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Abstract

Detecting buffer overruns from a source code is
one of the most common and yet challenging tasks
in program analysis. Current approaches based
on rigid rules and handcrafted features are lim-
ited in terms of flexible applicability and robust-
ness due to diverse bug patterns and characteristics
existing in sophisticated real-world software pro-
grams. In this paper, we propose a novel, data-
driven approach that is completely end-to-end with-
out requiring any hand-crafted features, thus free
from any program language-specific structural lim-
itations. In particular, our approach leverages a re-
cently proposed neural network model called mem-
ory networks that have shown the state-of-the-art
performances mainly in question-answering tasks.
Our experimental results using source code sam-
ples demonstrate that our proposed model is capa-
ble of accurately detecting different types of buffer
overruns. We also present in-depth analyses on how
a memory network can learn to understand the se-
mantics in programming languages solely from raw
source codes, such as tracing variables of interest,
identifying numerical values, and performing their
quantitative comparisons.

1 Introduction
Detecting potential bugs in software programs has long been
a challenge ever since computers were first introduced. To
tackle this problem, researchers in the domain of program-
ming languages developed various techniques called static
analysis, which tries to find potential bugs in source codes
without having to execute them based on a solid mathemati-
cal framework [Cousot and Cousot, 1977]. However, design-
ing a static analyzer is tightly coupled with a particular pro-
gramming language, and it is mainly based on a rigid set of
rules designed by a few experts, considering numerous types
of possible program states and bug cases. Thus, even with
its slight syntax changes frequently found in real-world set-
tings, e.g., several variants of ANSI C languages, a significant
amount of engineering effort is required to make a previously
designed analyzer applicable to the other similar languages.

To overcome these limitations, one can suggest data-
driven, machine learning-based approaches as the rapid
growth of deep neural networks in natural language process-
ing has proved its effectiveness in solving similar problems
such as defect predictions. Studies show that deep convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs) are capable of learning patterns or structures within
text corpora such as source codes, so they can be applied to
programming language tasks such as bug localization [Lam
et al., 2015], syntax error correction [Bhatia and Singh, 2016;
Pu et al., 2016], and code suggestion [White et al., 2015].

Despite their impressive performances at detecting syntax-
level bugs and code patterns, deep neural networks have
shown less success at understanding how data values are
transferred and used within source codes. This semantic level
of understanding requires not only knowledge on the overall
structure but also the capability to track the data values stored
in different variables and methods. Although the aforemen-
tioned deep learning models may learn patterns and struc-
tures, they cannot keep track of how values are changed. This
restriction greatly limits their usefulness in program analysis
since run-time bugs and errors are usually much more difficult
to detect and thus are often treated with greater importance.

In response, we introduce a new deep learning model with
the potential of overcoming such difficulties: memory net-
works [Weston et al., 2015b; Sukhbaatar et al., 2015]. Mem-
ory networks are best described as neural networks with ex-
ternal memory ‘slots’ to store previously introduced infor-
mation for future uses. Given a question, it accesses rele-
vant memory slots via an attention mechanism and combines
the values of the accessed slots to reach an answer. While
long short-term memories (LSTMs) and earlier models also
have external memories, theirs tend to evolve as longer se-
quences of information are fed in to the network, thus failing
to fully preserve and represent information introduced at ear-
lier stages. Memory networks on the other hand can preserve
the given information even during long sequences.

This unique aspect of memory networks makes it and its
variant models [Kumar et al., 2016; Henaff et al., 2016] per-
form exceptionally well at question answering tasks, e.g., the
Facebook bAbI task [Weston et al., 2015a], a widely-used
QA benchmark set. The structure of these tasks comprises
a story, a query, and an answer, from which a model has to
predict the correct answer to the task mentioned in the query
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by accessing relevant parts of the given story. These tasks are
logical questions such as locating an object, counting num-
bers, or basic induction/deduction. All questions can be cor-
rectly answered by referring to appropriate lines of the given
story.

We point out that this task setting is in fact similar to that
of a buffer overrun analysis that requires the understanding of
previous lines in a source code to evaluate whether a buffer
access is valid. Both tasks require knowledge not only on how
each line works but also on how to select the best relevant
information from previous lines. It is this very situation at
which our work sets a starting point.

In this study we set the objective as demonstrating a data-
driven model free of hand-crafted features and rules, and yet
capable of solving tasks with the complexity of buffer over-
run analyses. We present how memory networks can be ef-
fectively applied to tasks that require the understanding of not
only syntactic aspects of a source code but also more complex
tasks such as how values are transferred along code lines. We
present how our models can learn the concept of numbers
and numerical comparison simply by training on such buffer
overrun tasks without any additional information. We also in-
troduce a generated source code dataset that was used to com-
pensate for difficulties we faced in our data-driven approach.
As far as our knowledge goes, our proposed approach is the
first to use deep learning to directly tackle a run-time error
prediction task such as buffer overruns.

In Section 2, we cover previous work related to our task.
In Section 3, we redefine our tasks, introduce our generated
dataset and its purposes, and propose characteristics of the
memory network model and how it is applied to this domain.
In Section 4, we report experimental results and further dis-
cuss the performance of memory networks and notable char-
acteristics it learned during the process. In Section 5 we con-
clude our work and discuss future work as well as the poten-
tial of memory networks for future tasks.

2 Related Work
To improve traditional static analysis techniques in the pro-
gramming language domain, data-driven approaches based
on machine learning have been recently studied. Obtaining
general properties of a target program, namely, invariants, is
one of the prime examples. When concrete data of target pro-
grams such as test cases or logs are available, data-driven ap-
proaches can be used to identify general properties [Sharma
et al., 2012; 2013b; 2013a; Sankaranarayanan et al., 2008b;
2008a; Nori and Sharma, 2013], similar to static analysis
techniques. This use case is particularly useful when a target
program has inherent complexity that makes contemporary
static analyzers to compromise either of precision and cost,
but is bundled with test cases that can cover most of cases.

Meanwhile, following the upsurge in the developing field
of neural computing and deep learning, many models have
been applied to natural language texts, especially in identify-
ing language structure and patterns. Socher et al. [Socher et
al., 2013] introduced recursive neural networks which parse
a sentence into subsections. [Sutskever et al., 2014] proposed
RNNs that learn structures of long text sequences. Source

codes of a program can also be seen as a text corpus with
its own grammar structure, thus being applicable for such
neural network models. [Karpathy et al., 2015] showed that
a character-level LSTM trained with Linux kernel codes is
capable of detecting features such as brackets or sentence
length as well as generating simulated codes that greatly re-
semble actual ones in syntactic structure. Motivated by such
results in the pattern discovery of source codes, several ap-
proaches have been taken to solve practical issues in source
code analysis. [Gupta et al., 2016], [Pu et al., 2016] and
[Bhatia and Singh, 2016] gathered data from programming
assignments submitted for a MOOC class to train a correc-
tion model which corrects syntax errors in assignments. [Huo
et al., 2016] and [Lam et al., 2015] applied attention-based
CNN models to detect buggy source codes. [Allamanis et al.,
2014] learned coding styles by searching for patterns with
neural networks. While these approaches proved that neural
networks are capable of detecting patterns within codes, they
are limited to detecting only syntax errors or bugs and not the
transition of values stored inside variables or functions of a
source code program.

Neural networks with external memories have shown bet-
ter performances in inference or logical tasks compared to
contemporary models. Following the introduction of neu-
ral Turing machines [Graves et al., 2014] and memory net-
works [Weston et al., 2015b; Sukhbaatar et al., 2015], many
variants of these models were applied to various tasks other
than QA tasks such as sentiment analysis, part-of-speech tag-
ging [Kumar et al., 2016], and information extraction from
documents [Miller et al., 2016]. Yet, so far there has been
no work that applies a memory network-based model to tasks
with the complexity of semantic analysis in source codes.

3 Model Description
In this section, we first provide the rationale for solving buffer
overruns as a QA task. We also introduce a source code-
based training dataset that we designed. Lastly, we describe
the structure of our model which is based on the memory
network [Sukhbaatar et al., 2015] and how it predicts buffer
overruns from a source code.

3.1 Benchmark Source Code Generation

(a) bAbI task example (b) buffer overrun code sample

Figure 1: Comparison of a bAbI and a buffer overrun tasks

Comparison of bAbI tasks and buffer overruns. We return
to our statement that analyzing buffer overruns is similar to
solving bAbI tasks. Consider Fig. 1. The bAbI task shown in
Fig. 1(a) is given a story (lines 1-7) and a query (line 8). A
solver model understands this task by looking at ‘John’ and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1547



(a) Level 1: direct
buffer access

(b) Level 2: strcpy ac-
cess

(c) Level 3: int alloca-
tion

(d) Level 4: memcpy
access, int reallocation

Figure 2: Different levels of buffer overrun tasks

‘where’ from the query and then attends the story to find lines
related to ‘John.’ Lines 3 and 5 are chosen as candidates. The
model understands from the sequential structure that line 5
contains more recent, thus relevant information. Line 5 also
contains information about ‘garden’, which is the location of
John. Thus, the output vector created by looking at line 5
contains information ‘garden’, which is used for comparison
with the query. In the end, the model returns the answer ‘yes’
as the term ‘garden’ is encoded in both the query and the
output.

Meanwhile, the task of Fig. 1(b) is to discriminate whether
the buffer access made at line 6 is valid. A buffer overrun
analyzer first understands that its objective is to compare the
size of the character array entity_2 and the integer variable
entity_1. These information are stored in the output, which
is used to formulate a new query. Using the next query, it
searches for the length of entity_2 at line 3, where the value
53 is allocated. This information is added to the next query
which is used to gain knowledge from line 2 that entity_1
is equivalent to 70. The remaining task is to compare the
integer variables 53 and 70 and return an alarm (unsafe) if
the index exceeds the length of the character array. One can
think of lines 1-5 as a story and line 6 as a query, perfectly
transforming this problem into a bAbI task.

Limitations of test suites. Although test suites such as
Juliet Test Suite for C programming language [Boland and
Black, 2012] are designed for benchmarking buffer overrun
and other program analysis tasks, there are some obstacles
to applying them for our approach. First, the data is not
diverse enough. Code samples differ by only a small fraction
such as a different variable nested in a conditional statement
or loop, while a large portion of code appears repeatedly
over several samples. A data-driven model will inevitably
learn from only the small variations (e.g. different values
stored in a particular variable) and ignore a large portion of
the code where much of the valuable information is stored
(e.g. overall code structure for understanding how to track
buffer values). Second, actual program codes are heavily
intertwined with internal and external functions and libraries.
The executability of a code in a program is often dependent
on functions which appear in different files. Such conditions
are difficult to consider when only looking at raw source
codes as text.

Program structure. We tackle this problem of data inade-
quacy by generating our own training source code dataset.1
Our dataset adopts buffer access functions and initialization
methods from Juliet to maintain at least an equal level of task
complexity, while also preserving an underlying structure that
makes it applicable for deep learning approaches. Each sam-
ple is a void function of 10 to 30 lines of C code and consists
of three stages: initialization, allocation, and query. During
the initialization stage, variables are initialized as either char-
acters, character arrays, or integers. At the allocation stage,
these variables are assigned values using randomly gener-
ated integers between 1 to 100. Buffer sizes are allocated
to character arrays with malloc and memset functions. At the
query stage, a buffer access is attempted on one of the allo-
cated character arrays via a direct access on an array index
(Fig. 2(a)). We formulate this task into a binary classifica-
tion problem where an ‘unsafe’ sign is returned if a character
array is accessed with a string or index that exceeds its size.
Naming conventions. In deep learning models, words or
characters are usually processed into vectors of a fixed length
with an external lookup dictionary. Since there is an unlim-
ited number of possible identifier names that programmers
can think of, it is both impossible and impractical to create
a dictionary of possible identifier names without some kind
of restriction. Therefore we set a rule to ensure that only a
limited number of individual variables appear in each pro-
gram sample. Each variable is given the name entity_n where
n ∈ {i|0 5 i 5 Nupper, i ∈ Z} and Nupper is an integer set
by default to 10. Each n is assigned randomly to variables
and invariant of their introduced order or data type. One can
imagine a situation where an agent (variable) is given a fake
ID (entity name) for a particular task (sample). The agent
learns to complete the task with that fake ID, then discards
it upon task completion, and selects a new one for the subse-
quent task. In this manner, we can prevent entities from learn-
ing task-specific knowledge and instead train them as repre-
sentations of universal variables which can replace any kind
of variable that appears in a program. We can easily apply our
model to real-life source codes using this naming convention
by simply changing the names of newly introduced variables
and methods to different entities.

1The generated dataset and generator codes are avail-
able at https://github.com/mjc92/buffer_overrun_
memory_networks
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Figure 3: Our proposed memory network-based model for buffer overrun tasks

Adding complexity. Our model has to adapt to more realistic
source codes with complex structures. Possible settings that
complicate our task include

• selecting only the appropriate variables out of several
dummy variables,
• introducing different buffer access methods requiring

the comparison of two character arrays such as strcpy
or memcpy functions,
• allocating the sizes of character arrays not with integers

but indirectly with previously assigned integer variables,
• reallocating integer variables prior to or after their use in

allocating a character array.

We first assign a number of dummy variables to each sample
program. Each dummy variable is initialized and allocated
in the same manner as the ones actually used in the buffer
access. We include the use of strcpy (Fig. 2(b)) / memcpy
(Fig. 2(d)) functions for buffer accesses. We also add cases
where character arrays are allocated not directly by integers,
but indirectly with additionally introduced integer variables
(Fig. 2(c)). Given this setting, the model has to learn to store
the integer value allocated to the integer variable first, then
use that value to obtain the length of the character array. Fi-
nally, we add further cases where the additional integer vari-
able itself is reallocated (Fig. 2(d)), either before or after it is
used to define the character array length. Now the model has
to learn to choose whether the previously assigned or reallo-
cated value was used for allocating a character array.

Our generated source codes are equivalent to an expanded
version of Juliet test suite in terms of data flow, that is, the
flow of data values defined and used within a source code.
Compared to codes in Juliet which only define the source and
destination variables that will be used for buffer access, ours
include dummy variables which are defined and used simi-
larly. Now our model has to avoid selecting lines which in-
clude the dataflow of unrelated variables. Various settings
such as memory allocation using assigned integer variables
instead of raw integers and reassignment of variables also in-
crease the number of possible situations and increase task dif-
ficulty. Overall, our source codes provide a tougher environ-
ment for models to solve buffer overrun tasks than the exist-
ing Juliet dataset as there are more variations to consider.

3.2 Model Structure
Our memory network-based model encodes lines of source
code into vector embeddings, stores information of each line
into external memory blocks, and uses a given query line to
search parts of the memory that are related to solving the
buffer overrun task. The output vector produced by this pro-
cess contains information of whether the given query is true
or false.

The overall structure of our model is displayed in Fig. 3.
Input encoding (Fig. 3(a)). The memory network takes
in as input a program code X consisting of n search
lines X1, X2, · · · , Xn and a single buffer access line or
query Xq . A single program line Xm is a list of words
w1

m, w2
m, · · · , wl

m. With V as the vocabulary size or the total
number of unique tokens that appear in all programs, we de-
fine xl

m as the V -dimensional one-hot vector representation
of a word wl

m. We set an upper limit N for the max number of
lines a memory can store, and we pad zeros for the remaining
lines if a program is shorter than N lines.

Note that every word in the source code is treated as a word
token. This includes not only variable names (entity), type
definitions (int) and special characters, (‘[’, ‘*’), but also in-
tegers as well. This setting matches our concept of an end-
to-end model that does not require explicit parsing. While
it is possible to apply parsers to extract numbers and repre-
sent them differently from other word tokens, this would con-
tradict our goal of applying a purely data-driven approach.
Treating integers as individual word tokens means that our
model will not be given any prior information regarding the
size differences between numbers, and thus has to learn such
numerical concepts by itself. We further the effects of this
setting in Section 4. Next, we compute vector representa-
tions for each sentence using its words. Each word is repre-
sented in a d-dimensional vector using an embedding matrix
Eval ∈ Rd×V . We also multiply a column vector lj to the
j-th word vector for each word to allocate different weights
according to word positions. This concept known as posi-
tion encoding [Sukhbaatar et al., 2015] enables our model to
discriminate the different roles of variables when two or more
identical words appear in a single sentence. Without such set-
tings, our model may fail to discriminate between source and
destination variables such as in a strcpy function. The mem-
ory representation mi of line i consisting of J words and the
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Table 1: Comparison on generated source codes. Inside brackets are the standard deviations

level 1 level 2 level 3 level 4
acc F1 auc acc F1 auc acc F1 auc acc F1 auc

CNN
0.67 0.69 0.75 0.73 0.71 0.81 0.61 0.61 0.66 0.62 0.62 0.67

(0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.01) (0.03) (0.01) (0.01) (0.03) (0.01)

LSTM
0.8 0.84 0.92 0.82 0.80 0.90 0.69 0.66 0.76 0.67 0.64 0.75

(0.01) (0.01) (0.00) (0.01) (0.02) (0.01) (0.00) (0.01) (0.01) (0.01) (0.02) (0.01)

Memory 0.84 0.84 0.92 0.86 0.85 0.93 0.83 0.83 0.90 0.82 0.82 0.90

network (0.01) (0.01) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

k-th element lkj of the position encoding vector lj ∈ Rd for
word j in the line i are obtained as

mi = Σt
j=1lj ·Ax

j
i , (1)

lkj = (1− j/J)− (k/d) (1− 2j/J) , (2)
where ‘·’ is element-wise multiplication.
Memory storage (Fig. 3(b)). Next, we allocate our
encoded sentences mi into matrices called memory
blocks. Fig. 3(b) shows two memory blocks, the mem-
ory value block

(
Mval ∈ RN×d

)
and the memory address

block
(
Maddr ∈ RN×d

)
. Each sentence is allocated into one

row of memory block, namely a memory slot. Mval stores se-
mantical information about the contents of a code line while
Maddr stores information for locating how much to address
each line. For this reason, sentences are encoded using two
different word embedding matrices, Eval and Eaddr for Mval

and Maddr, respectively.
Memory search (Fig. 3(c)). The query is encoded into a rep-
resentation using Eaddr. We denote the initial query embed-
ding as u0. By computing the inner products between the
query embedding and each slot of the memory address block,
then applying a softmax function to the resulting vector, we
obtain the attention vector p which indicates how related each
line is to the query. The i-th element of p is obtained as

pi = softmax
((

u0
)T

Maddr

)
, (3)

with the softmax function as
softmax (zi) = ezi/Σje

zi . (4)
The response vector o is computed as in

o = Σipi (Mval)i . (5)
This vector contains information collected over all lines of

the memory value block according to their attention weights
obtained from the memory address block. Each line of the
memory value block contributes differently to constructing
the response vector. Recall that the query contains names
of variables whose values have to be found throughout the
given source code. Lines that contain relevant information
such as variable names used in the query will have higher
attention values, and will have a greater contribution towards
the resulting response vector. This is equivalent to searching
the memory for different parts of information with respect to
a given query.
Multiple hops and output (Fig. 3(d)). The response vector o
can be either directly applied to a weight matrix W to produce
an output, or added to strengthen the query u. In the latter

case, the query is updated as in Eq. (6) by simply adding the
response vector to the previous query embedding.

uk+1 = uk + ok (6)
We repeat from Eq. (3) to obtain a new response vec-

tor. Our model iterates through multiple hops where at each
hop the desired information to be obtained from the memory
slightly changes. This accounts for situations where a model
has to first look for lines where an array is allocated, and then
gather information from lines stating the size of the variables
used for allocating the array size. The final output is a float-
ing value ranging from 0 (unsafe) to 1 (safe), which we round
to the nearest integer to obtain a binary prediction result.

4 Experiments
In this section, we present both quantitative and qualitative
results of our experiments on model performance and learned
characteristics.

Table 2: Different levels of test sets

Level 1 Level 2 Level 3 Level 4

Direct buffer access
√ √ √ √

Access by strcpy / memcpy
√ √ √

Allocation by int variable
√ √

Reallocation of int variable
√

4.1 Quantitative Evaluation
Experiment settings. Our main dataset consists of C-style
source codes discussed in Section 3.2. We used a single train-
ing set consisting of 10,000 sample programs. We generated
four test sets with 1,000 samples each and assigned them lev-
els one to four, with a higher level indicating a more complex
condition (see Table 2). Samples ranged from 8 to 33 lines of
code, with an average of 16.01. A total of 196 unique words
appeared in the training set. A maximum of four dummy vari-
ables were added to each sample. We used random integers
between 0 and 100 for buffer allocation and access. We con-
ducted every experiment on a Intel (R) Xeon (R) CPU E5-
2687W v3 @ 3.10GHz machine equipped with two GeForce
GTX TITAN X GPUs. All models were implemented with
Tensorflow 0.12.1 using Python 2.7.1 on an Ubuntu 14.04 en-
vironment. Model Comparison. We set our memory net-
work to three hops with a memory of 30 lines and the em-
bedding size of d = 32. As there has been no previous work
on using deep learning models for such tasks, we used ex-
isting deep learning models often used for text classification
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(a) Cosine similarities (b) L2-norm distances (c) Representations of learned
word embeddings

(d) Visualization with t-SNE

Figure 4: Visualizations of word embedding vectors of numbers 1-100. Red and blue indicate high and low values, respectively.

tasks as baselines. That is, we included a CNN for text clas-
sification [Kim, 2014] and a two-layer LSTM binary classi-
fier. All models were trained with Adam [Kingma and Ba,
2014] at a learning rate selected by grid search from ranges
between 0.0001 to 0.1. We used the classification accuracy,
F1 score, and the area under the ROC curve (AUC) as perfor-
mance metrics. We averaged the scores of the ten best cases
with the smallest training error.

Performance results shown in Table 1 demonstrate that all
models decrease in performance as task levels increase, due
to our level assignment. Of the deep learning models, only
memory networks performed consistently at a high level on
all four level settings with accuracy rates higher than 80%.
This is expected since their hops allow them to solve even
complex situations such as variable reallocation and differ-
ent buffer access types. Meanwhile, CNNs failed to complete
even the simplest tasks since they cannot capture the sequen-
tial information in input sentences and instead apply convo-
lutional filters to words of all regions on an equal basis. Any
positional information is discarded.

Interestingly, LSTM models also performed well when set
to easier tasks. Results show that LSTMs performed compa-
rably to memory networks, even equaling them on Level 1
tasks. However, its performance sharply dropped when used
on higher level tasks. This partial success of LSTMs relates
to the simple structure of Level 1 tasks. The size of the char-
acter array always appears before the index to access, so the
model can cheat by comparing the only two numbers that ap-
pear within the entire code. This cheating becomes obsolete
as higher-level tasks require knowledge only obtainable by
attending previous lines in a stepwise manner.

4.2 Qualitative Analysis
We further examine the performance of our memory network
model and the steps it takes to obtain a correct answer. We
also present visualization results on how our model learns the
concepts of numbers and numerical comparison without be-
ing explicitly supervised about such tasks.
Tracking hop-wise results. In order to prove that our model
solves the tasks in our desired manner, that is, by attending
and collecting relevant information from different parts of the
memory at different hops, we analyze individual prediction
cases by inspecting which parts of information our model has
obtained from taking each hop.

Fig. 5 displays an example of buffer overrun analysis using
our model. We can observe that when given a strcpy buffer

Figure 5: Prediction result with attention per hop

access as a query, the model’s initial attention shifts to the
sentence where the destination buffer (entity_3) is allocated.
The model decides here to next look for entity_9, which con-
tains the size used for allocating to entity_3. During the next
hop it attends the line where the source buffer (entity_2) is
allocated and obtains data of 99, the size of entity_2. At the
last hop the memory network visits entity_9 and obtains 69.
After the three hops, the destination size 69 is compared with
source size 99, and being a smaller number, returns ‘unsafe’
as a result. As the result value is a continuous value between
0 and 1, we can use this value to measure prediction confi-
dence as in Fig. 5 to indicate how close the predicted value is
to the ground answer.
Numerical concepts automatically learned. Recall from
Section 3 that our model was not given any prior information
regarding the notion of quantitative values. Interestingly, our
model learned to compare between different numbers. Fig. 4
displays visualization results using only the word embedding
vectors corresponding to the 100 numbers. In all subfigures
(a)-(c) higher numerical values are represented in red and
lower values in blue.

Figs. 4(a) and (b) display the cosine similarities and the L2-
norm distances of all numbers from 1 to 100, starting with
1 at the topmost left-hand side. The colors observed at the
first and third quadrants from both figures show that numbers
with large differences are trained to minimize cosine similari-
ties while maximizing L2-norm distances, thus spacing them-
selves apart. In contrast, similar numbers in the second and
fourth quadrants have opposite characteristics, meaning they
are similarly placed.

The word embedding vectors of numbers across all d di-
mensions as seen in Fig. 4(c) further demonstrate a clear se-
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quential order between numbers. The highlighted column
forms a strong color spectrum starting from a low value which
gradually increases as the corresponding number increases
from 1 to 100. As all word embeddings were initialized with
random values at the beginning, this spectrum indicates that
our model learns by itself to assign such values for compari-
son purposes.

Last of all, Fig. 4(d) is a t-SNE representation of all word
embedding vectors. The black gradation indicates the word
embeddings of numbers, with denser colors indicating larger
numbers. We notice that they are embedded in a consistent
direction in an increasing order. While this again shows how
our model learns numerical characteristics, we also discover
that dots in red, which correspond to entities from Section 3,
stand out from other word embeddings. As mentioned ear-
lier, entities correspond to the identifiers that appear in source
codes as integer variables or character buffers. This implies
that our model learns to train word embeddings differently
according to their purposes within a code.

5 Limitations
Given our extreme end-to-end settings, our model inevitably
suffers from a number of limitations. First, our model as-
sumes that each and every line contains data assignment of
some sort, and calculates attention to find the most relevant
code line. This is difficult to apply to source codes that in-
clude conditional statements such as if- and for- statements,
as the attention cannot consider such conditions. Also, it can-
not cover cases where a buffer overrun is dependent on exter-
nal functions or programs which may be defined in another
file and thus not taken into input data. Although end-to-end
settings are convenient and straightforward, this alone can-
not consider the numerous conditions and syntax rules which
form compilable source codes.

Current research on code generation and other program
analysis methods using deep learning methods mostly in-
corporate syntax knowledge to the applied models. Source
codes can be reconfigured as abstract syntax trees (AST)
which contain structural and syntax information of the spe-
cific programming language. Applying such information to
neural network models has proven to be effective in solving
program-related tasks such as semantic parsing [Dong and
Lapata, 2016], API sequence generation [Gu et al., 2016], and
code summarization [Allamanis et al., 2016]. While adding
such syntax information to our solver model may lead to solv-
ing more complex conditions, this restricts the data to source
codes that can be successfully parsed with a specific parser,
and also opposes to the end-to-end settings proposed in our
work.

6 Conclusions and Future Work
In this work, we proposed a memory network-based model
for predicting buffer overruns in programming language anal-
ysis. Our work is the first to apply a deep learning-based ap-
proach to a problem in the field of program analysis that re-
quires both syntactic and semantic knowledge. Performance
results show that memory networks are superior to other mod-
els in solving buffer overrun tasks across all difficulty lev-
els. We also presented that our model successfully learns the

notion of numbers and their quantitative comparisons from
merely textual data in an end-to-end setting.

Our work has room to improve in many interesting aspects
from a software engineering perspective. As mentioned
earlier, source codes preserve much syntactic information
which can be processed to better understand the structure
of programs. The use of sophisticated models that take in
additional syntactic information can lead to better perfor-
mances. Meanwhile, we can expand our model to cover
different program analysis tasks such as pointer analysis,
interval analysis, and flow-sensitivity analysis, which share
similar semantic natures. Applying more sophisticate
memory network models that preserve state changes can
provide solutions to such problems. Our knowledge of
models learning numerical representations can further aid
deep learning models compatible with arithmetic and logical
reasoning. All of these combined, our work marks a stepping
stone to a fully data-driven program analyzer.
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