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Abstract

We introduced an adversarial learning framework
for improving CTR prediction in Ads recommenda-
tion. Our approach was motivated by observing the
extremely low click-through rate and imbalanced
label distribution in the historical Ads impres-
sions. We hence proposed a Disguise-Adversarial-
Networks (DAN) to improve the accuracy of super-
vised learning with limited positive-class informa-
tion. In the context of CTR prediction, the ratio-
nality behind DAN could be intuitively understood
as “non-clicked Ads makeup”. DAN disguises the
disliked Ads impressions (non-clicks) to be inter-
esting ones and encourages a discriminator to clas-
sify these disguised Ads as positive recommenda-
tions. In an adversarial aspect, the discriminator
should be sober-minded which is optimized to al-
locate these disguised Ads to their inherent classes
according to an unsupervised information theoretic
assignment strategy. We applied DAN to two Ads
datasets including both mobile and display Ads for
CTR prediction. The results showed that our DAN
approach significantly outperformed other super-
vised learning and generative adversarial networks
(GAN) in CTR prediction.

1 Introduction

Improving users’ click-through rate prediction on Advertise-
ment (Ads) is a long-term research topic in the Al community
[Richardson et al., 2007; Chen and Yan, 2012]. In practical
advertising industry, the “click pay cost per click” business
model allows the recommender accumulating high amount of
revenues if they could precisely serve the right Ads to the
right user. In existing works, such CTR prediction problem is
conventionally tackled by supervised learning [Konig et al.,
20091, in which a classifier/discriminator is trained to map
contents (feature) to the practical click/non-click behaviors
(label) in historic Ads impressions.

The challenges in this prediction problem stem from the
severe imbalances between clicks and non-clicks in the “traf-
fic log” of Ads impressions. For instance, in a mobile Ads
dataset [Ava, 2015], only 17% Ads impressions are clicked
by users while the other 83% are all non-clicks, yielding to
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an extremely imbalanced label distribution with quite limited
positive samples. There are in fact a number of algorithms
designed to handle classification problems with imbalanced
labels. According to [Japkowicz, 2000], these methods could
be generally profiled into down-sampling and up-sampling
categories.

Down-sampling approaches reduce the major class size
and make a balanced subgroup for classification. While those
methods could alleviate the label imbalance issue to some ex-
tent, they do not notice the essential pitfalls of the imbalanced
classification—the information about minor class is still in-
sufficient. In the context of Ads recommendation, we know
that most Ads impressions are annoying and human may nat-
urally dislike them. Therefore, it is more meaningful for a
classifier to get more chances to know interesting Ads con-
tents (minor class up-sampling), rather than losing opportu-
nities to see disliked Ads (major class down-sampling).

Oversampling method tries to generate more samples in
the minor group. The first prevalent over-sampling strat-
egy is to parametrically fit a probabilistic distribution (a.k.a.
generative model) from limited observed samples in the mi-
nor class. Then, new data points can be sampled out from
such a fitted distribution [Bao et al., 2017bl. Such over-
sampling method is only suitable for well structured data,
e.g. gene [Bao er al., 2017al. Otherwise, it is really hard
to find a reasonable parametric generative model to well de-
pict the data generation mechanism. Unfortunately, like most
real world data, the Ads feature does not exhibit obvious in-
herent structure. Alternatively, up-sampling methods may
also synthesize new data points by combining a set of ob-
served data points in the minor class [Chawla er al., 2002;
Han et al., 2005]. Such strategy was built on the assumption
that existing data are sufficient to span the complete space
of the minor class, which is not true in practice. The Ads
contents and other real world data could be highly hetero-
geneous. There are great chances that neither the data nor
its related items has ever been observed within these limited
samples. Accordingly, the assumption that new data could all
be produced by combing existing observations does not make
too much sense here.

While we admit the rationality of minor class augmenta-
tion, existing strategies almost suffer restrictions in handling
practical problems. At least, they are not suitable for the CTR
prediction problem. We noted that an ideal minor class aug-
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mentation algorithm should exhibit two desired properties 1)
the data generation function of it should be general and ro-
bust 2) the seeds used in it for new data generation should not
solely come from limited samples in the minor class.

To fully cover the aforementioned two properties, we pro-
posed a disguise adversarial network (DAN) for minor class
augmentation (up-sampling). Our DAN was inspired by the
recent progress of generative adversarial learning [Goodfel-
low et al., 2014] and was especially designed to solve the
CTR prediction problem with imbalanced Ads’ labels. The
proposed DAN incorporates a disguise neural network to gen-
erate more samples to enrich the minor class by disguising
negative samples. The purpose of the disguise neural network
is to cheat a discriminator to believe all these disguised sam-
ples are all positive. On the other hand, a discriminator neural
network is also implemented to clearly assign these disguised
samples into their inherent classes via an information theo-
retic discriminative clustering strategy.

The DAN framework was applied and tested on CTR pre-
diction problems including both mobile and display Ads.
Compared with traditional imbalanced classification algo-
rithms and other generative adversarial networks, the pro-
posed DAN improves in both recommendation frequency and
accuracy. More impressively, our approach is also very effec-
tive when less training data are available. The DAN approach
can maintain reasonable good performances even though re-
ducing the size of training samples to 10%, which shows a
promising direction for algorithm speeding up.

2 Preliminaries

DAN is inspired by the generative adversarial network (GAN)
[Goodfellow er al., 2014] that showed great promises in the
computer vision society [Denton et al., 2015]. While there
are different innovations on GAN, the central concept of it
can be well interpreted as a gambling process involving a
generator (G) and a discriminator (D). They could be both
implemented by deep neural networks (DNN). The generator
maps a randomly sampled vector z; ~ P,(z) as an image
yi = G(z;). The discriminator is designed to identify fake
image z; from real world image x; ~ Pyat,(2). In a nutshell,
the gambling process could be formulated with the following
min-max optimization:

ménmgx V(G,D) =
]EwiNPdata (z) [log D(Z‘)] + EZiNPz(Z) [10g D(G(Z))]

Conditional GAN [Gauthier, 2014] is an extension of the
basic GAN that takes the label information into consideration.
In detail, the generator in conditional GAN takes two streams
of information as the input y; = G(z;,(;), where [; is the as-
signed categorical label of the ith generated sample. There
were different implementations of this conditional GAN by
either concatenating [ and z as a long vector or taking them
as two inputs of a multi-modal DNN [Ren er al., 2016]. In-
foGan is another prevalent approach that [Chen et al., 2016]
generalizes the categorical information into the generator by
adding a mutual information term. It views the categorical
information and other control information (e.g. the angle of
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the image) as side information and quantizes them as a long
vector [. InfoGAN then maximizes the mutual information
between the generated image y and its corresponding side in-
formation vector .

There were also improvements on the discriminator side,
e.g. SGAN [Odena, 2016]. The discriminator in SGAN as-
signs data into IV classes of real data and one extra class of
fake data. In the adversarial gambling game of SGAN, the
generator tries to put all fake data into IV real data classes
but the discriminator is optimized to allocate fake data into
the fake category, i.e. the (N + 1)th category. As SGAN,
the main purpose of DAN is also set to enhance classification
performances of the discriminator rather than distinguishing
fake data from real ones.

3 Disguise Adversarial Networks

3.1 Motivation

We motivate the algorithm of Disguise Adversarial Networks
(DAN) in the context of CTR prediction. As stated above,
one significant problem in Ads data is the imbalanced label
distribution, i.e. limited positive samples (clicks) v.s. abun-
dant negative samples (non-clicks). A natural solution to this
problem is to enrich the information of the minor positive
group. However, it is perhaps impossible to directly seek for
more positive samples from users in real world. Inspired by
GAN, we consider an alternative approach to generate more
positive samples via a generative deep neural network.

We consider a way called “Ads Makeup”. The general as-
sumption is that if we could slightly change some properties
of the disliked Ads, it may have a chance to become an inter-
esting one. We discuss the intuition behind this Ads makeup
approach by taking a mobile Ads “super bowl game” as an
example. We consider that the Ads feature vector contains
one entry denoting the show time of the Ads. If the “super
bowl game” Ads impression was pushed to the user at 10:00
AM (with the Ads’ time feature denoted as ‘morning’), this
Ads may not be clicked because morning time is always the
business hour. Accordingly, a non-click record about “super
bowl Ads” is accumulated in the training data. But it does not
necessarily mean the “super bowl Ads” itself is bad and is not
liked by the user. Alternatively, if we fix all other features in
this Ads the same but only change the Ad’s show time feature
from ‘morning’ to ‘night’, this disliked Ads may become a
popular one and gain a click.

Following the rationality discussed above, we believe there
should be a huge amount of non-clicks in the historic data
that could be converted to interesting ones with slight mod-
ifications. We design a “Disguise Neural Network™ (Fig 1)
to transform and makeup non-clicks. However, there is still
a lack of the metric to evaluate the quality of such an Ads
disguise approach. We hence define a “Discriminator Neu-
ral Network” to mimic real user’s behavior on Ads clicking.
From the aspect of the Disguise Neural Network, its objective
is to ultimately disguise the Ads and encourage the discrimi-
nator to classify these disguised Ads as positive. In an adver-
sarial view, the discriminator should avoid being cheated by
the disguise network and come up with a “smart” objective to
identify these disguised Ads.
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Figure 1: An overview of Disguise Adversarial Network (DAN).
The solid (resp. dotted) line indicates the learning processes of the
Disguise (resp. Discriminator) Neural Network.

In detail, we discuss two possible objectives for the dis-
criminator. The first option is the “tough objective” which is
set up to assign all disguised Ads to the negative class (non-
clicks). However, such objective is too strict to be reasonable.
There should be a number of successfully disguised Ads, such
as the super bowl Ads, that could be assigned to the positive
class after makeup. If treating all disguised Ads as non-clicks,
these successfully disguised Ads and their corresponding fa-
vorite feature content may not be correctly fed to the posi-
tive side of the classifier. Therefore, we consider a more rea-
sonable “mild objective” for the discriminator. It should as-
sign the disguised data into two classes (both clicks and non-
clicks) according to their inherent properties. To achieve this,
we design a clustering objective for the discriminator to en-
courage a large margin between two classes. We will explain
how to mathematically design the discriminative objective in
Section 3.3. But please keep in mind here that the “mild ob-
jective” could smartly treat both successfully and unsuccess-
fully disguised samples without any biased pre-judgment.

Although we have motivated the Disguise Adversarial Net-
works (DAN) in the context of Ads CTR prediction, we still
remind readers that all subsequent discussions about DAN
model are also seamlessly adapted to general classification
problems. In the next two subsections, we will elaborately
illustrate formulations of these two adversarial objectives in
DAN.

3.2 Disguise Objective

The disguise learning part was linked by solid arrows in
Fig.1. There are M positive samples (clicks, red bar in Fig.1)
at ~ Pq+ () and N negative samples (non-clicks, blue bar
in Fig.1) = ~ Pq-(z), M < N for imbalanced cases. Q7
(resp. 7) represents the positive samples’ (resp. negative
samples’) space. We introduce a Disguise Neural Network
T'(-) to map the negative samples to z = T'(x7) ~ Pg(2),
where 0 is space spanned by those disguised samples z
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(green bar in Fig.1). z shares the same dimension as the real
world data z+ and 2.

The learning purpose of disguise neural network is to en-
courage the equivalence of two distributions Pq+(z) and
P, (x). From the “disguise objective panel” in Fig.1, it is
apparent that the disguise objective intends to assign all dis-
guised data to the positive class with the discriminator neural
network D(-). The last layer in neural network D is con-
nected with a sigmoid output to indicate the probability that
the input sample is positive. Therefore, we could mathemati-
cally write the disguise learning objective:

El(Tv D) = _Ex*NPQ_ [log D(T(.’L‘_)” )
T AT (™) 27|l

The first term in Eq.2 is the KL divergence between the output
probability and the positive distribution. It is a part of the
cross-entropy term. The second term uses a ¢; distance to
restrict the disguise process could only ‘slightly’ change the
original data.

We would like to highlight the conceptual differences be-
tween this disguise neural network and the generator neural
network in GAN [Goodfellow et al., 2014]. GAN is designed
to generate a brand new sample that never exists in real world.
It thus requires sampling a random seed (vector) to feed in the
generator and to produce a fabricate output. In our DAN, ev-
erything is from real world data and the inputs to the disguise
neural network are practical negative samples. It just adjusts
negative data to make them comply with the distribution in
the positive class. Therefore, we prefer to use the word “dis-
guise” rather than “generator” in our approach. Such charac-
teristic is apparent in Fig.1 that no random vector sampling
function was observed in DAN’s infrastructure.

3.3 Discriminator Objective

As indicated by dotted arrows in Fig.1, the discriminator
neural network takes both real and disguised data as inputs.
Therefore, both of these two types of data contribute to the
final loss in the discriminator neural network. The real data
come with the user’s clicking labels, so there is no difficulty
to define a supervised loss for this part of data via the cross-
entropy loss. The second part of the loss is the attitude of the
discriminator neural network about disguised data. We will
elaborately discuss it in the following part.

As stated in Section 3.1, there were two possible ways for
the discriminator neural network to handle disguised data via
either the “tough loss” or the “mild loss”. Here, we adopt the
more reasonable “mild loss” that allows some negative data
to be converted as positive ones. However, the difficulty is
that we have no idea about which part of the disguised data
behave like positive samples and which part are still nega-
tive. To address such a problem, we follow an existing work
to maximize the information theoretic margin between posi-
tively and negatively disguised samples [Krause et al., 2010].
Unlike other margins in supervised learning, such informa-
tion theoretic margin is absolutely unsupervised. This ap-
proach is also termed as discriminative clustering in multiple
early works [Deng et al., 2016al[Shi and Sha, 2012].

We assume there are N unlabeled points. When assigning
these N points to 2 classes (! = 1 or [ = 0) by a discrimi-
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nator neural network D(+), the assignment confidence of the
discriminator could be well characterized by the following
additive conditional entropy M p(x),

1

Mp(z) = § %:H(llffi)
;{D(mz‘) log[D(x:)] + (1 = D(:)) log[l — D(x:)]}
3

As indicated in [Krause et al., 20101, the conditional entropy
captures the discriminative clustering margin between two
classes and hence we call Mp(x) as the information theo-
retic margin in our approach. This term should be minimized
to encourage a large margin between the clustering results.

We combine the aforementioned two parts of losses alto-
gether and form the final training objective for the discrimi-
nator neural network:

L
N

£2(T’ D) = _Emfngf [log(l - D(l‘_)]
—E,+p,, [log(D(z")] + nMp[T(z7)]

where the first two terms come from the cross-entropy of the
real world labeled data and the last term penalizes the margin
of disguised data.

To note, our approach is quite different from traditional
GAN in which the discriminator is only set up to classify
whether a sample is real or fake. Our discriminator objective
function shares a very similar framework as semi-supervised
classification. In traditional semi-supervised learning, the un-
labeled data used for training are pre-fixed. But unsuper-
vised samples in DAN are produced by a disguise neural
network. Therefore, in our approach, the discriminator neu-
ral network may get a chance to access to different versions
of disguised samples in multiple iterations. More impor-
tantly, the disguise neural network also evolves and could pro-
duce more difficult samples for the discriminator along with
training iterations going on. Therefore, compared with tra-
ditional semi-supervised learning, DAN could be optimized
with more diverse and difficult unsupervised samples in the
training phase. This is the exact reason why we believe DAN
can achieve much better performance than traditional semi-
supervised methods that only adopt pre-fixed unlabeled sam-
ples as assistance.

The training of DAN is involved in a bilevel optimization
[Bard, 2013] that requires minimizing the disguise and the
discriminator losses in turn. Bilevel optimization was used
in a number of practical learning problems including GAN
[Radford et al., 2015], sparse learning [Deng et al., 2013]
and reinforcement learning [Lillicrap et al., 2015; Deng et
al., 2017a]. We divide all training samples into multiple mini-
batches and iteratively feed these mini-batches to train DAN.
Algorithm 1 summarized our detailed training steps.

“

4 Experiments

4.1 Experimental Setup

We evaluate the performance of GAN in CTR prediction on
two datasets including both display and mobile Ads. Dis-
play Ads dataset record the Ads impressions from Criteo in
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Algorithm 1: Training DAN

Input : Ads Features X and their labels Y
Initialization: Randomly Initialize all parameters O
of disguise neural network 7" and © p
of discriminator Neural Network D;
Find all negative samples X ~ in X
for epoch=1...K do
for all mini-batches in Training Data do
Minimize the the disguise loss in Eq.2 with
X~ and update ©Op in T
Feed all negative samples X ~ through disguise
neural network with current ©7 and get the
the disguised samples Z
Feed the discriminator with both supervised
data (X) and unlabeled disguised data
Z =T(X™); treat Z as unsupervised samples
Minimize the discriminator loss in Eq.4 and
update ©p in D

[

end

end
Output : Discriminator Neural Network D with

parameter © p

Table 1: Summaries about two CTR datasets

| Datasets | Totallogs | Period | CTR | Dim |
| Display | 46 million | 7days | 0.26 | 228 |
| Mobile | 40 million | 10days | 0.17 | 100 |

an one-week time period that include various undisclosed fea-
tures along with the click labels [Cri, 2015]. The feature for
each display Ads is composed of 13 integer and 26 categori-
cal features. The mobile Ads dataset come from [Ava, 2015]
that cover mobile Ads impressions in 10-days period. All
provided attributes in this dataset are anonymous categorical
features such as “device_type”, “app-id” etc. Because both
of these two datasets contain categorical features, we tried to
convert each categorical feature as a binary vector indicating
which category the certain item belongs to. A brief summary
about these two datasets were provided in Table 1. The last
column “Dim” in the table reports feature dimensions of each
Ads dataset after converting the categorical feature to numer-
ical values. These numerical features are used in our DAN
and other competing methods.

It is also noted that Ads impressions in both datasets were
accumulated in an ascending order over time. We obey the
time order and uniformly divide each dataset as 100 bulks.
Each bulk contains 1% Ads impressions in a certain period
and different bulks are consecutive in time. It is important
to note the time-varying effects on Ads impressions that one
specific Ads could be quite hot in a short period but quickly
losing its popularity afterwards. To fully take this time-
varying effect into consideration, we train our model with the
last 20 bulks of Ads impressions in the history and predict the
CTR in the next 5 bulks. The whole process was incremen-
tally moved forward following the time order of bulks.
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Figure 2: Comparisons of the same discriminator trained with and
without disguise adversarial strategies.

Many previous works have indicated that conventional
classification accuracy indicators such as precision and recall
are not suitable for evaluating the CTR performance because
the data themselves are highly imbalanced [Yan ez al., 2014].
Therefore, they suggest the use of area-under-curves (AUC)
as a robust indicator to validate the performances of differ-
ent CTR algorithms. AUC should be reported in the range of
(0.5,1), with AUC=0.5 meaning random guessing. A higher
AUC implies a better classification result. We also prefer to
use AUC as a main indicator to report CTR prediction perfor-
mances.

While the neural networks in DAN could be implemented
with arbitrary structures, such as the fancy hierarchical struc-
ture in [Deng et al., 2016b], we still prefer to implement them
with the simple multi-layer perception (MLP). In detail, both
the disguise and discriminator neural networks are configured
with 4 layers and each layer contains 32 nodes. The output
layer of the disguise neural network shares the same nodes’
number as its input layer. The output of the discriminator
neural network is a sigmoid function indicating the clicking
probability. We do not carefully tune the network structure
because this general setting is already good enough to pro-
duce reasonable results as reported below.

4.2 Opverall Evaluation

To visualize the effectiveness of adversarial training in DAN,
we first compare the DAN’s performance with a discriminator
neural network. For fair comparisons, both the DAN and the
discriminator neural network share the same network struc-
ture as stated above. Mathematically, the discriminator was
trained with the supervised loss while DAN was optimized
with the adversarial loss defined in Eq.4. We train both the
DAN and the discriminator neural network for 25 epochs. At
the end of every 5th epoch, the corresponding CTR perfor-
mances on testing data were calculated and reported in Fig.2.

In the figure, we used dotted and solid lines to represent
the supervised discriminator and DAN, respectively. Differ-
ent colors correspond to results on different datasets. At the
beginning of training, both supervised and adversarial dis-
criminators achieved similar performances. But after the 5th
epoch, the adversarial training strategy leads to an obvious
improvement in AUC on both datasets. Besides, the trend of
curves also empirically imply the evolutions of DAN in the
gambling process. It achieved relatively higher performance
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than ever with more iterations going on.

We also compare our DAN with other competing meth-
ods. In general, these competing methods could be divided as
four types as listed in the first column of Table 2. In detail,
Deep Neural network (DNN) and Support Vector Machine
(SVM) were chosen as the supervised algorithms. We fur-
ther chose cluster centroid algorithm (Centroid) [Ganganwar,
2012], adaptive synthetic sampling (ADASYN) [He et al.,
2008], synthetic minority over-sampling technique (SMOTE)
[Chawla er al., 2002] as representative imbalanced classifi-
cation techniques, in which the first one is a down-sampling
strategy and the later two are up-sampling approaches.

We also consider other GAN methods as competitors.
However, except for SGAN [Odena, 20161, most other GANs
are not designed for classification purpose. Therefore, we
slightly modified existing GAN (Modified GAN) to make it
applied to the CTR problem. In the implementation, we first
ran a traditional GAN to generate many fake Ads. After the
GAN training, the generated fake Ads that could successfully
pass the authenticity verification step (i.e. by the discrimina-
tor in traditional GAN) were used as unsupervised samples
altogether with supervised CTR records for semi-supervised
training as in [Deng er al., 2016al. Finally, different DAN
implementations were also discussed. In addition to the DAN
model presented in the paper, we alternatively consider two
other variations. The first variation is the tough-loss DAN
(TL-DAN) as stated in Section 3.1. The other variation is the
Noise seeded DAN (Noise GAN) that is designed to use a
random generator to generate more samples for the discrim-
inator. In Noise DAN, the discriminator neural network is
the same as in DAN but fake samples are all generated from
random noise.

We report the performances of these methods in Table.2.
In addition to the AUC indicator, we also report two other
indicators that may intuitively explain how different methods
perform in the practical recommendation scenario. The first
indicator is the recommendation frequency (Rd-frequency)
that reports how frequently a recommendation decision is ren-
dered. In our setting, a recommendation is only made when
the CTR prediction model indicates to the positive class.
Therefore, the recommendation frequency means the per-
centage of positive labels predicted by the recommendation
method. Further, we investigate the CTR based on the rec-
ommended items (Rd-CTR) that calculates the CTR among
all recommendations. Such evaluation strategy is similar as
the off-line evaluation policy introduced in [Li et al., 2010].

We observed that all machine learning models render pretty
similar but relatively low recommendation frequency. Even
though based on the best performed DAN model, its recom-
mendation frequency is only 11% and 5% on two datasets.
But, the DAN improves Rd-CTR for a large amount. From
the AUC score, it is observed that our DAN significantly out-
performs other learning methods. Only the DAN model could
achieve the AUC score higher than 0.7 on two datasets. By
comparing two datasets, performances on Mobile dataset is
obviously worse than on Display dataset. This is partially
because the Criteo display data were already up-sampled by
the data provider to maintain some balance level and the mo-
bile data is much closer to real-world data. In addition, we



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Table 2: Performances of different algorithms for CTR prediction and recommendation

| | Display Ads Mobile Ads
| | Rd-frequency Rd-CTR  AUC | Rd-frequency Rd-CTR AUC
. DNN 0.07 0.53 0.69 0.02 0.51 0.67
Supervised SVM 0.07 0.50 0.62 0.03 0.47 0.63
Centroid 0.08 0.49 0.66 0.06 0.51 0.64
Imbal ADASYN 0.08 0.62 0.70 0.04 0.55 0.66
mbalance SMOTE 0.09 0.57 0.67 0.05 0.53 0.65
Modified-GAN 0.09 0.57 0.69 0.04 0.52 0.63
GAN SGAN 0.09 0.61 0.68 0.04 0.51 0.67
TL-DAN 0.04 0.68 0.69 0.01 0.58 0.64
DAN Noise-DAN 0.08 0.62 0.71 0.02 0.53 0.69
DAN 0.11 0.66 0.75 0.05 0.57 0.73

Table 3: The AUCs by training DAN with less samples

| | 100% | 50% | 20% | 10% |
| Display | 0.75 | 0.73 | 0.71 | 0.70 |
| Mobile | 0.73 | 0.71 | 0.70 | 0.68 |

have not observed obvious advantages of existing imbalanced
classification algorithms when compared with deep learning
approaches. Such claim is apparent by comparing all meth-
ods in the “Imbalanced” category with the DNN result in the
“Supervised” category in Table 2. It implies the deep learning
model perhaps already owns some inherent properties to ro-
bustly treat samples with imbalanced label distributions. But
the adversarial deep learning (such as our DAN) models fur-
ther improve traditional supervised deep learning.

4.3 Training Complexity

Deep learning framework always gains the reputation of
“heavy to train”. Among all reported competing methods,
the DAN requires the heaviest training complexity. It is con-
ceivable because DAN involves two (deep) neural networks.
Even worse, the learning objectives of these two neural net-
works are designed to go against each other. The gambling
essence of adversarial training inevitably adds complexity to
the optimization. Our practical training always requires 3
hours to finish 25 epochs on 9 million historic data with 4
GPUs parallelized. When using the same data to train a su-
pervised neural network, the consumed time is only about 1
hour. Rather than hardware improvement, we also consider
alternative approach to improve the training speed by reduc-
ing total training samples as in Table 3. The AUC results for
DAN are calculated on out-of-sample data.

The experimental results here comply with most findings in
deep learning that a larger training size may lead to a higher
classification performance. But when taking training com-
plexity into consideration, decreasing the sample size in DAN
may be a good trade-off. It is observed that AUCs on test-
ing data do not drop significantly even though decreasing the
training sample size to 10%. The AUC of DAN is still bet-
ter than most approaches in Table 2 with 10% training data.
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Such plausible property may be partially due to the self-data-
augmentation mechanism encoded in the adversarial learn-
ing framework. Therefore, it is reasonable to reduce the total
training size while maintaining a good performance.

5 Discussions

While our DAN was motivated and innovated in Ads CTR
prediction, we should remind readers that it is meanwhile
flexibly applied to other classification problems involving im-
balanced data. While the algorithm and experiment in this
paper were mainly designed on the two-class classification
problem, it is still possible to extend this framework to han-
dling multi-class tasks. One intuitive extension is just to
implement DAN in an one vs others manner [Deng et al.,
2017b]. But it requires training at least C' (the class number)
different DANSs which is impractical when C'is large. We will
consider more efficient approaches in our future works. One
downside that have been observed from experiment is the ex-
tremely low recommendation frequency as listed in Table 2.
We may consider other approaches, e.g. training multiple ma-
chines with different initializations or configurations, to im-
prove the recommendation frequency in an ensemble manner.
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