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Abstract
This paper studies the collaborative rating alloca-
tion problem, in which each user has limited rat-
ings on all items. These users are termed “energy
limited”. Different from existing methods which
treat each rating independently, we investigate the
geometric properties of a user’s rating vector, and
design a matrix completion method on the simplex.
In this method, a user’s rating vector is estimated
by the combination of user profiles as basis points
on the simplex. Instead of using Euclidean metric,
a non-linear pull-back distance measurement from
the sphere is adopted since it can depict the geo-
metric constraints on each user’s rating vector. The
resulting objective function is then efficiently opti-
mized by a Riemannian conjugate gradient method
on the simplex. Experiments on real-world data
sets demonstrate our model’s competitiveness ver-
sus other collaborative rating prediction methods.

1 Introduction
Collaborative prediction aims to predict users’ preference
based on their previous choices and connections with other
users. It has wide applications in industry; for example, in an
Amazon book recommendation system, if the system inputs
are user ratings on previously read books, predictions of a
user’s preference of new and unread books are accomplished
using patterns discovered from the partially observed rating
matrix.

Most collaborative filtering works under the underlying as-
sumption that if user A has the same interest in an item as
user B , then A is more likely to have more similar opin-
ions on other items with B than with an arbitrarily chosen
user [Breese et al., 1998]. Memory-based methods refer to
algorithms that explore similarities among users or items. Of
these, neighborhood-based methods are most popular [Lee et
al., 2012] and can be divided into two categories: user-based
and item-based methods. User-based methods [Breese et al.,
1998] identify similar users to the queried user, and the de-
sired rating is then estimated by averaging the ratings of these
similar users. Conversely, item-based methods [Sarwar et al.,
2001] discover similar items to the queried item and evalu-
ate the desired rating by the average of ratings of these sim-

ilar items. Different similarity measurements are employed
to compute the averaging weights including Pearson correla-
tions [Herlocker et al., 1999], vector cosine [Sarwar et al.,
2001], and mean-squared-difference [Papagelis et al., 2005].
Other researchers employ a model-based approach by con-
structing a parametric model and fit parameters to training
data to make predictions of unseen data [Lee et al., 2012].
In addition to these traditional methods, a fairly large body
of work describes collaborative prediction from the perspec-
tive of matrix factorization. A rating matrix is factorized into
a product of two low rank matrices (user profiles and item
profiles), which are used to estimate missing entries. Dif-
ferent factorization techniques can be applied such as non-
negative matrix factorization [Lee and Seung, 1999], proba-
bilistic matrix factorization [Salakhutdinov and Mnih, 2011;
Lawrence and Urtasun, 2009; Fang et al., 2014], maximum
margin matrix factorization [Rennie and Srebro, 2005], and
non-linear principal component analysis [Yu et al., 2009].

Existing collaborative prediction algorithms are effective
and perform well in diverse applications including book,
movie, and music recommendation systems. However, their
success is mainly seen in isolated situations where items are
rated independently by a user without consideration on their
connections. In practice, a user may be required to allocate
limited credits to a set of items. In other words, the limited
credits owned by the user are split among all items. For exam-
ple, in cumulative voting, a voter is given an explicit number
of points (or votes) to distribute among candidates, while in
family financing, a user distributes his (or her) limited money
among different financial products based on his (or her) pref-
erence or confidence. We refer to this type of user as “energy
limited”. Thus, existing collaborative prediction algorithms
are not applicable to collaborative rating allocation problem,
which additionally involves constraints among ratings.

For an energy-limited user, N different items will occupy
parts of the energy and together they will use up all the user’s
energy. The deep-seated truth in this scenario is that the ele-
ments in theN -dimensional vector of ratings are not indepen-
dent. With the observation of the limited budget of a user’s
ratings, we are motivated to consider users’ rating vectors ly-
ing on the simplex, i.e., the multinomial manifold [Sun et al.,
2016].

In this paper, we investigate the method that emphasizes
the connections among ratings of a user. We seat each user’s
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rating vector on the simplex and develop a simplex con-
strained matrix completion algorithm-referred to as MC-S.
In this way, the relations among ratings are intrinsically im-
plied in the model. Rather than using the intuitive distance
metric in Euclidean space, a non-linear pull-back metric from
sphere is employed to investigate the geometric properties of
the data on the simplex. The resulting objective function can
be efficiently optimized using a Riemannian conjugate gra-
dient method. Experimental results on real world datasets
demonstrate the effectiveness of the proposed method on ex-
cavating data’s geometric properties.

2 Related Work
We first provide a brief review of existing collaborative fil-
tering algorithms, which can be divided into three main cat-
egories: memory-based methods, model-based methods, and
a new class of matrix factorization methods.

Memory-based methods [Linden et al., 2003] predict new
entries according to users who are similar to the queried user.
These methods memorize the rating matrix and make recom-
mendations by calculating an aggregate of some similar users
ratings of the item [Lee et al., 2012]. Of these memory-based
methods, neighborhood-based methods achieve good perfor-
mance by identifying similar users to the queried user or by
identifying similar items to the predicted item. The main sim-
ilarity metrics include cosine similarity [Sarwar et al., 2001]
and Pearson correlation [Herlocker et al., 1999]. However,
they have some shortcomings; when there are only a few ob-
served entries, the calculated similarity might be inaccurate,
compromising algorithm effectiveness.

Model-based collaborative filtering algorithms [Breese et
al., 1998] use the input rating data to learn or estimate a
parametric model and then make predictions for unseen en-
tries. Data mining and machine learning algorithms are ap-
plied to find the input rating pattern based on the data’s statis-
tical properties. Bayesian networks [Su and Khoshgoftaar,
2006] train a Bayesian classifier based on the given train-
ing ratings and make predictions on new items [Miyahara
and Pazzani, 2002; Song and Zhu, 2016], while clustering-
based collaborative models [Chee et al., 2001; Wang et al.,
2015] partition either the set of items or the set of users
[OConnor and Herlocker, 1999] based on the rating data as
the basis for future predictions. Markov decision process-
based collaborative filtering systems [Shani et al., 2002;
Su and Khoshgoftaar, 2009] provide better performance than
those that do not deploy the system. In addition to the al-
gorithms discussed above, some hybrid methods have been
developed that combine the above collaborative filtering algo-
rithms [Ghazanfar et al., 2012]. By combining the strengths
of memory and model-based collaborative algorithms, they
can result in increased computational complexity.

Recently, plentiful collaborative filtering algorithms are
based on low-rank matrix factorizations and they are even fur-
ther generalized to multi-label and multi-class learning prob-
lems [Xu et al., 2016]. In this case, the rating matrix is fac-
torized into a product of two low-rank matrices, thus filling
the missing entries. Apart from the basic non-negative ma-
trix factorization [Lee and Seung, 1999], variations include

𝑓 𝑥 = 𝑥 

Figure 1: An illustration of the distance on the simplex.

manhattan matrix factorization [Liu and Tao, 2016], proba-
bilistic matrix factorization [Salakhutdinov and Mnih, 2011],
maximum margin matrix factorization [Srebro et al., 2004;
Rennie and Srebro, 2005], and non-linear principal compo-
nent analysis [Yu et al., 2009].

3 Problem Formulation
Takem users and their ratings on n+1 items as a matrix Y ∈
R(n+1)×m, where the j-th column represents user j’s ratings
on n+ 1 items and the i-th row corresponds to the ratings on
item i from m users with i ≤ n + 1 and j ≤ m. Indices of
observed entries constitute a set Ω. Valid ratings usually settle
within a range [0, k]. In the rating allocation problem, the
budget of a user’s ratings on all items is fixed. Hence, the goal
of collaborative rating allocation can be interpreted as filling
an incomplete matrix Y with a matrix X whose columns X·j
lie on the simplex. An n−simplex Pn is defined as

Pn = {x ∈ Rn+1|∀i, xi ≥ 0 and
n+1∑
i=1

xi = 1}.

The simplex Pn is described as a subset of Rn+1, but it is
actually an n−dimensional manifold. In fact, any point on
the simplex is a parameter vector x, which itself happens to
be a probability vector.

The incomplete matrix Y(n+1)×m can be recovered
through a matrix X(n+1)×m with a lower latent dimension

min
X

m∑
j=1

dist(X·j , Y·j)

s.t. PΩ(X − Y ) = 0, X·j ∈ Pn,

(1)

where dist(·, ·) is a distance measurement and PΩ is the sam-
pling operator defined as:

[PΩ(Y )] =

{
Yij if (i, j) ∈ Ω,
0 else.

Considering a maximal latent dimension of X ∈
R(n+1)×m as r, we can approximate X by a matrix product
X = UV where U ∈ R(n+1)×r acts as the basis on the sim-
plex and V ∈ Rr×m is the corresponding coefficient matrix.
We give the constraints on U as

UT
·k1n+1 = 1, ∀k,

where 1n+1 is an (n+1)-dimensional column matrix of all 1s.
Since each individual column ofX(n+1)×m lies on the sim-

plex Pn and X·j = UV·j , we get

(UV·j)
T1n+1 = V T

·j U
T1n+1 = V T

·j 1r = 1,
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which implies V T
·j 1r = 1, ∀j. Hence, problem (1) can be

reformulated as

min
X,U,V

m∑
i=1

distM(X·j , UV·j)

s.t. PΩ(X − Y ) = 0, XT
·j1n+1 = 1,

UT
·k1n+1 = 1, V T

·j 1r = 1,

(2)

where distM(·, ·) refers to the distance on the simplex. Since
an n−simplex Pn is a subset of Rn+1, Euclidean metric is an
intuitive choice. However, it has been shown to be inefficient
[Le and Cuturi, 2015], since it cannot depict the geometric
constraints. Therefore, we propose using a pull-back metric
from the sphere to specify the distance on the simplex.

In information geometry, Fisher information metric is a
particular Riemannian metric defined on the simplex. Given
the diffeomorphism mapping H : Pn 7 −→ S+

n , we consider
the pull-back metric from the positive orthant from the sphere
S+
n , where

H(x) =
√
x,

S+
n = {x ∈ Rn+1|∀i, xi ≥ 0 and

n+1∑
i=1

x2
i = 1}.

The pull-back Fisher information metric (inner product) on
the simplex Pn takes the form

gx(ξx, ηx) =

n+1∑
i=1

(ξx)i(ηx)i/xi,

which derives the geodesic distance on the simplex

d(x, z) = cos−1(〈H(x), H(z)〉) = cos−1(
n+1∑
i=1

√
xizi).

Here 〈·, ·〉 is the Euclidean inner product (more details about
simplex can be found in [Sun et al., 2016]).

Based on the aforementioned knowledge on the simplex,
we can proceed to specialize Eq. (2) to the simplex Pn to
achieve the following model:

min
X,U,V

m∑
j=1

cos−1(

n+1∑
i=1

√
Xij ·

√
Ui·V·j)

s.t. PΩ(X − Y ) = 0, X·j ∈ Pn, ∀j,
U·k ∈ Pn, ∀k, V·j ∈ Pr−1, ∀j.

(3)

By solving the above objective function, we expect to obtain
user profiles U and item profiles V , which then produce X
to approximate unseen entries in the partially observed Y . In
contrast to existing matrix completion methods, the proposed
model thoroughly investigates the geometric properties of the
data, and thus it can lead to an optimal solution for the chal-
lenging collaborative rating allocation problem.

4 Optimization on the Manifold
Optimization of the objective Eq. (3) is split into two sub-
problems: (i) optimize U and V while X is fixed; and (ii)

optimize X while U and V are fixed. This method refers
to the alternating direction method (see [Parikh and Boyd,
2014] for further details). Since X can be updated by X =
UV + PΩ(Y − UV ), we only focus on the optimization of
(i), which leads to the following subproblem

min
U,V

F (U, V ) =
m∑
j=1

cos−1(
n+1∑
i=1

√
Xij ·

√
Ui·V·j)

s.t. U·k ∈ Pn, ∀k, V·j ∈ Pr−1, ∀j.

(4)

Eq. (4) is a non-convex function with regard to U and V ,
so we proceed to update U and V alternately. The objective
function Eq. (4) can be decomposed over Ui· row-wise and
V·j column-wise. Taking derivatives to Ui· and V·j , we get

∂F

∂Ui·
= −1

2

m∑
j=1

√
Xij/

√
Ui·V·j√

1 − S2
j

· V T
·j , (5a)

∂F

∂V·j
= − 1

2
√

1 − S2
j

n+1∑
i=1

√
Xij√
Ui·V·j

· UT
i· , (5b)

where S = (Sj)1×m = (
∑n+1

i=1

√
Xij ·

√
Ui·V·j)j=1,2,...,m.

Since both X·j and UV·j are on Pn, Sj is guaranteed to be
not bigger than 1.

We can optimize V·j column-by-column on the simplex
Pr−1. As for Ui·, however, row-by-row optimization may
violate the constraints among the rows; for example, Uij and
Ukj with i 6= k are not independent given UT

·j1n+1 = 1. In
this case, we cannot optimize Ui· and Uk· independently. To
tackle this problem, we consider the product manifold of the
multiple simplex manifold

Pr
n = {U = [Uik] ∈ R(n+1)×r) : Uik ≥ 0, UT1n+1 = 1r}.
We consider stacking the derivatives of ∂F

∂Ui·
, obtain the

derivative of U
∂F

∂U
= ((

∂F

∂U1·
)T , (

∂F

∂U2·
)T , ..., (

∂F

∂U(n+1)·
)T )T ,

and then perform manifold optimization on the product man-
ifold.

This approach is convenient because: (i) optimizing on
the product manifold Pr

n intrinsically implies the constraints
among the rows of U ; and (ii) optimizing the rows of U
jointly can parallelize computation and improve numerical ef-
ficiency. Although we do not need to jointly optimize V·j , we
process it similar to the optimization U to exploit numerical
efficiency.

Optimization on a Riemannian manifold is comparable to
that on a Euclidean space, that is: (i) finding a descent direc-
tion; and (ii) performing a line search to obtain a sufficient
decrease and to ensure convergence. In the following section,
we discuss the optimization of U in detail to illustrate our op-
timization method on the simplex. The optimization of V is
similar, which is omitted here.

4.1 Conjugate Gradients with the Armijo Line
Search Method

The conjugate gradient method is chosen to solve the model
in Eq. (4) due to its well-recognized efficiency when applied
to large-scale problems.
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The conjugate gradient method incorporates gradients at
the current point with descent directions from previous points
to obtain a new direction. Let f(U) and g(V ) denoteF (U, V )
with V and U fixed respectiveely, in Euclidean space, a con-
jugate gradient method generates a sequence Uk by the fol-
lowing recurrence:

Uk+1 = Uk + αkξUk
, (6)

where αk is the step size generated by a line search algorithm,
and in Euclidean space ξUk

is the descent direction generated
by the following rule:

ξUk
= − ∂f

∂U
+ βk−1ξUk−1

.

On a Riemannian manifold, the descent direction is com-
puted on the tangent space. This space varies smoothly as
one moves along the manifold. At a point U , the tangent
space TUPr

n is a vector space and is actually a subspace of its
embedded Euclidean space,

TUPr
n = {ξU ∈ R(n+1)×r : ξTU1n+1 = 0r}. (7)

Given a descent direction ξU ∈ TUPr
n, the line-search is

performed along a smooth curve on the manifold. The deriva-
tive of this curve at U equals the descent direction ξU . After
one step movement on tangent space TU , we need to retract
it back to the manifold. The retraction operation is defined
as a mapping from the tangent space to the manifold. The
updating step is concluded by Uk+1 = RUk

(αkξUk
).

Unfortunately, the tangent space TUPr
n is defined locally at

point U , which means ξUk
∈ TUk

Pr
n and ξUk+1

∈ TUk+1
Pr
n

are in different tangent spaces and might not coincide. This
property makes the direct addition of tangent vector ξUk

and
ξUk+1

impossible. To adapt the conjugate gradient method to
manifolds, vector transport needs to be defined to transport
tangent vectors from one tangent space to another.

To specify this recurrence to the simplex, we need to de-
fine: (i) a projection of the matrix in ambient space into the
tangent space; and (ii) a retracting mapping from tangent
space to the manifold RUk

(αkξUk+1
).

(i) Projection: the linear operation that projects a matrix
Z ∈ Rn×r into the tangent space TUPr

n, is defined as

ΠU (Z) = Z − 1n+11
T
n+1Z ⊗ U, (8)

where ⊗ is the element-wise matrix multiplication operation.
(ii) Retraction: the mapping that locates the next iteration

to the manifold along the tangent vector RU : TUPr
n → Pr

n is

U+ = RU (ξU ) (9)

= U ⊗ exp(ξUU
∗) · (1n+11

T
n+1(U ⊗ exp(ξUU

∗)))∗

where ()* denotes the element-wise matrix inversion and
exp(·) denotes the element-wise exponential operator.

Let gradf(U) denote the Riemannian gradient in tangent
space TUPr

n at U ; it is calculated by projecting a normalized
Euclidean gradient into the tangent space TUPr

n,

gradf(U) = ΠU (
∂f

∂U
⊗ U). (10)

Algorithm 1 Alternating Direction Method for Eq. (3)
Input: Y : Incomplete matrix, Ω: sampling set, ε: stopping criteria,

k: latent dimension, T : max iteration
Output: X: the optimal approximation of Y
1: Initialize U0, V0 and X0 = O(n+1)×m

2: for t = 1, 2, ..., T do
3: Xt = Ut−1Vt−1 + PΩ(Y − Ut−1Vt−1)
4: Update Ut :

4a: choose a proper step size τt from Eq.(14)
Uinit = −τtgradf(Ut−1)

4b: use Uinit as an initial guess and call RSCG
Ut = RSCG(Uinit)

5: Update Vt :
5a: choose a proper step size υt from Eq.(14)

Vinit = −υtgradg(Vt−1)
5b: use Uinit as an initial guess and call RSCG

Vt = RSCG(Vinit)
6: If 1-F (Ut, Vt)/F (Ut−1, Vt−1) < ε; break; end
7: end for

The vector transport from the previous tangent space to the
current tangent space

TUk→Uk+1
: TUk

Pr
n → TUk+1

Pr
n, ξUk

7→ ΠUk+1
(ξUk

) (11)

is specified by the projection defined in Eq.(8).
Hence the conjugate gradient method can be specified to

the simplex
Uk+1 = RUk

(αkξUk
) (12)

with ξUk
= −gradf(Uk) + βk−1TUk−1→Uk

ξUk−1
.

4.2 Conjugate Gradients Update Parameter
Several options of βk can be used in the conjugate gradient
algorithm. Here we choose the Polak-Ribiere(PR+) method
to calculate the CG update parameter. Within the Riemannian
optimization framework, βk takes the following form:

βk =
〈gradf(Uk), gradf(Uk)− TUk−1→Uk

(gradf(Uk−1))〉
〈gradf(Uk−1), gradf(Uk−1)〉

.

Note that the PR+ updating rule has the auto restart prop-
erty when the descent direction is almost orthogonal to the
gradient direction. Specifically, the algorithm will abandon
the previous CG descent direction and initialize the CG algo-
rithm according to the current gradient direction.

4.3 Armijo Step Size
The step size αk is chosen with the Armijo line search algo-
rithm. Given the initialized step size α and t, σ ∈ (0, 1), the
condition is given by:

f(U)− f(RU (tmαξ)) ≥ −σ〈gradf(U), tmαξ〉U ,
wherem is the number of backtrackings in finding the current
Armijo point. Thus the step size is given by α = tmα.

The initialization of step size α is very important since it
can greatly enhance the efficiency of the line search algo-
rithm. In our method, we observe that an exact minization
on the tangent space alone without retraction is a good initial
guess. For U , the exact minimization takes the form

min
t

1

2
‖X − (U + tξ)V ‖2F , (13)
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Table 1: Dataset information

Dataset #Samp. #Class Feature Rep #Dim
MIT Scene 2080 8 SIFT BoF 600

UIUC Scene 3000 15 SIFT BoF 600

V takes a similar form so it is omitted here. The minimizer
of Eq. (13) takes a closed-form solution:

t∗ = 〈X − UV, ξV 〉/〈ξV, ξV 〉. (14)

As ξ is the search direction of U , it is always non-zero when
the algorithm has not converged. Therefore, there are no wor-
ries about the denominator being zero.

We name our algorithm the “Riemannian Simplex Conju-
gate Gradient” (RSCG). The convergence of RSCG can be
guaranteed by [Absil et al., 2009; Hager and Zhang, 2006]
when β is chosen by the PR+ rule and α is chosen by the
Armijo condition. The overall algorithm is summarized in
Algorithm 1.

5 Experiments
In this section, we evaluate the proposed MC-S on three
real-world datasets and compare it with PMF [Salakhutdi-
nov and Mnih, 2007], NPCA [Yu et al., 2009], LGeomCG
[Vandereycken, 2013] and LMaFit [Wen et al., 2012]. PMF
is a probabilistic matrix factorization model for collabora-
tive filtering that models users’ preference by a conditional
distribution on user and item matrices ; LMaFit performs
baisc matrix factorization while employing non-linear suc-
cessive over-relaxation algorithm for advancing the effective-
ness; NPCA refers to a non-parametric probabilistic PCA
model; and LGeomCG performs matrix completion on the
manifold of fixed-rank matrices.

Following Marlin’s setup [Marlin, 2004], we test our algo-
rithm under “weak” and “strong” generalization. The weak
generalization is a single step process that involves directly
predicting missing data in the rating matrix. The strong gen-
eralization refers to a two-stage process where the models are
trained on one set of users and tested on another disjoint set
of users. Since LGeomCG cannot explicitly factorize a rating
matrix into user profiles and item profiles, it is not applica-
ble for strong generalization. The measurements for matrix
recovery are root mean square error (RMSE) and normalized
mean absolute error (NMAE):

RMSE = ‖PΩ(Y −X)‖F /
√
|Ω|,

NMAE = |PΩ(Y −X)|/(Ymax − Ymin)|Ω|,
where Y represents ground truth ratings and X shows esti-
mated values.

5.1 Image Data
We consider two image datasets MIT Scene and UIUC Scene
whose properties and parameters are displayed in Table 1. We
extract SIFT descriptors on 16 × 16 patches in images and
then convert them to bag-of-features (BoF). The number of
visual words in the codebook, |V |, is set to be 600 and the
implementation is based on vlfeat toolbox [Vedaldi and Fulk-
erson, 2010].

Table 2: Comparisons of different collaborative filtering methods in
terms of RMSE (×10−3) and NMAE (×10−3)

Methods MIT Scene UIUC Scene
W. RMSE S. RMSE W. RMSE S. RMSE

LMaFit 10.897 8.804 8.802 8.238
LGeomCG 9.691 —- 11.415 —-
PMF 9.271 9.129 8.508 8.508
NPCA 4.028 8.926 3.224 6.587
MC-S 2.929 4.194 2.673 4.201

W. NMAE S. NMAE W. NMAE S. NMAE
LMaFit 2.078 2.383 2.175 1.833
LGeomCG 1.561 —- 1.738 —-
PMF 2.476 3.185 2.426 2.426
NPCA 1.155 2.648 0.830 2.305
MC-S 1.197 1.721 1.310 1.929
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(a) MIT Scene

p=0.1 p=0.2 p=0.4 p=0.5 p=0.8

Sampling Rate

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

NPCA

PMF

LMaFit

MC-S
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Figure 2: Classification results vary with sampling fraction on MIT
Scene and UIUC Scene.

The BoF representation of each image is the histogram of
visual words. Each dimension of a histogram represents the
relative frequency of a visual word in the descriptors of an im-
age and the sum of the histogram equals 1. It is an estimation
of the probability distribution and is exactly on a (|V |−1)-
simplex.

We first extract the BoF features of an image dataset. De-
fine sampling fraction p = |Ω|

(n+1)m as the ratio of observed
entries to total entries. By setting p = 0.5, we randomly
keep 50% of features for fitting collaborative filtering mod-
els. Then we split the dataset into training, validation and
test sets. In “weak” generalization, we train the collaborative
filtering algorithms on the training set and recover the full
matrix. Then we train multi-class Support Vector Machine
classifiers on the recovered training set by one-vs-all strategy.
In “strong” generalization, we train the collaborative filtering
algorithms on test set by using the basis matrix learned from
training set and hence estimate missing entries in test set. At
last we evaluate the performance of SVM classifier on the re-
covered test set.

Evaluation results
The number of basis points on the simplex r is set to be
the number of classes. We random start the training of col-
laborative filtering algorithms for five times and report aver-
aged RMSE and NMAE in Table 2. We find that MC-S out-
performs baselines on two datasets under both “weak” and
“strong” generalization. The BoF feature vectors lie exactly
on the (|V |−1)-simplex. While comparative algorithms ig-
nore this property, we subtly make use of data’s geometric
properties and constrain the optimization of each user’s rating
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Figure 3: MovieLens 1M: NMSE and NMAE as objective decreasing with iterations under weak and strong generalization. r refers to number
of basis points.

vector on the simplex, which leads to prominent performance
of MC-S. The corresponding classification performance is il-
lustrated in Fig. 2 with sampling fraction p = 0.5.

When sampling fraction p = 1, which means no feature is
missing, the averaged classification accuracies of MIT Scene
and UIUC Scene are 88.75% and 76.87% respectively. Based
on the collaborative filtering results under different sampling
fraction p, we repeat the training of SVM for five times,
and report averaged accuracies in Fig. 2. With the grow-
ing of sampling fractions, all methods witness rising perfor-
mance. Under different sampling fractions of feature ma-
trix, our method MC-S achieves consistently better perfor-
mance on UIUC Scene and shows promising efficacy espe-
cially when sample size is small. This indicates that our col-
laborative filtering method implements better approximation
to the ground truth feature matrix.

5.2 Recommendation Data
We next explore the proposed MC-S’s performance on
MovieLens dataset in collaborative filtering [Harper and Kon-
stan, 2015]. ML-1M contains 1,000,209 anonymous ratings
of 3,952 movies by 6,040 MovieLens users. 5,000 users are
selected for weak generalization and 1,040 users for strong
generalization. The input ratings are integers between 1
and 5, and the budget of user j’s ratings on items is fixed,
i.e., E =

∑n+1
i=1 Yij . We can normalize the data through

Y
′

ij = Yij/E, i = 1, 2, ..., n + 1. The pre-processed ratings
of user i now lie on the simplex satisfying

∑n+1
i=1 Y

′

ij = 1.
By assuming that sampling of Ω is random and unbiased, the
budget of one user’s ratings on n items is approximated by
E ≈ (

∑
(i,j)∈Ω PΩ(Y ))(n + 1)/Ω. The test and validation

sets are created by reserving one rating from each user re-
spectively. This process is repeated three times. We compare
the averaged NMAE on three random partitions of weak and
strong generalization and report the results in Table 3. Af-
ter the preprocessing, users’ rating vectors lie on the simplex
and our method MC-S can preserve this geometric property
during the learning of user and item matrices, while baseline
methods optimize in the free space and hence gain deficient
performance.

Latent dimensionality and efficiency
To test the response of MC-S to increasing latent dimension,
we report our testing NMAE under latent dimension from 10
to 1000. In Fig. 3, NMAE shows obvious decreasing trends

Table 3: MovieLens 1M: Comparisons with baselines in terms of
NMAE

Methods Weak NMAE Strong NMAE
LMaFit 0.6808± 0.001 0.6740±0.0048
LGeomCG 0.6275±0.0032 —
PMF 0.2339±0.0008 0.2339±0.0036
NPCA 0.2267±0.0009 0.2266±0.0043
MC-S 0.2128±0.0022 0.2143±0.0025

with the increasing of latent dimension and stays stable be-
tween [10, 1000], which indicates that MC-S is steady and
can achieve good performance in a large parameter range.

To verify the efficiency of MC-S, changes of NMAE with
iterations under different latent dimensionalities in training
process are reported in Fig. 3. We find that in weak gener-
alization, MC-S reduces NMAE by every iteration and stays
stable after 10 iterations while in strong generalization, MC-
S becomes steady after only three iterations. We owe this
effiency to the representative model learned from weak gen-
eralization. The model’s representativeness indicates MC-S’s
capability of learning the geometric properties of users’ rating
vectors on the simplex.

6 Conclusions
Here we consider collaborative filtering problem with energy
limited users. The limited budget of a user’s ratings is de-
picted by the simplex. By seating a user’s rating vector on the
simplex, we abandon the usual Euclidean metric and employ
the pull-back metric from the sphere to specify the distance
between points on the simplex, since it can depict geomet-
ric constraints of a user’s rating vector. We extend conjugate
gradient method onto the simplex to optimize our model. Ex-
periments on real data demonstrate our model’s effectiveness
on learning user and item features.

Acknowledgments
This work is supported by Australian Research Council
Projects FT-130101457, DP-140102164, LP-150100671.

References
[Absil et al., 2009] P-A Absil, Robert Mahony, and Rodolphe

Sepulchre. Optimization algorithms on matrix manifolds. Prince-
ton University Press, 2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1622



[Breese et al., 1998] John S Breese, David Heckerman, and Carl
Kadie. Empirical analysis of predictive algorithms for collabora-
tive filtering. In UAI, pages 43–52. Morgan Kaufmann Publishers
Inc., 1998.

[Chee et al., 2001] Sonny Han Seng Chee, Jiawei Han, and
Ke Wang. Rectree: An efficient collaborative filtering method.
In DWKD, pages 141–151. Springer, 2001.

[Fang et al., 2014] Hui Fang, Yang Bao, and Jie Zhang. Leveraging
decomposed trust in probabilistic matrix factorization for effec-
tive recommendation. In AAAI, pages 30–36. AAAI Press, 2014.

[Ghazanfar et al., 2012] Mustansar Ali Ghazanfar, Adam Prügel-
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