Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Real-Time Navigation in Classical Platform Games via Skill Reuse

Michael Dann

Fabio Zambetta

John Thangarajah

School of Science, RMIT University, Australia
{michael.dann, fabio.zambetta, john.thangarajah } @rmit.edu.au

Abstract

In platform videogames, players are frequently
tasked with solving medium-term navigation prob-
lems in order to gather items or powerups. Arti-
ficial agents must generally obtain some form of
direct experience before they can solve such tasks.
Experience is gained either through training runs,
or by exploiting knowledge of the game’s physics
to generate detailed simulations. Human players,
on the other hand, seem to look ahead in high-level,
abstract steps. Motivated by human play, we intro-
duce an approach that leverages not only abstract
“skills”, but also knowledge of what those skills
can and cannot achieve. We apply this approach
to Infinite Mario, where despite facing randomly
generated, maze-like levels, our agent is capable of
deriving complex plans in real-time, without rely-
ing on perfect knowledge of the game’s physics.

1 Introduction

In platform videogames, levels are typically completed by
travelling to the right of screen. Therefore, a common ap-
proach taken by artificial agents is to perform a low-level
forward search, guided by a heuristic that rewards rightward
movement [Togelius ef al., 2010; Jacobsen et al., 2014]. Un-
fortunately, this approach has several drawbacks: Firstly, it
requires knowledge of the game’s forward model, that is, a
model of how the environment will evolve given any course
of action. Most existing agents derive this model directly
from the game’s code, which is “cheating” in a sense. Sec-
ondly, searching at a granular level limits the lookahead depth
achievable in real-time. Lastly, obtaining items and powerups
often requires navigation around obstacles (see Figure 1), for
which a “move towards target” heuristic may lead the agent
astray. In this paper, we propose an alternative method that
looks ahead at a higher level and does not require an exact
forward model. On maze-like navigation problems in Infinite
Mario, it finds complex plans in real-time and significantly
outperforms a state-of-the-art low-level search agent.

Human videogame players appear to contend with granular
time increments by acquiring extended “skills”, such as run-
ning and jumping. Skills, together with the “god’s eye view”

Wﬁﬂ
T i

T i
M

Figure 1: The “fire flower” at the top-right of screen cannot be
reached by following a direct path.

afforded in most platform games, allow human players to vi-
sualise ahead in abstract, high-level steps. For example, the
result of a jump to platform skill can be visualised by imagin-
ing the protagonist tranferred to the target platform. This type
of visualisation allows human players to solve new problems
upon inspection, i.e. before actually setting out.

While skill acquisition has been an active area of research
within machine learning for some time [Thrun er al., 1995;
Digney, 1998; Menache et al., 2002; Pickett and Barto, 2002;
Mannor et al., 2004; Simgek and Barto, 2004; Simsek et al.,
2005; Konidaris and Barto, 2009; Vezhnevets et al., 2016],
the common approach of associating skills with “bottlenecks”
(states that must be passed through in order to navigate from
one distinct region of the state space to another) requires the
analysis of many sample trajectories per task instance. As
such, it is ill-suited to solving new problems upon inspection.
Furthermore, the bottleneck method usually only identifies
task-specific skills. For example, it might identify a skill for
jumping to the specific platform above Mario in Figure 1, but
not a general “jump to platform” skill. The ability of human
players to solve new problems in real-time seemingly relies
on the latter type of skill.

To this end, the first contribution of this work is an ap-
proach for acquiring transferable skills that does not rely on
upfront identification of bottlenecks. We make a distinction
between composite behaviour (e.g. jumping then running
then jumping) and fundamental “basis” behaviour (i.e. the
separate behaviours of jumping and running), and propose a
reward scheme for isolating the latter.

1582

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Our second contribution is a method for deriving skill-
based plans in real-time. Under previous approaches, skill
transfer has the potential to speed up learning on new prob-
lems [Konidaris and Barto, 2007], but some task-specific ex-
perience is still required to learn a high-level plan. Under our
approach, plans are derived through transferred knowledge of
skills’ capabilities and limitations; for example, the fact that
it is possible to jump x units high, but that it is impossible to
run through walls. Consequently, bottlenecks fall out at the
end of the process; a reversal of the traditional order.

We title our overall approach Synoptic Vision Planning
(SVP) to reflect its target domain: problems that afford the
agent a “god’s eye view” of the world. Like hierarchical
learning methods [Dietterich, 2000; Parr and Russell, 1998;
Sutton et al., 1999] and hierarchical search techniques [Vien
and Toussaint, 2015], SVP decomposes long-term tasks into
subtasks. However, unlike past approaches, SVP does not
rely on task-specific training runs or low-level simulations.
Instead, it leverages transferred skill knowledge and god’s eye
vision to project high-level plans.

2 Background & Related Work

In this section we review some past approaches to platform
videogames, then provide a brief overview of skill-related
learning methods, highlighting the gap that SVP addresses.

2.1 Ecxisting Platform Videogame Agents

Platform videogames gained attention as a domain for arti-
ficial intelligence research with the advent of the Mario Al
Competition in 2009 [Togelius et al., 2010]. The competition
centred around the game Infinite Mario, an adaption of Super
Mario Bros. with a built-in random level generator. To date,
the most successful Infinite Mario agents have been based on
search methods such as A* and MCTS [Jacobsen et al., 2014].
However, these agents are best-suited to “flat” levels, requir-
ing significant streamlining to achieve even a few seconds of
planning depth [Jacobsen er al., 2014]. They also generally
rely on exact knowledge of the game’s forward model.

Recently, Reinforcement Learning (RL) [Sutton and Barto,
1998] has gained popularity as an alternative approach to
videogame Al. This is largely due to the breakthrough work
of Mnih et al. [Mnih et al., 2015], who trained an Atari 2600
agent to play many games to human level from raw pixel in-
put alone. Impressive as this was, their agent also struggled
on medium-term navigation tasks. On the adventure game
Montezuma’s Revenge, their agent was unable to make any
progress even after 50 million training frames. Very recent
work has seen significant progress in this game, with the
agent of Bellemare ef al. [Bellemare et al., 2016] learning to
reach 15 out of 24 rooms after 50 million frames. However,
it essentially relied on brute force exploration, maintaining a
memory and striving to reach novel states. There is no sug-
gestion by the authors that their agent transfers to new rooms
without further training.

2.2 Skills

Humans appear to cope with fine-grained time increments by
acquiring extended “skills”. In this work we model skills via

1583

the Options Framework [Sutton et al., 19991, which is per-
haps the most popular approach. However, we note that al-
ternative skill models exist, such as MAXQ [Dietterich, 2000]
and Hierarchical Abstract Machines (HAMs) [Parr and Rus-
sell, 1998]. Informally, an option may be thought of as a skill
that is only applicable in certain situations. Formally, an op-
tion, o, is defined as a tuple (I, 7, 3) where:

e [C S'isthe set of states the option can be initiated from.

e 7:SxA— [0,1] is a policy that returns the probability
of selecting action a when in state s.

e (3:5 — [0,1] returns the probability that the option will
terminate in a given state.

A key idea under all frameworks cited above is that skills
can be composed to facilitate hierarchical learning. For exam-
ple, a high-level get fire flower skill might call two lower level
skills, run and jump. This is typically done to increase learn-
ing efficiency. Providing the agent with useful extended ac-
tions may effectively reduce the planning depth required [Sut-
ton et al., 1999]. However, even in the case where low-level
skills can be transferred, the top level policy must be retrained
for each new problem instance. Games where the level struc-
ture is randomised at the start of each episode, such as Infinite
Mario, do not afford this opportunity. Therefore, we seek an
alternative approach to deriving skill-based plans that does
not require task-specific training runs.

3 Synoptic Vision Planning (SVP)

In this section we introduce our approach, Synoptic Vision
Planning (SVP). SVP consists of three components:

e First, the agent learns a transferable skill for performing
local movement (Section 3.1).

o The agent then learns a general estimator for the likeli-
hood that a local movement will succeed (Section 3.2).

e Faced with a longer term planning task, the agent lever-
ages “god’s eye vision” to project paths composed of lo-
cal movements. This is illustrated schematically in Fig-
ure 2. The path with the greatest probability of success
is found via Dijkstra’s algorithm by weighting each step
with its log-likelihood of success (Section 3.3).

Since SVP is probabilistic, there is some chance that a plan
may fail. Our approach to identifying plan failure is described
in Section 3.4.

3.1 Training Local Movement

To train a local movement policy, we define a tiling over the
environment’s spatial dimensions and teach the agent how to
navigate to nearby tiles. Formally, this is modelled as follows:

e Lety : S — T be atiling that maps each state s € S
to a tile ¢ € T, based on the protagonist’s spatial co-
ordinates. The tile size controls the precision of the
agent’s high-level movements. For classical platform
games, it is natural to match this to the game’s grid size.

e Letd: T xT — RTU{0} be a distance metric over the
set of tiles. In this work, we use the Manhattan distance
between tile centroids.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Figure 2: A schematic illustration of our skill-based lookahead, us-
ing an example from Infinite Mario.

e Given tile ¢ and a constant D € R, we define t’s set of
neighbouring tiles NP C T as

NP ={t eT|dtt)<D,t #t}

Under a Manhattan metric, N corresponds to a square
grid centred on ¢ (see Figure 3). The neighbourhood size
parameter, D, controls the reach of the local movement
policy. For platform games, we suggest that this be set
to the protagonist’s maximum jump distance.

o At the start of each training episode, we designate a ran-
dom tile within N/ (where t is the protagonist’s cur-
rent tile) as the training goal. It is assumed that training
goals can placed over a variety of scenarios, and that
the state representation is agent-centric [Konidaris and
Barto, 2007] so that the policy learned is transferable.

Given this setting, two possible reward schemes seem nat-
ural: either a binary reward of +1 for reaching the training
goal and zero elsewhere, or an incremental reward for reduc-
ing distance to the training goal. In Section 5 we evaluate
these schemes empirically and provide some intuitive reasons
as to why the latter leads to better overall performance.

For any two tiles ¢, and ¢; such that t, € N, [a) , the trained
policy induces a natural skill for navigating from ¢, to t.

Figure 3: Local movement is trained by rewarding the agent for
reaching a training goal, t, € N/”.

1584

Following the formalism introduced in the background, we
model this skill as an option o, = (I, T, 3,) where:

o I,=v¢1(t,)
e Ty, is a policy for navigating to ¢, derived by setting the
local movement policy’s goal equal to tp.

0, ifs¢pTt(ty)
y 5”(8)_{1, ifse¢—1(t:)

3.2 Predicting the Likelihood of Success of a Skill

Rather than relying on a precise forward model, we take
a high-level, probabilistic approach to predicting skill out-
comes. After the local movement policy has been trained,
we continue setting random training goals. We set a time
limit, T},4,, and observe whether the local movement policy
succeeds within this limit. This generates a series of samples
from which the following function can be approximated:

Pr(0%, Taz|s) = Pr(o® terminates within T,,,, time
steps when initiated from s € I,;)

Konidaris and Barto [Konidaris and Barto, 2009] train a
probability estimator in similar fashion, but their estimator is
trained for a fixed task. Our estimator is trained over a variety
of conditions such that, ideally, it will learn the type of high-
level game mechanics that a human player understands. For
example, in Infinite Mario, it should learn to estimate low
probabilities if ¢, and t; are separated by a wall.

3.3 Planning by Exploiting Synoptic Vision
Referring back to Figure 2, the above estimator allows the
agent to calculate the likelihood of Step 1 succeeding, since
the details of the current state, s, are known. From this point,
human players are capable of looking further ahead by ex-
ploiting the “god’s eye” or synoptic view afforded in platform
videogames. A human can visualise the result of Step 1 suc-
ceeding (indicated by the first transparent Mario), and thus
estimate the likelihood of further steps succeeding (Step 2 be-
ing one possible continuation).

An immediate difficulty that arises in mirroring this ap-
proach is that Step 1’s termination state is uncertain. Mario is
unlikely to arrive stationary at the exact centre of Step 1’s tar-
get tile. However, if we make the reasonable assumption that
the likelihood of the next step succeeding will not be greatly
affected by small differences in its initiation state then a crude
estimate may suffice for planning. Accordingly, we construct
a hypothetical initiation state, S, by assuming that the protag-
onist will arrive at the exact centre of the previous step’s target
tile, ¢, with zero velocity. More sophisticated approaches are
certainly possible and are the subject of future work.

Hypothetical initiation states allow us to estimate the log-
likelihood of a sequence of steps succeeding, by summing the
log-likelihoods of the individual steps:

Log-Likelihoodseq = —(10g[Pr(0}, Taa|s)]
+ log[Pr(Oi, Tmaa: |§tb)}
+1og[Pr(0f, Trnaa|$:.)] +)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

0.99
[L_TQL TRl I Tt Tl ier 1
minmi INIIII]
tq 2 0.98 A\ 0.94

& — 0]l —l.1r

N/

Figure 4: An example from Infinite Mario where the agent will be-
come stuck trying to reach the next waypoint, £,.

Observe that the current state, s, is used to calculate the prob-
ability of the first step succeeding, while hypothetical initi-
ation states are used thereafter. Given an arbitrary goal tile
on the current screen, we calculate the plan with the great-
est likelihood of success by treating log-likelihoods as path
lengths and applying Dijkstra’s algorithm.

3.4 Replanning Threshold

Since our planning framework is probabilistic, and so in gen-
eral are option policies, there is no guarantee that a plan will
succeed. The agent may fail a step during execution, e.g.
Mario may fall from a ledge so that the next waypoint is no
longer within local movement range. Therefore, it will some-
times be necessary to replan.

A straightforward approach to replanning is to just recalcu-
late the entire plan every frame. If the optimal path changes,
the agent will automatically adjust. This is similar in essence
to interrupting an option if its action-value drops below that
of an alternative action [Sutton ef al., 1999, Section 4]. How-
ever, under our probabilistic approach, continual replanning
may cause problems if the probability estimates are not en-
tirely consistent, as in Figure 4. In this example, the agent
has determined that the next waypoint is t,,. However, on
the way to t,, it encounters ¢; and estimates a lower like-
lihood of reaching t,, than it did originally, despite having
moved closer." At this point the agent redirects to t,, having
estimated a greater chance of success for ¢, — ¢, — t,, than
ty, — t,. Hence the agent retreats and becomes stuck running
between t,, and tp,.

To address this issue, our approach is to replan only if the
current step is deemed failed. This occurs iff:

Pr(of, Trnasz|sb)

tw ¢ NP ;
N or i T el50)

)<k

where t,, is the target waypoint, s; and ¢; are the current state
and tile, s, and ¢, are the state and tile from which the step
was initiated, and k > 0 is the replanning threshold.

The first condition ensures that the step is failed if the tar-

get is no longer in local movement range. The logic behind
the second condition is as follows: The current likelihood of

!"The example here is fictional, but this type of phenomenon did
arise in our experiments. Due to episodes where the training goal
was placed on the other side of a wall, the agent may have learned
to associate wall proximity with low success likelihood.

reaching t¢,, is compared to the original estimate. If the cur-
rent estimate is significantly lower, it stands to reason that
something has gone wrong during execution. A relative rather
than an absolute threshold is used because the current step
may have had a low chance of succeeding to begin with. (It
may be an intrinsically difficult step). Setting k£ = 1 is equiv-
alent to continual replanning, while £ = 0 means that the plan
will only be calculated if the next waypoint falls out of range.
In principle, the parameter should be set low enough that cy-
cles are avoided, but high enough that the plan will be reset
if the agent makes a clear error. For the example in Figure 4,
the cycle will be avoided so long as k£ < %.

4 Experimental Configuration

We evaluated SVP on randomly generated navigation puzzles
in Infinite Mario. In this section, we describe the evaluation
task, the configuration of the learning and planning compo-
nents of SVP for Infinite Mario, and the benchmark used.

4.1 Evaluation Task

To generate the type of maze-like tasks that have proven diffi-
cult for artificial agents to date, we modified the game’s level
generator to create structures of the type shown in Figure 5.
At the start of each episode, a reachable, non-mid-air tile from
a band 9 — 11 tiles away from Mario was randomly assigned
as the goal. Agents were provided with a view that extended
5 tiles beyond this band for tasks that necessitated travelling
past the goal then backtracking. In the interests of evaluating
navigation ability only, enemies were disabled.

4.2 Training Configuration

We trained two types of local movement policy to compare
the two reward schemes (binary and incremental) mentioned
near the end of Section 3.1. For the incremental scheme, the
precise reward form used was:

R(st,st41) = ®(s¢) — P(5¢41)
®(s) = Distance(protagonist, goal)

Under this scheme, the “directness” of the resultant pol-
icy is controlled by the discount factor, v. With v = 0, the
agent is trained to move greedily in the direction of the train-
ing goal. With v > 0 some level of indirectness is tolerated,
which is necessary for training curved movements such as
jumps. In our experiments, we used v = 0.7. Since the resul-
tant policy broadly favours straight movement over complex

Figure 5: The goal placement zone for our experiments.

1585

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Learning rate | 2.5 x 107 Momentum 0.95
Action length 4 frames TD error sep. 3 actions
Experience 1.5 x 10° Min. cache 50, 000
cache size frames pop. for train frames
Exploration € decay Hyperbolic
policy e-greedy schedule | 1.0 — 0.05
Target net 10,000 Trainine & 2 x 10°
raining time
refresh rate frames frames

Table 1: The training parameters used for Infinite Mario.

manoeuvres involving direction changes, we refer to it as the
basis movement policy, by analogy with vector terminology.

For the binary reward scheme, a much milder discount was
required to ensure that the reward for reaching the training
goal was not effectively hidden. We used v = 0.98 in our ex-
periments. This scheme favours flexible local movement by
whichever route is fastest. Hence, we refer to the correspond-
ing policy as the flexi movement policy.

The tile size was set equal to that of a brick, which is a
natural configuration for many classical 2D videogames. The
neighbourhood size was set equal to Mario’s maximum jump
height, which is 5 bricks.

The state representation used was very similar to that of
Togelius ef al. [Togelius et al., 2009]. It contained Mario’s
velocity, the training goal position and a binary encoding of
brick positions within Mario’s neighbourhood. Since this en-
coding rounds brick positions to the nearest tile, we also in-
cluded Mario’s fractional offset from the grid centre.

For the training algorithm we used Q-Learning [Sutton and
Barto, 1998, Section 6.5]. Action-values were approximated
via a fully connected, feed forward architecture with 2 hid-
den layers each containing 300 neurons. We also employed
the stability measures of Mnih et al. [Mnih et al., 2015], us-
ing experience replay [Lin, 1993] and maintaining separate
training and target networks, updating the target network pe-
riodically. Other training parameters were guided by Mnih et
al., then tuned to the values in Table 1 by hand.

4.3 Planner Configuration

The skill success probability estimator was trained via super-
vised learning, with a time limit of 7},,,,, = 5 seconds given
to complete local movements. We used the same network ar-
chitecture as above, but for stability we reduced the learning
rate to 2.5 x 107° and increased training time to 8 x 103
frames. We saved connection weights intermittently and took
the network with the lowest MSE.

For Dijkstra’s algorithm, we configured the search space to
be the full set of tiles visible on current screen. For efficiency,
we overrode the distance metric such that d(t1, t2) = oo if to
is in mid-air or part of a wall, effectively disabling all con-
nections to such tiles. Mid-air and mid-wall locations are not
natural waypoints in the vast majority of platform games, so
including them would potentially waste a significant amount
of time, both in training and planning.

The replanning threshold, k, was tuned for each policy by
hand. For the basis movement policy, the overall performance
of SVP was strongest with a relatively low replanning thresh-

old of k¥ = 0.2. For the flexi movement policy, a value of
k = 0.4 performed best.

4.4 Benchmark

We benchmarked our approach against Robin Baumgarten’s
A* agent, which won the 2009 Mario Al Competition [To-
gelius et al., 2010]. Since Infinite Mario requires agents to
select an action every 40ms, it is usually not possible for A* to
run to completion. This problem persists despite a number of
performance hacks in Baumgarten’s approach, such as not ex-
panding the current node if Mario is at a similar location at a
similar time in a pre-existing node. In cases where the search
time runs out, it is necessary to select the most promising
incomplete branch via a heuristic. For “flat” levels, Baum-
garten’s agent chooses the branch that extends furthest to the
right of screen. To repurpose the agent for point-to-point nav-
igation, we modified it to select the branch terminating closest
to the goal, in terms of Euclidean distance. Unfortunately, in
maze-like environments it is difficult to estimate the “true”
distance remaining without solving the maze upfront. This is
why the evaluation task is non-trivial despite A*’s theoretical
guarantees when given enough time and memory.

5 Results

We conducted two experiments. In the first, we compared
the basis and flexi versions of SVP against the A* bench-
mark. Next, we examined the impact of varying the replan-
ning threshold. All success rates were calculated over 10,000
evaluation episodes per agent.

5.1 SVP versus A*

As Figure 6 illustrates, both versions of SVP achieved far
greater success rates than A* in the long run. A* reached
more goals over the first few seconds because, for the prob-
lems it could solve, it calculated near optimal paths by ex-
ploiting the game’s exact forward model. However, for tasks
where its heuristic led it to a dead-end, the A* agent became
permanently stuck. By contrast, the SVP agents’ low-level

100

T
SVP (basis)
SVP (flexi) - - - -

80 [

60 [

40 -

% Goals Reached

20 -

I I I
0 3 6 9 12 15

Time (seconds)

Figure 6: Success rate versus time taken for the basis and flexi ver-
sions of SVP and the A* benchmark.

1586

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Flexi-skill

Figure 7: The basis skill agent tended to identify simpler, more “nat-
ural” waypoints than the flexi-skill agent. The goal is highlighted
green, the waypoints determined are highlighted yellow.

execution was not perfect, but they generally found viable
plans and were able to recover from mistakes.

Interestingly, even though the flexi policy was more versa-
tile than the basis policy (by the end of training, it was reach-
ing around 95% of training goals, versus only 77% for the ba-
sis policy), the basis policy was stronger in conjunction with
the planner. The basis agent’s success rate on the evaluation
task was 97.1% (£0.2%), versus only 90.0% (£0.3%) for the
flexi agent. While it appears in Figure 6 that the flexi agent
may eventually catch up, completion times in excess of 15
seconds are arguably unreasonable for the type of task gener-
ated. We did in fact try extending the limit to 30 seconds, but
the basis agent still led, 98.6% (+0.1%) to 95.1% (+0.2%).

While the basis policy itself could not perform complex
manoeuvres, the agent’s planner was able to segment com-
plex steps into direct movements. The flexi agent was less
constrained in its waypoint placement because its local move-
ment policy was able to tolerate some planning burden. How-
ever, this meant that the flexi agent’s paths were often less
efficient. Figure 7 provides an illustration of this effect. An
additional advantage of the basis movement approach is that
the likelihood-of-success estimator does not have to recog-
nise complex paths; it only has to recognise whether a direct
path to the next waypoint is possible.

5.2 Replanning Threshold

In our second experiment we studied the effect of varying
the replanning threshold, k. We compared the optimal value
for the basis skill agent (k =0.2) against continual replan-
ning (k = 1.0) and replanning only when the next waypoint
became out of range (k = 0.0).

Referring to Figure 8, the difference between the k = 0.2
and k£ = 0.0 lines has a straightforward interpretation. The
k = 0.0 agent reached 85.4% (£0.4%) of goals within 15 sec-
onds, indicating that step failure was rare. However, it could

1587

100 ; | | |
k=02 —
k=0.0
00
80 |- -~ |
o
(7} 'l
S 60 , |
2 T
s |/ e
8 /e
3 o
G 40 - |
s
20k |
0 l | | l
0 3 6 ’ 12 15

Time (seconds)

Figure 8: The basis agent’s success rate versus time taken for differ-
ent values of the replanning threshold, k.

not recover when steps did fail, while the k£ = 0.2 agent could,
albeit completing such episodes slowly. Hence, the advantage
of the k = 0.2 agent only became pronounced towards the
right of the graph.

Continual replanning was severely detrimental, with the
k = 1.0 agent only reaching 57.2% (£0.5%) of goals within
15 seconds. It appears that there were often many viable
plans with similar success probabilities. Small changes in
the protagonist’s position and velocity were often enough to
alter the plan rankings, causing the agent to switch plans fre-
quently without making any progress. The fact that the opti-
mal replanning threshold was so low (k = 0.2) also suggests
that probability estimates varied significantly during execu-
tion, such that it was only worth replanning when the agent
had high confidence that the current step had failed.

6 Conclusion

In this paper we introduced Synoptic Vision Planning (SVP), a
real-time, skill-based approach to navigating domains where
a “god’s eye view” is provided but the low-level dynamics are
unknown. We evaluated SVP in Infinite Mario and showed
that it was capable of solving complex navigation tasks in
real-time, far outperforming an A* agent that exploited the
game’s exact forward model.

SVP’s lookahead method relies critically on the provision
of a “god’s eye” or synoptic view. However, these perspec-
tives are relatively common, occurring not only in games, but
also in many real-world problems, such as a rover operating
with satellite overhead. Nonetheless, besides SVP, we are
not aware of any artificial approaches that explicitly leverage
synoptic representations for planning.

In its current form, SVP is best-suited to classical 2D
games where the game world is laid out according to a grid.
Besides Infinite Mario, other examples include Metroid, Alex
Kidd in Miracle World and Gauntlet. To apply SVP to less
structured environments there are some challenges that must
be overcome, such as handling the case where a tile is par-
tially blocked by an obstacle. We plan to address this and
extend SVP to more complex domains in future work.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Bellemare et al., 2016] Marc Bellemare, Sriram Srinivasan,
Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying Count-Based Exploration and Intrinsic
Motivation. In Advances in Neural Information Processing
Systems, pages 1471-1479, 2016.

[Dietterich, 2000] Thomas G Dietterich. Hierarchical Rein-
forcement Learning with the MAXQ Value Function De-
composition. Journal of Artificial Intelligence Research
(JAIR), 13:227-303, 2000.

[Digney, 1998] Bruce L Digney. Learning Hierarchical Con-
trol Structures for Multiple Tasks and Changing Environ-
ments. In Proceedings of the 5th International Conference
on Simulation of Adaptive Behavior, volume 5, pages 321—
330, 1998.

[Jacobsen et al., 2014] Emil Juul Jacobsen, Rasmus Greve,
and Julian Togelius. Monte Mario: Platforming with
MCTS. In Proceedings of the 2014 Conference on Genetic
and Evolutionary Computation, pages 293-300. ACM,
2014.

[Konidaris and Barto, 2007] George Konidaris and Andrew
Barto. Building Portable Options: Skill Transfer in Rein-
forcement Learning. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
volume 7, pages 895-900, 2007.

[Konidaris and Barto, 2009] George Konidaris and Andrew
Barto. Skill Discovery in Continuous Reinforcement
Learning Domains Using Skill Chaining. In Advances
in Neural Information Processing Systems (NIPS), pages
1015-1023, 2009.

[Lin, 1993] Long-Ji Lin. Reinforcement Learning for Robots
Using Neural Networks. PhD thesis, Carnegie Mellon Uni-
versity, 1993. Technical Report CMU-CS-93-103.

[Mannor et al., 2004] Shie Mannor, Ishai Menache, Amit
Hoze, and Uri Klein. Dynamic Abstraction in Reinforce-
ment Learning via Clustering. In Proceedings of the 21st
International Conference on Machine Learning, page 71.

ACM, 2004.

[Menache et al., 2002] Ishai Menache, Shie Mannor, and
Nahum Shimkin. Q-Cut - Dynamic Discovery of Sub-
Goals in Reinforcement Learning. In Machine Learning:
ECML 2002, pages 295-306. Springer, 2002.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K
Fidjeland, Georg Ostrovski, et al. Human-Level Con-
trol Through Deep Reinforcement Learning. Nature,
518(7540):529-533, 2015.

[Parr and Russell, 1998] Ronald Parr and Stuart Russell. Re-
inforcement Learning with Hierarchies of Machines. Ad-
vances in Neural Information Processing Systems (NIPS),
pages 1043-1049, 1998.

[Pickett and Barto, 2002] Marc Pickett and Andrew G Barto.
Policyblocks: An Algorithm for Creating Useful Macro-
Actions in Reinforcement Learning. In Proceedings of the

1588

19th International Conference on Machine Learning, vol-
ume 2, pages 506-513, 2002.

[Simsek and Barto, 2004] Ozgiir Simsek and Andrew G
Barto. Using Relative Novelty to Identify Useful Temporal
Abstractions in Reinforcement Learning. In Proceedings

of the 21st International Conference on Machine Learn-
ing, page 95. ACM, 2004.

[Simsek et al., 2005] Ozgiir Simsek, Alicia P Wolfe, and An-
drew G Barto. Identifying Useful Subgoals in Reinforce-
ment Learning by Local Graph Partitioning. In Proceed-

ings of the 22nd International Conference on Machine
Learning, pages 816-823. ACM, 2005.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement Learning: An Introduction, vol-
ume 1. Cambridge Univ Press, 1998.

[Sutton et al., 1999] Richard S Sutton, Doina Precup, and
Satinder Singh. Between MDPs and Semi-MDPs: A
Framework for Temporal Abstraction in Reinforcement
Learning. Artificial Intelligence, 112(1):181-211, 1999.

[Thrun et al., 1995] Sebastian Thrun, Anton Schwartz, et al.
Finding Structure in Reinforcement Learning. Advances
in Neural Information Processing Systems (NIPS), pages
385-392, 1995.

[Togelius ef al., 2009] Julian Togelius, Sergey Karakovskiy,
Jan Koutnik, and Jiirgen Schmidhuber. Super Mario evo-
Iution. In Computational Intelligence and Games, 2009.
CIG 2009. IEEE Symposium on, pages 156-161. IEEE,
2009.

[Togelius er al., 2010] Julian Togelius, Sergey Karakovskiy,
and Robin Baumgarten. The 2009 Mario AI Competition.
In Evolutionary Computation (CEC), 2010 IEEE Congress
on, pages 1-8. IEEE, 2010.

[Vezhnevets er al., 2016] Alexander Vezhnevets, Volodymyr
Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John
Agapiou, et al. Strategic Attentive Writer for Learning
Macro-Actions. In Advances in Neural Information Pro-
cessing Systems (NIPS 2016), pages 3486-3494, 2016.

[Vien and Toussaint, 2015] Ngo Anh Vien and Marc Tous-
saint. Hierarchical Monte-Carlo Planning. In Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence,
pages 3613-3619, 2015.

