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Abstract

Many spectral clustering algorithms have been
proposed and successfully applied to many high-
dimensional applications. However, there are stil-
I two problems that need to be solved: 1) exist-
ing methods for obtaining the final clustering as-
signments may deviate from the true discrete so-
lution, and 2) most of these methods usually have
very high computational complexity. In this paper,
we propose a Scalable Normalized Cut method for
clustering of large scale data. In the new method,
an efficient method is used to construct a small rep-
resentation matrix and then clustering is performed
on the representation matrix. In the clustering pro-
cess, an improved spectral rotation method is pro-
posed to obtain the solution of the final clustering
assignments. A series of experimental were con-
ducted on 14 benchmark data sets and the exper-
imental results show the superior performance of
the new method.

1 Introduction

Clustering is a hot topic in machine learning and data mining.
Over the past decades, many clustering algorithms have been
proposed for cluster analysis of high-dimensional data, such
as spectral clustering [Von Luxburg, 2007], subspace cluster-
ing [Kriegel et al., 2009; Chen er al., 2012], multi-view clus-
tering [Cai er al., 2011; Chen et al., 20131, etc. Among them,
spectral clustering is a popular method because it is easy to
implement and often shows good clustering performance due
to the use of manifold information. Various spectral cluster-
ing algorithms have been proposed, such as Ratio Cut [Ha-
gen and Kahng, 1992], k-way Ratio Cut [Samaria and Harter,
1995], Normalized Cut [Ng et al., 2002], Spectral Embed-
ded Clustering [Nie et al., 2011] and MinMax Cut [Nie et al.,
2010]. They have been successfully applied to many high-
dimensional applications, such as image segmentation [Shi
and Malik, 2000; Yu and Shi, 20031, clustering gene expres-
sion data [de Souto er al., 2008] and power network decom-
posing [Sadnchez-Garcia et al., 2014].
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Spectral clustering methods usually transform the data into
a weighted, undirected graph based on pairwise similarities.
To obtain the final discrete clustering assignments, they of-
ten perform eigendecomposition first, and then the final clus-
tering assignments can be obtained from eigenvectors by k-
means or spectral rotation [Yu and Shi, 2003]. According to
the analysis in [Huang et al., 2013], spectral rotation can ob-
tain better clustering result than k-means. However, spectral
rotation involves a two-stage process in which an approxi-
mate continuous cluster assignment matrix is first computed,
and the final discrete solution is a nearby discrete solution ob-
tained from the approximate continuous cluster assignment
matrix. A disadvantage of this two-stage process is that the
final clustering structures may deviate from the true discrete
solution.

Moreover, since both graph construction as well as spec-
tral analysis are time consuming, spectral clustering usual-
ly has a time complexity of O(n®) where n is the num-
ber of samples. In recent years, much effort has been de-
voted for accelerating the spectral clustering. There are
mainly two ways to handle the scalability issue of spec-
tral clustering. One way is to reduce the computational
cost of the eigendecomposition step [Fowlkes et al., 2010;
Li et al., 2010], and another way is to sample the original data
and perform clustering on the reduced data [Yan er al., 2009;
Shinnou and Sasaki, 2008]. However, these methods are
based on sampling, and a lot of information of the data will
be lost in the sampling step. Recently, Cai et al. proposed a
landmarks-based spectral clustering (LSC) method [Cai and
Chen, 2015]. Given a data set with n samples, LSC generates
m < n representative data points to compute a representa-
tion matrix and the eigendecomposition can be performed on
the low-size representation matrix. The final discrete clus-
tering result is obtained from eigenvectors by k-means. The
overall time of LSC is O(ndmt + nm?) where ¢ is the num-
ber of iterations of k-means for anchor generation, which is
significant reduction from O(n?) considering m < n. How-
ever, how to effectively construct a representation matrix and
how to effectively obtain the clustering assignments are still
two problems that need to be solved.

In this paper, we propose a Scalable Normalized Cut
method (SNC) for large scale data. Given a data set with
n samples, we first use k-means to find m < n representa-
tive data points, a new method to construct a low-size n x m
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representation matrix on which the eigendecomposition can
be performed. We propose an Improved Spectral Rotation
method to obtain the final clustering assignments. SNC has
the same computational complexity as LSC for large scale
data. The main contributions of our work include:

1. We propose an Improved Spectral Rotation (ISR) to ob-
tain the solution of the final clustering assignments.

2. We propose an efficient method to construct a small rep-
resentation matrix, which can be used to computed an
affinity matrix. We futher prove that the resulting affini-
ty matrix is symmetric and doubly stochastic.

3. Comprehensive experiments on 14 benchmark data set-
s show the efficiency and effectiveness of the proposed
method.

The rest of this paper is organized as follows. Notations
and preliminaries are given in Section 2. We review the back-
ground and related work in Section 3. The Improved Spectral
Rotation (ISR) is given in Section 4 and the Scalable Normal-
ized Cut (SNC) is given in Section 5. We present experimen-
tal results and analysis in Section 6. Conclusions and future
work are given in Section 7.

2 Notations and Definitions

‘We summarize the notations and the definition of norms used
in this paper. Matrices are written as boldface uppercase let-
ters. Vectors are written as boldface lowercase letters. For
matrix M = (m;;), its i-th row is denoted as m’, and its j-th
column is denoted by m;. The Frobenius norm of the matrix

M € R™ ™ is defined as | M|, = />1L; D700, m3.

3 Background and Related Work

In this section, we introduce the anchor-based similarity ma-
trix construction and spectral rotation.

3.1 Anchor-based Similarity Matrix Construction

To handle the scalability issue of spectral clustering, Liu et al.
proposed an anchor-based strategy [Liu et al., 20101, which
is also called landmarks-based method [Cai and Chen, 2015].
Given a data set X € R4*" with n objects {X1,Xa, ..., X, },
anchor-based strategy first seeks m anchors, where m < n,
and then construct the affinity matrix by calculating the dis-
tance between anchors and original samples. There are main-
ly two methods for anchor generation, i.e., random selec-
tion and k-means generation. Since clustering centers have
a stronger representation power than random selected data, it
is preferred to use k-means for anchor generation [Liu et al.,
2010; Cai and Chen, 2015].

After we have m anchors W € R¥*™  the next step is to
obtain a representation matrix B such that X ~ WB. With
B, we can obtain an affinity matrix A as [Liu et al., 2010]

A =BA BT 1))

where A € R™*™ is a diagonal matrix and the j-th entry
is defined as Aj; = Z?.:l bij. The most important property
of this similarity matrix is that it can be represented as A =
PP7 where P € R"*™ = BA™3.
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3.2 Spectral Rotation

In this subsection, we introduce the spectral rotation which
is used in Multiclass Spectral Clustering (MSC) [Yu and Shi,
2003]. Given an affinity matrix A, we can compute the corre-
sponding degree matrix D 4, which is a diagonal matrix with

the i-th diagonal element as d;; = =1 Qg The objective
function of MSC is

max Tr(ZTAZ) )
YeInd,Z=Y(YTDAY) %

where Z € R"*¢ is the scaled partition matrix. It is hard to

directly solve problem (2). A well known way is to relax the

matrix Z from the discrete values to the continuous ones, and

form the new problem
Tr(ZTAZ) 3)

max
ZTD s Z=1.
According to Proposition 1 in [Yu and Shi, 2003], the optimal
solution of Z is {Z*R : RTR = I.} where Z* € R"*¢
is the ¢ column vectors of the eigenvectors of DzlA which
correspond to the c biggest eigenvalues.
To obtain the discrete solution Y, we first compute an ap-
proximate Y * as

Y* = Diag(Z*(2*)") 22" (4)
Then we can learn suitable R and Y such that Y*R is
closest to Y by solving the following problem

min Y - Y*R|?
YEBWXC)RERCX(:ach:1n,RTR:IC H HF (5)

4 Improved Spectral Rotation

In MSC, approximate Y * is first computed and then a suitable
R is learnt for the final cluster indicator matrix Y. However,
the final clustering results may deviate from the true discrete
solution since Y* is an approximate solution. In this paper,
we propose a new spectral rotation method to obtain better
discrete solution of Y. We first rewrite problem (2) as follows

Tr(F'D,?AD*F) (6)

max
1
YeInd,F=D2Y(YTDAY)™

[N

where F' € R™*¢ is the cluster indicator matrix. We can relax
F to continuous matrix and form the new problem

1 1
Tr(F'D,*AD*F 7
pax Tr(F'D,*AD *F) ™
It can be verified that the optimal solution of F is {F*R :
RTR = 1.} where F* € R"*¢ is the ¢ column vectors of

the eigenvectors of D ,2 AD ,2 which correspond to the ¢
biggest eigenvalues.

With F*, the next step is to obtain the discrete solution of
Y. In this paper, we propose to directly obtain the discrete
solution Y by solving the following problem

2

Fo(8)

min
YeBnxe REReXe

st.Yl.=1,,RTR =1,

DIY(Y'D,Y) % - F*RH
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Figure 1: Illustration of computing the increment s;;.

. 2
Note that |[DAY(Y"D4Y) ¢ ~FR| = o -
2Tr((YTDAY) _%YTDI‘%F*R), problem (8) can be rewrit-
ten as
1 1
Tr((Y"DAY) 2Y'DZF'R)
)

max
YeBMXe RERCXE, Y1.=1,,RTR=I,

We can apply the alternative optimization approach to
solve problem (9).

4.1 Update R with Y fixed

If Y is fixed, denote (Y7D,Y) 5YTD? as M € R,
Suppose the SVD of MF* is MF* = UXVT, then we have

Tr(MF*R) =Tr(RUSVT) = Tr(ZE) = Y \iiesi
=1
(10)

where E = VTRU, \;; and e;; are the (i, i) — th element of
matrix 3 and E respectively.

Since ETE = UTRVVTRTU =1, i.e, Z;:l e?i =1,
we know ¢; < 1(1 < i < ¢). On the other hand,
Aii > Osince A;; is singular value. Therefore, Tr(MF*R) =
i1 Niieii < Y i Aii, and the equality holds when e;; =
1(1 < i < c¢). Thatis to say, Tr(MF*R) reaches its maxi-
mum when E = I.. Then we obtain the optimal solution of
R as

R=VUT (11)

4.2 Update Y with R fixed

Let G = F*R. According to problem (9), the optimal solu-
tion of Y can be obtained by solving the following problem

max

TrDIY(YTDAY) :GT)
r 2
YeBrxe, Yl.=1, A A

(12)
which can be rewritten as
~ 2 Vdiiyijgi

max Z (a3)
YEBNXe, Y1e=1, “—{ \/m

Since /y}"Dij involves all rows of Y, we propose to

sequentially solve Y row by row and fix the other rows of Y

as constants. Suppose we have obtained the optimal solution
Y, which has the objective function 7°/4(Y). To solve the
i-th row y* € B¢, we only need to consider the increment of
the objective function value from y;; = 0 to y;; = 1. Since

ijD Ay ;and Yoy \/Ett@tj gt; can be computed once before
we solve yi, we can compute the increment as follows (See
Figure 1)

2?21 \/attytjgij + \/Eiigij(l - gij)

Sij =
VY DAY, +di(1-7,,)
" B B (14)
B Doy \/attytjgtj - \/aiiyij
¥, Day; — diiy;
Then the optimal solution of y* can be obtained as
¥ij; =<l =arg max_s;j > (15)

j'€ll,q]
where < . > is 1 if the argument is true or 0 otherwise, and
545 is defined in Eq. (14).

4.3 Initialization of Y

We can use the the mapping in [Yu and Shi, 2003] to obtain
the initial Y. We first compute an approximate Y * as

Y* = Diag(F*(F*)7)2F* (16)
Then the initial discrete solution of Y is given by
Yij J = arg j’nelﬁ),{c] Yij a7n

4.4 The Optimization Algorithm

The detailed algorithm to solve problem (9), named Improved
Spectral Rotation (ISR), is summarized in Algorithm 1. In the
new algorithm, we need O(r; (c® 4 ranc)) time to iteratively
solve R and Y where r; is the number of iterations to up-
date R and 75 is the average number of iterations to update
Y. Considering that ¢ < n for large scale data, the compu-
tational complexity for obtaining Y is O(ryranc). If we use
k-means to obtain Y, we need O(tnc?) time where t is the
number of iterations. Here, the discrete solution Y converges
very fast due to its limited solution space so 75 is usually very
small. Therefore, ISR has almost similar computational com-
plexity as k-means for large scale data.

Algorithm 1 Improved Spectral Rotation (ISR) to solve prob-
lem (9)
: Input: F*.
Initialize Y according to Eq. (17).
repeat
Update R according to Eq. (11), and G = F*R.
repeat
Update Y according to Eq. (15).
until Y does not change
until problem (9) converges
Output: the clustering result Y.

—

R S o
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S The Scalable Normalized Cut for Large
Data

In this section, we propose a Scalable Normalized Cut (SNC)
for large scale data.

5.1 An Efficient Method for Construction
Representation Matrix

Assume that we have obtained m anchors W € R4*™ with
k-means, the next step is to construct a representation matrix
B € R™ ™, Inspired from the work in [Nie et al., 2016],
we assume that b;; should be larger if x; is closer to w; and
propose an efficient method to construct B. For the i-th sam-
ple x; € X, we propose to obtain b’ € R™ by solving the
following problem

BT SUIESEER DU

According to the analysis in [Nie ez al., 2016], the optimal
solution b* to problem (18) is

diky1—|lxi—wi;ll3

bij = { kdi k1= f_y din Xj € Nk(xl)
0

otherwise

19)

where d; 5, is the square of Euclidean distance between x; and
its h-th nearest neighbor, and N (x;) contains the & nearest
neighbors of x;.

After obtaining the representation matrix B, we can com-
pute the affinity matrix A according to Eq. (1). The following
theorem ensures that A is symmetric and doubly stochastic.

Theorem 1. Given the representation matrix B computed ac-
cording to Eq. (19), A computed from Eq. (1) is symmetric
and doubly stochastic.

Proof. According to Eq. (1), we have
m bq‘,l b_jl
=1 2:21 bfl

It can be easily verified that a;; = a;;, which indicates that
A computed from Eq. (1) is symmetric.
We can also verify that

;i =

Z j Z Zt 5
which imphes that >0 a;; = 2?21 a;; = 1. Therefore, A
is doubly stochastic. O

5.2 The Optimization Model

According to Theorem 1, it can be verified that the degree
matrix of A should be an identity matrix. Then problem (6)
can be rewritten as

(20)

Qi =

Zbd = @1

Tr(FTAF) (22)

max L
YeInd,F=Y(YTY) 2

We also relax F' to continuous matrix, and obtain the optimal
solution of F' from the following problem

Tr(FTAF 23
hax r( ) (23)
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Note that A can be rewritten as A = PP7 where P €
RX™M — BA_%, we can perform SVD on P instead of A.
Suppose the SVD of P is P = UpXpVZE, we have A =
PP” = UpX%U7%, which can be rewritten as

AUp =Upxi (24)

then we know that the optimal solution of F' to problem (23)
is the ¢ column vectors in U p corresponding to ¢ biggest di-
agonal entries in diagonal matrix X%.

With the learnt optimal solution of F*, we can use Algo-
rithm 1 to obtain the final solution of Y. Since the size of P
is n X m, we can obtain F* within O(nm?).

Following the same analysis in [Nie ef al., 2011], it can be
verified that although 1,, is a trivial vector in Up, it should
be retained in order to generate the whole set of optima.

5.3 The Optimization Algorithm

The detailed algorithm to solve problem (22), named Scalable
Normalized Cut (SNC), is summarized in Algorithm 2. Given
a data matrix X € R%*"™, we need O(ndmt) time to obtain
m anchors by k-means where ¢ is the number of iterations,
O(ndm + nmlog(m)) time to construct P, O(nm?) time
to obtain F*, and O(r1(c® + ranc)) time to iteratively solve
R and Y where r; is the number of iterations to update R
and r; is the average number of iterations to update Y. Here,
the discrete solution Y converges very fast due to its limited
solution space so ro is usually very small. Considering that
m < n,d < nand ¢ < m for large scale data, the overall
computational complexity is O(ndmt + nm?). Therefore,
SNC has the same computational complexity as LSC.

Algorithm 2 Scalable Normalized Cut (SNC) to solve prob-
lem (22)

1: Input: Data matrix X € R*" pnumber of nearest neigh-
bors k&, number of anchors m.

2: Find m anchors W using k-means, and construct a s-
parse representation matrix B € R"™*™ with the method
introduced in Section 5.1.

3: Obtain P € R"*™ = BA~z, where A € R™*™ is the
degree matrix of B.

4: Perform SVD on P such that P = UpXp V7T, then for-
m F* by selecting ¢ column vectors in Up which cor-
regponds to ¢ biggest diagonal entries in diagonal matrix
X5.

5: Call Algorithm 1 with input F* to obtain the optimal so-
lution of Y.

6: Output: the clustering result Y.

6 Experimental results and analysis

In this section, we present the experiments conducted on 14
real-life data sets to demonstrate the efficiency and effective-
ness of the proposed method.

6.1 Experiments on ISR

We first compared ISR with k-means and the original spectral
rotation for spectral clustering.
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Table 1: Characteristics of 8 data sets.

@
&
©

@
—

Data sets Name No. of samples ~ No. of features ~ No. of classes
D1 colon 62 2000 2
Dy srbet 63 2308 4
D3 breast3 95 4869 3
Dy nci 61 5244 8
Ds LM 360 90 15
D¢ Coil20Data-25 1440 1024 20
D~ PalmData25 2000 256 100
Dg corel-5k 5000 423 50

Table 2: Comparison results of the average clustering re-
sults in terms of Accuracy (NMI). The best result on each
data set is highlighted in bold.

Data | NCut+KM  NCut+SR NCut+ISR
D1 | 0.648(0.063) 0.688(0.094)  0.728(0.143)
D> | 0.608(0.442) 0.614(0.417)  0.598(0.465)
D3 | 0.588(0.196) 0.593(0.204)  0.604(0.214)
D4 | 0.713(0.687) 0.691(0.650)  0.749(0.689)
Ds | 0.487(0.638) 0.483(0.620)  0.497(0.644)
Dg | 0.764(0.853) 0.705(0.807)  0.798(0.853)
D7 | 0.761(0.915) 0.861(0.950)  0.867(0.962)
Ds | 0.182(0.286)  0.185(0.273)  0.192(0.289)

Benchmark data sets

8 benchmark data sets were selected from the UCI Machine
Learning Repository and Feiping Nie’s page !. Table 1 sum-
marizes the characteristics of these 8 data sets.

Results and Analysis

We compared ISR with k-means (KM) and the original spec-
tral rotation (SR) for normalized cut. For each data set, we
set five neighborhood parameters £ = {10,20,...,50} to
construct five affinity matrices with the method in [Nie er al.,
2016], and used these matrices to run three methods in order
to perform fair comparison. For each algorithm on each data
set, we computed the average accuracy and NMI and show
them in Table 2. From these figures, we can see that ISR
outperformed other methods in both accuracy and NMI on
almost all data sets. Especially on D;, D4 and Dg, ISR has
over 5% improvement compared to the second best method.
This indicates that ISR improves the original spectral rota-
tion.

We selected Dg to show the convergence curves of the ob-
jective function value and the number of iterations for ob-
taining Y in each main loop. The results are drawn in Fig-
ure 2. From Figure 2(a), we can see that the objective function
value drops very fast, indicating Algorithm 1 converges very
fast. From Figure 2(b), we can see that the average number
of iterations for obtaining Y is around 4. Therefore, ISR can
quickly obtain the final clustering assignments.

6.2 Experiments on SNC
In this subsection, we compare SNC with the original nor-
malized cut and other scalable spectral clustering methods.

"http://www.escience.cn/people/fpnie/
index.html#
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(a) Objective function values of (b) No. of iterations for obtain-
problem (9). ing Y in each main loop.

Figure 2: Objective function values of problem (9) and no. of itera-
tions for obtaining Y in each main loop of ISR on Dsg.

Table 3: Characteristics of 6 data sets.

Data sets Name No. of samples  No. of features ~ No. of classes
D, segment 2310 19 7
D, MnistData-05 3495 784 10
D3 MnistData-10 6996 784 10
Dy isolet5 7797 617 26
Ds USPS 9298 256 10
D¢ letter-recognition 20000 16 26

Benchmark data sets

6 large scale benchmark data sets were selected from the U-
CI Machine Learning Repository and Feiping Nie’s page .
Table 3 summarizes the characteristics of these 6 data sets.

Results and Analysis

We compared SNC with six spectral clustering methods, in-
cluding NCut with k-means (NCut+KM) [Ng et al., 2002],
multiclass spectral clustering (MSC) [Yu and Shi, 20031, -
means-based approximate spectral clustering (KASP) [Yan et
al., 20091, committees-based spectral clustering (CSC) [Shin-
nou and Sasaki, 2008], parallel spectral clustering (P-
SC) [Chen et al., 2011] and LSC [Cai and Chen, 2015]. For
each data set, we used the same clustering result for anchors
generation in KASP, CSC, LSC and SNC where 10 numbers
were selected for m. The neighborhood parameters were set
as {10,20,...,50} for all data sets. We used the Gaussian
kernel to compute similarities for all methods excluding S-
NC, where the parameter h was set as the average distance
between two points in the data set (used in [Cai and Chen,
2015]). The average clustering performance of seven spec-
tral clustering algorithms are shown in Figure 3. From these
figures, we can see that SNC outperformed other methods in
accuracy and NMI on almost all data sets. Especially on Dy,
SNC has nearly 10% improvement compared to the second
best method NCut+KM in terms of both accuracy and NMI.
On five data sets, SNC outperformed both NCut+KM and M-
NC which perform clustering with the similarity matrix com-
puted from the original data. From Figure 3(c), we can see
that the time costs of SNC are much smaller than NCut+KM
and MNC, especially on Dy, D3 and D4. The time costs of
SNC are similar as those of LSC. Although SNC spent more
time than KASP, CSC and PSC, it produced better results than
these methods.
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Figure 3: Comparison results of seven clustering algorithms on six
data sets.
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Figure 4: Accuracy, nmi and running time of SNC versus the no. of
anchors m and neighborhood parameter k.

We select Dg to show the relationship between the clus-
tering performance and two parameters m, k in SNC. The
results are drawn in Figure 4. From these figures, it can be
seen that SNC can achieve better clustering results (in terms
of both accuracy and nmi) as both m and k increase. From
Figure 4(c), we can see that the time cost of similarity con-
struction grows linearly as m increases, and the time cost of
clustering does not change too much as k increases. From
Figure 4(d), we can see that the time cost of clustering is in-
sensitive to both m and k. Since the time cost of similarity
construction is much smaller than the time cost of clustering,
we can say that the total time cost of SNC is nearly insensitive
to both m and k.

7 Conclusions

In this paper, we have proposed a Scalable Normalized Cut
(SNC) method for large scale data, in which a parameter-free
method is proposed to construct a representation matrix, and
an Improved Spectral Rotation (ISR) method is proposed to
obtain the final clustering assignments. Experimental result-
s show that ISR can obtain better clustering results than k-
means and the original spectral rotation. Comparison results
with other scalable spectral clustering methods show that our
method can obtain better results without increasing running
time too much. Therefore, the new method is effective and
efficient for large scale data. In the future work, we will s-
tudy new anchor generation method.
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