomous driving system as they ignore the dif-
ferent importance levels of distinct classes for safe-
driving. For example, pedestrians in the scene
are much more important than sky when driving
a car, so their segmentations should be as accu-
rate as possible. To incorporate the importance in-
formation possessed by various object classes, this
paper designs an “Importance-Aware Loss” (IAL)
that specifically emphasizes the critical objects for
autonomous driving. IAL operates under a hierar-
chical structure, and the classes with different im-
portance are located in different levels so that they
are assigned distinct weights. Furthermore, we de-
rive the forward and backward propagation rules
for IAL and apply them to deep neural networks for
realizing SS in intelligent driving system. The ex-
periments on CamVid and Cityscapes datasets re-
veal that by employing the proposed loss function,
the existing deep learning models including FCN,
SegNet and ENet are able to consistently obtain the
improved segmentation results on the pre-defined
important classes for safe-driving.

1 Introduction
Semantic Segmentation (SS) partitions an image into regions
that represent meaningful objects, which serves as an impor-
tant tool for the subsequent image analysis such as scene un-
derstanding. In recent years, autonomous driving system has
gained much popularity, in which SS has played an important
role in detecting obstacles and recognizing road conditions.

Apparently, good SS results in autonomous driving system
will help it precisely understand the scene, and thus leading to
safe decision-making and vehicle control. However, we argue
that the SS for autonomous driving system is quite different
from the conventional SS problems. For conventional SS, all
the objects appeared in an image are of equal importance and
one should segment all of them from the image as accurately

as possible. In contrast, the objects in the scene are not equal-
ly important for autonomous vehicles. For instance, the self-
driving system should pay more attention to the objects that
are closely related to safe-driving than those that are not often
used for vehicle control. In other words, the SS algorithm in
autonomous vehicles should segment the major obstacles and
potential driving risks (e.g. pedestrians, cyclists, other vehi-
cles, and traffic signs) with a high precision, while reducing
the attention on processing less important objects such as sky,
grassland and sun.

In this sense, current SS methods are not suitable for deal-
ing with autonomous driving problem. For example, the tra-
ditional works [Shotton et al., 2008; Ladicky et al., 2010;
Gong et al., 2015] based on handcrafted features and recent
Deep Convolutional Neural Network (DCNN) based method-
s [Long et al., 2015; Vijay Badrinarayanan and Cipolla, 2017;
Paszke et al., 2016] equally treat all the classes. As a result,
they generate very low accuracy on segmenting the important
objects as mentioned above.

From above analyses, we see that existing methodologies
cannot render reliable segmentation results for autonomous
driving, as they all adopt the cross-entropy [de Boer et al.,
2005] loss function for model training, which equally eval-
uates the errors incurred by all image pixels without focus-
ing on the important objects. Therefore, a novel importance-
aware loss function should be specifically designed for the
application of automatic driving. To this end, we introduce
the notion of class importance where pedestrians, vehicles
and other objects on the road are more important for driving
than other classes such as sky and remote buildings that are
off the road. Based on this notion, we design a novel loss
function termed “Importance-Aware Loss” (IAL) that is able
to put more emphasis on accurately segmenting the important
objects than less important ones.

Inspired by [Szegedy et al., 2013], we propose a novel
loss function with hierarchical structure as shown in Fig-
ure 3. In this structure, the objects with different impor-
tance are located in different levels, and the more impor-
tant an object is, the higher level it stands. Consequently,
the important objects are in higher levels than the unimpor-
tant ones, and thus they are multiplied by larger importance
factors for computing the final loss. To validate our pro-
posed loss function, we replace the cross-entropy loss utilized
by representative deep learning methods [Long et al., 2015;
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Vijay Badrinarayanan and Cipolla, 2017; Paszke et al., 2016]
with our proposed importance-aware loss. The experimental
results on two typical autonomous driving datasets including
CamVid [Brostow et al., 2009] and Cityscapes [Cordts et al.,
2016] demonstrate that the important objects can be segment-
ed more precisely than existing approaches.

The rest of this paper is organized as follows. Some relat-
ed works are reviewed in Section 2. After that, we describe
the proposed loss function and also the relationship with ex-
isting cross-entropy loss in Section 3. In Section 4, we derive
the forward and backward propagation rules for our proposed
loss. In Section 5, we provide the experimental results on
the representative traffic datasets including CamVid and C-
ityscapes. Finally, our paper is concluded in Section 6.

2 Related Work
SS has been intensively studied for a long time as it is an im-
portant tool for understanding a scene. For example, some
traditional methods focus on designing powerful handcraft-
ed features and using Random Forest [Shotton et al., 2008;
Brostow et al., 2008; Silberman et al., 2012] or boosting-
based [Sturgess et al., 2009; Kontschieder et al., 2011;
Zhang et al., 2010] classifiers for predicting the class of im-
age pixels. To improve the segmentation accuracy, some post-
processing strategies have been developed to improve the ini-
tial segmentation results. For instance, the techniques based
on Conditional Random Fields (CRF) [Sturgess et al., 2009;
Ladicky et al., 2010; Ren et al., 2012] are used to suppress
the per-pixel prediction noise output by the classifiers.

With the rapid development of deep learning, various deep
neural networks have been applied to SS and achieved state-
of-the-art performance. The works such as [Farabet et al.,
2012; Grangier et al., 2011; Gatta et al., 2014] employ the
features extracted by DCNN for class prediction. To make
SS an end-to-end process, a fully convolutional network (FC-
N) [Long et al., 2015] is applied and shows very promising
results. Based on [Long et al., 2015], many other method-
s [Chen et al., 2016; Zheng et al., 2015; Shen et al., 2016;
Eigen and Fergus, 2015] are proposed which further in-
corporate multi-scale manipulation or post-processing based
on CRF. Another important architecture for segmentation
is based on the structure of encoder-decoder. SegNet [Vi-
jay Badrinarayanan and Cipolla, 2017] and some other works
like [Noh et al., 2015; Hong et al., 2015; Yang et al., 2016]
belong to this type.

Recently, several works have been done to apply SS to
autonomous driving. [Pohlen et al., 2016] develops a deep
neural network for segmenting the major object classes in
street scenes and reaches state-of-the-art results on the C-
ityscapes benchmark [Cordts et al., 2016]. To further improve
the efficiency and achieve real-time segmentation, more neu-
ral networks are designed for self-driving system such as
ENet [Paszke et al., 2016] and the work [Treml et al., 2016].

Although above SS algorithms targeting self-driving have
achieved encouraging performance, none of them take the im-
portance of different classes into account, so their results are
not reliable for autonomous driving. Therefore, this paper
presents the concept of class importance and proposes a nov-

Figure 1: The rankings of importance of 11 studied object classes.
Group 4 is the most important and Group 1 is the least important.

el loss function with hierarchical structure. By embedding
the proposed loss to three representative deep networks such
as FCN, SegNet and ENet, we will show that our loss is able
to drive the networks attention to important objects during
self-driving.

3 The Proposed Loss Function
As mentioned in the introduction, different object classes
have different levels of importance for autonomous driv-
ing, so this section introduces our proposed loss function
that takes the importance information into consideration.
CamVid [Brostow et al., 2009] is a widely used dataset for
evaluating the self-driving performance, in which the image
data is captured from the perspective of a driving automobile.
This dataset suggests 11 meaningful object classes that are
often appeared in a driving scenario, and in this section we
use these 11 suggested classes for explanation. First of all,
safety is the most critical issue for driving and the collision-
s with car, pedestrian and bicyclist are strongly opposed, so
these objects show the top level importance in our algorithm.
In contrast, road, sidewalk, and sign/symbol are less impor-
tant as they only guarantee the normal driving. Sky is not
essential here as it is seldom used as a cue for car control,
so it is the least important among all above 11 classes. The
detailed importance levels of all the investigated classes are
depicted in Figure 1. Besides, it is worth mentioning that the
users can re-define the objects’ importance levels according
to different criteria or their own prior knowledge.

To characterize the importance of objects in our method,
we first define some notations for the ease of following de-
scriptions. We define C as the number of classes in driving
environment. The final output of an SS algorithm can be rep-
resented by a tensor X ∈ RC×Himg×Wimg where its height
and width correspond to a Himg × Wimg input image, and
its depth targets the one-hot encoding of the ground truth and
indicates the class of each of the Himg ×Wimg pixels (see
Figure 2(a)). Here the one-hot encoding has the formation
[0, · · · , 0, 1, 0, · · · , 0]T with the position of the correct label
being 1. Besides, the segmentation ground truth of an image
is denoted by a matrix Y ∈ NHimg×Wimg with the (i, j)-th
element Yi,j ∈ {1, 2, · · · , C} representing the real class la-
bel of the (i, j)-th pixel.

According to above mathematical definitions and the im-
portance levels as shown in Figure 1, we propose a novel
importance-aware loss with hierarchical structure as shown
in Figure 3, in which different levels represent the object-
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Figure 2: Illustration of critical mathematical definitions in our
method. (a) The output of the algorithm is represented by a ten-
sor X, of which the height and width represent the Himg×Wimg

image, and the depth corresponds to the totally C classes. For a spe-
cific pixel, the depth constitutes a one-hot encoding. (b), (c), and
(d) respectively present the Himg×Wimg matrices M1, M2, and
M3 for comparing the importance levels of four groups, in which
we assume that the pixels of every group are arranged together (see
the blocks with different colors).

s with different importance. In Figure 3, the vectors lG1
,

lG2
, lG3

and lG4
encode the values of cross-entropy loss [de

Boer et al., 2005] of the objects in Group 1, Group 2, Group
3, and Group 4, respectively, and the j-th element (lGi)j
(i = 1, 2, 3, 4) is calculated by

(lGi)j = −
∑
c

qc log(pc), (1)

where pc = exp(Xc,i,j)/
∑C

k=1 exp(Xk,i,j) is the probabil-
ity of the (i, j)-th pixel belonging to the c-th class (c takes
a value from 1, 2, · · · , C) based on the output X, and q is a
one-hot encoding with the c-th element qc being 1. Similar
to the formation of lGi , we use the vectors wG1 , wG2 , wG3

and wG4 to record the corresponding weights of the objects
in the four groups for avoiding class imbalance, and the ob-
ject with fewer pixels is assigned larger weight [Eigen and
Fergus, 2015]. The j-th element in wGi

(i = 1, 2, 3, 4) are

(wGi)j = median freq/freq(i, j), (2)

where freq(i, j) is the number of pixels of the j-th class in
Group i divided by the total number of pixels in images where
the class (Gi)j is present, and median freq is the median
of these frequencies. Therefore, the weighted cross-entropy
losses for Group 1 to Group 4 are wT

G1
lG1 , wT

G2
lG2 , wT

G3
lG3

and wT
G4

lG4
correspondingly.

Besides, for the four groups defined in Figure 3, we intro-
duce three Himg ×Wimg matrices Mt (t = 1, 2, 3) to model

Figure 3: The illustration of our importance-aware loss with hierar-
chical structure. Level 1 to Level 4 indicate the importance levels of
the classes in different groups, and the more important a group is,
the higher level it stands. lG1 , lG2 , lG3 , and lG4 are respectively the
loss values of four groups calculated by cross-entropy loss. Besides,
wG1 , wG2 , wG3 , and wG4 are the weights for eliminating class im-
balance correspondingly. The term fi(X) + α is called importance
factor.

the importance relationship of four groups. For example, the
M1 for comparing Group 1 and Groups 2, 3, and 4 is pre-
sented in Figure 2(b), in which the elements corresponding to
the classes in Group 1 are set to 0, and the elements corre-
sponding to Groups 2∼4 are 1 indicating that they are more
important than Group 1. To further compare the importance
of Group 2 and Groups 3 and 4, the elements of M2 (see Fig-
ure 2(c)) regarding Group 2 are set to 0, and the elements of
Groups 3 and 4 are defined as 1 because they are more impor-
tant than Group 2. In M2, the elements indicating Group 1
are denoted as “x” which means that the comparison of Group
1 and other groups has been done before. Similarly, the M3

for comparing Group 3 and Group 4 is shown in Figure 2(d),
where the elements of Group 3 and Group 4 are 0 and 1, re-
spectively. The elements representing Group 1 and Group 2
are “x” since their importance comparisons with other groups
have been studied.

Based on Mt (t = 1, 2, 3), we define ft(X) + α as impor-
tance factor where α is a tuning parameter with default value
1, so the ft(X) (t = 1, 2, 3) in Figure 3 are computed by

ft(X) =
1

2
‖ (Mt+λtE)

1
2�(X−Mt)�I{Mt 6= “x”} ‖2F .

(3)
where E is an all-one matrix, and I{Mt 6= “x”} returns a

matrix where its element is 1 if the corresponding element
(Mt)i,j is not “x”, and 0 otherwise. The notation “�” de-
notes the element-wise product of two matrices. X is a ma-
trix with the same dimension of Y and its (i, j)-th element is
defined by Xi,j = Xc,i,j

1 with c = Yi,j . In (3), λt ∈ R+

(t = 1, 2, 3) are tuning parameters and in this paper we set
λ1 = λ2 = λ3 = 0.5. Note that if λt is small, the value of
ft(X) will be large due to the error between Xi,j and (Mt)i,j
when (Mt)i,j = 1 (i.e. the corresponding class is importan-
t). By this way, Eq. (3) encourages the model to focus on the

1Here all elements belonging to the (i, j)-th pixel (i.e. “X:,i,j”
in Matlab expression) have been normalized to [0, 1].
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classifications of important classes.
Therefore, the loss of the objects in the four groups can

be computed by following the arrows in Figure 3. For in-
stance, Group 1 has the lowest importance level, of which
the importance-aware loss is wT

G1
lG1

; The weighted cross-
entropy loss of Group 2 should be multiplied by an impor-
tance factor f1(X) + α, so its importance-aware loss should
be (f1(X) + α)(wT

G2
lG2

). Similarly, the loss value of the
classes in Group 3 is (f1(X) + α)(f2(X) + α)(wT

G3
lG3

).
The classes in Group 4 are the most important and thus it-
s weighted cross-entropy loss wT

G4
lG4

should be augmented
by three importance factors. Consequently, the loss of Group
4 is (f1(X)+α)(f2(X)+α)(f3(X)+α)(wT

G4
lG4

). Finally,
the total value of our importance-aware loss is the sum of the
loss values contributed by the four groups, which is

Loss =wT
G1

lG1
+

(f1(X) + α)(wT
G2

lG2
)+

(f1(X) + α)(f2(X) + α)(wT
G3

lG3
)+

(f1(X) + α)(f2(X) + α)(f3(X) + α)(wT
G4

lG4).
(4)

From above analyses, we see that the cross-entropy losses
of important classes will be augmented by more importance
factors than the less importance ones. As a result, the more
important an object class is, the greater the importance-aware
loss value it will obtain. Moreover, from Eq. (4) we see that if
we set all importance factors ft(X)+α (t = 1, 2, 3) to 1, our
proposed IAL function will degrade into the existing cross-
entropy loss with all classes sharing the equal importance.

4 Forward and Backward Propagation Rules
Here, we give a general description of the proposed loss func-
tion, and then deduce its related forward and backward prop-
agation rules.

Suppose we have totally C classes that are grouped into g
groups G = {G1, G2, · · · , Gg} which satisfy Gi 6= ∅ and
Gi ∩ Gj = ∅. For these g groups, their cross-entropy loss-
es and corresponding weights avoiding class imbalance are
{lG1

, lG2
, · · · , lGg

} and {wG1
,wG2

, · · · ,wGg
}, respective-

ly.
According to the above description, the forward propaga-

tion rule of the proposed loss function is
Q1 = (f1(X) + α)(wT

G2
lG2

+Q2), (5)

Q2 = (f2(X) + α)(wT
G3

lG3 +Q3), (6)

· · · · · ·
Qt = (ft(X) + α)(wT

Gt+1
lGt+1

+Qt+1), (7)
where Qt+1 = (ft+1(X) + α)(wT

Gt+2
lGt+2) corresponds to

the most important group. Therefore, the compact formation
of the forward propagation rule regarding our IAL is

IAL = wT
G1

lG1
+Q1. (8)

As a consequence, the backward propagation rules of IAL
corresponding to Eqs. (8), (5), (6), and (7) are
∂IAL

∂X
= wT

G1
∗ ∂lG1

∂X
+
∂Q1

∂X
, (9)

∂Q1

∂X
=
∂f1(X)

∂X
(wT

G2
lG2

+Q2)

+ (f1(X) + α)(wT
G2
∗ ∂lG2

∂X
+
∂Q2

∂X
),

(10)

∂Q2

∂X
=
∂f2(X)

∂X
(wT

G3
lG3

+Q3)

+ (f2(X) + α)(wT
G3
∗ ∂lG3

∂X
+
∂Q3

∂X
),

(11)

· · · · · ·

∂Qt

∂X
=
∂ft(X)

∂X
(wT

Gt+1
lGt+1

+Qt+1)

+ (ft(X) + α)(wT
Gt+1

∗
∂lGt+1

∂X
+
∂Qt+1

∂X
).

(12)

where

∂Qt+1

∂X
=
∂ft+1(X)

∂X
(wT

Gt+2
lGt+2)

+ (ft+1(X) + α)(wT
Gt+2

∗
∂lGt+2

∂X
),

(13)

and

∂ft(X)

∂X
=[(Mt+λtE)�(X−Mt)�I{Mt 6= “x”}] ∗ ∂X

∂X
.

(14)

By denoting

(
∂X

∂X
):,i,j = [0, 0, · · · , ∂Xi,j

∂Xc,i,j
, · · · , 0, 0]T (15)

and

A = (Mt + λtE)� (X−Mt)� I{Mt 6= “x”}, (16)

we have

(
∂ft(X)

∂X
):,i,j = (A ∗ ∂X

∂X
):,i,j = Ai,j(

∂X

∂X
):,i,j , (17)

where c = Yi,j .
For ∂lGt

∂X , if the (i, j)-th pixel belongs to class (Gt)r (i.e.
the r-th class in Group Gt), and its corresponding weight is
(wGt)r, we obtain

hc = (
∂lGt

∂X
)c,i,j =


exp(Xc,i,j)∑C

k=1 exp(Xk,i,j)
, if c 6= Yi,j ;

exp(Xc,i,j)∑C
k=1 exp(Xk,i,j)

− 1, if c = Yi,j ,

(18)
and then (wT

Gt
∗ ∂lGt

∂X ):,i,j is represented by

(wT
Gt
∗∂lGt

∂X
):,i,j=(wGt

)r[h1,· · · ,hc−1,hc,hc+1,· · · ,hC ]
T .

(19)
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Table 1: The comparison results of various methods on the Groups 1 and 2 of CamVid dataset. The records that IAL are better than the
original network are marked in bold.

Group 1 Group 2
Sky Building Column/Pole Tree Fence

ENet 95.1 74.7 35.4 77.8 51.7
ENet+IAL 88.2 68.5 56.8 80.8 42.2

SegNet 92.4 88.8 27.5 87.3 49.3
SegNet+IAL 85.7 81.4 44.1 90.7 40.2

FCN 93.5 93.7 33.1 91.2 53.3
FCN+IAL 86.7 85.9 53.1 94.8 43.5

Table 2: The comparison results of various methods on the Groups 3 and 4 of CamVid dataset. The records that IAL are better than the
original network are marked in bold.

Group 3 Group 4
Road Sidewalk Sign/Symbol Car Pedestrian Bicyclist Mean IoU

ENet 95.1 86.7 51.0 82.4 67.2 34.1 68.3
ENet+IAL 95.3 90.9 43.7 79.1 72.3 50.9 69.9

SegNet 97.2 84.4 20.5 82.1 57.1 30.7 65.2
SegNet+IAL 97.4 88.5 17.6 80.8 61.4 45.8 66.7

FCN 98.1 89.5 25.1 84.5 64.6 38.6 69.6
FCN+IAL 96.3 91.8 21.5 82.2 69.5 57.6 71.2

5 Experimental Results
To verify the effectiveness of our proposed importance-aware
loss (IAL) function, we apply IAL to three existing deep neu-
ral networks, i.e. FCN [Cordts et al., 2016], SegNet [Vi-
jay Badrinarayanan and Cipolla, 2017] and ENet [Paszke et
al., 2016], to deal with SS problem. Among them, FCN and
SegNet are popular deep methods for conventional SS, and
ENet is a recently proposed deep network specifically for au-
tonomous driving application. The cross-entropy loss adopt-
ed by these models will be replaced with our IAL during
the training stage, and we term them as “FCN+IAL”, “Seg-
Net+IAL”, and “ENet+IAL”, respectively. Besides, we fol-
low [Cordts et al., 2016; Everingham et al., 2015] and use
the intersection-over-union (IoU) score to evaluate the per-
formances of compared methods on different object classes.

We use the CamVid dataset [Brostow et al., 2009] men-
tioned in Section 3 and a recent Cityscapes [Cordts et al.,
2016] dataset for our experiments. CamVid contains 367
training images, 26 validation images, and 233 test images.
The resolution of images in this dataset is 960 × 720. C-
ityscapes is also a high-quality dataset for semantic scene un-
derstanding captured from the view of cockpit, which con-
tains 2975 color training images, 500 validation images, and
1525 test images. The resolution of all images is 2048×1024.
In Cityscapes dataset, we pick up 19 the most frequently oc-
curred classes from the original 35 classes, and their impor-
tance groupings from trivial to important are

Group 1 = { Sky };
Group 2 = { Building, Wall, Fence, Vegetation, Terrain };
Group 3 = { Road, Sidewalk, Train };
Group 4 = { Person, Rider, Car, Truck, Bus, Motorcycle,

Bicycle, Traffic light, Traffic sign, Pole }.
On both datasets, we train the neural networks on train-

ing sets, and observe their IoU scores on test sets. The ex-
perimental results of compared methods on the investigated

classes of the two datasets are shown in Tables 1∼2 and Ta-
bles 3∼4, respectively. For the CamVid dataset, the results
of ENet and SegNet are directly originated from [Paszke et
al., 2016], and we implement FCN by ourselves as no prior
results on this dataset have been reported. For the Cityscapes
dataset, the results of ENet, SegNet and FCN in Tables 3 and
4 are provided by the original papers [Paszke et al., 2016;
Pohlen et al., 2016; Cordts et al., 2016].

From the results shown in Tables 1 and 2, we observe that
by employing our IAL, the IoU scores of important classes
like pedestrain, bicyclist, car and sign/symbol can be signif-
icantly improved when compared with the settings without
IAL. Not surprisingly, the IoU scores on some unimportant
classes such as building and sky drop because they are trained
with small weights by our IAL. However, if we compute the
IoU scores averaged over all classes for all compared meth-
ods (see the last column in Table 2), we find that the networks
with IAL are still able to achieve better performance than the
original networks with cross-entropy loss, and the improve-
ments are 1.6 for ENet, 1.5 for SegNet, and 1.6 for FCN.

From the results in Table 3 and Table 4, we see that the
important classes in Group 4 are segmented with very high
IoU scores by FCN+IAL, ENet+IAL and SegNet+IAL, such
as person, rider, car, truck, bus, and bicycle. Specifically, the
IoU scores of person and truck generated by ENet+IAL are
as high as 87.7 and 73.5, which are significantly better than
the results of ENet, FCN, and SegNet. For some unimportant
classes in Group 2, the performances of IAL-based models
are inferior to the original models. However, they will not
have large impact on safe-driving as explained above. Fur-
thermore, the last column of Table 4 reveals that the segmen-
tation results of ENet, SegNet and FCN on the entire image
are improved by utilizing our IAL. Besides, another interest-
ing finding is that sky, which is inessential, is also segmented
more precisely by IAL-based models than the corresponding
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Table 3: The comparison results of various methods on the Groups 1, 2, and 3 of Cityscapes dataset. The records that IAL are better than the
original network are marked in bold.

Group 1 Group 2 Group 3
Sky Pole Building Wall Fence Vegetation Terrain Road Sidewalk Train Traffic Light Traffic Sign

ENet 90.6 43.5 85.0 32.2 33.2 88.6 61.4 96.3 74.2 48.1 34.1 44.0
ENet+IAL 96.9 63.7 80.0 39.4 41.6 88.8 67.1 95.7 84.4 27.1 60.3 72.9

SegNet 91.8 35.7 84.0 28.5 29.0 87.0 63.8 96.4 73.2 44.2 39.8 45.2
SegNet+IAL 98.2 52.3 79.1 34.9 36.3 87.2 69.7 95.8 83.3 24.9 65.4 71.9

FCN 92.9 43.0 88.7 34.7 44.0 90.9 68.6 97.3 77.6 45.9 57.7 62.0
FCN+IAL 97.0 63.0 83.5 42.5 54.7 91.1 75.0 96.2 88.3 32.1 70.6 75.2

Table 4: The comparison results of various methods on the Groups 4 of Cityscapes dataset. The records that IAL are better than the original
network are marked in bold.

Group 4
Person Rider Car Truck Bus Motorcycle Bicycle Mean IoU

ENet 65.5 38.4 90.6 36.9 50.5 38.8 55.4 58.3
ENet+IAL 87.7 41.3 92.4 73.5 76.2 24.1 69.7 67.5

SegNet 62.8 42.8 89.3 38.1 43.1 35.8 51.9 57.0
SegNet+IAL 84.1 46.0 91.1 75.9 65.0 22.2 65.3 65.7

FCN 75.4 50.5 91.9 35.3 49.1 50.7 65.2 64.3
FCN+IAL 90.4 56.6 93.7 68.5 74.6 31.5 81.5 71.9

baselines. Perhaps this is because the accurate segmentations
of other objects also render valuable cues for partitioning the
unimportant regions.

To intuitively present the effectiveness of our proposed loss
function, we provide some representative segmentation re-
sults of ENet and ENet+IAL in Figure 4. For the important
objects with large size (e.g. truck, bus, and road), we see that
the regions segmented by ENet+IAL are very compact and
most pixels of the corresponding regions are correctly clas-
sified. Comparatively, the original ENet yields much worse
outputs than ENet+IAL such as the incomplete truck, bus, and
road. For the important objects with small size (e.g. traffic
light, person, and pole), the ENet+IAL also generates more
similar segmentation results to ground truth than ENet. For
example, the traffic light indicated by a circle is rather small,
and it is missed by ENet. However, our ENet+IAL success-
fully picks it up and renders accurate segmentation. The pole
in the last row is so tiny that it is completely misclassified by
ENet. In contrast, ENet+IAL clearly identifies the pole from
the background as indicated by the white circle. Here we only
present the results related to ENet as ENet is the state-of-the-
art deep neural network specifically designed for the applica-
tion of self-driving. However, the comparisons between FCN
vs. FCN+IAL and SegNet vs. SegNet+IAL also reveal the
similar results.

According to above qualitative and quantitative results,
we conclude that the proposed hierarchical importance-aware
loss can improve the segmentation quality of the important
objects with a large margin in terms of IoU score. Therefore,
IAL is quite suitable for the application of autonomous driv-
ing.

6 Conclusion
Semantic segmentation in driving environment is quite dif-
ferent from its traditional implementations, as various classes
might have different levels of importance for safety driving.
Based on this argument, this paper proposes a novel hierar-

Figure 4: Representative segmentation results of ENet and
ENet+IAL on important classes of Cityscapes dataset.

chical importance-aware loss (IAL) so that the object classes
with different importance are adaptively allocated different
weights during the model training stage. As a result, the ob-
jects that are critical for safe-driving can be segmented more
accurately than the traditional SS methods as revealed by the
experiments. Moreover, our loss function IAL is general in
nature and can be easily combined with many other existing
SS algorithms for various applications with the consideration
of class importance.
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