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Abstract
Conventionally, gesture recognition based on non-
intrusive muscle-computer interfaces required a
strongly-supervised learning algorithm and a large
amount of labeled training signals of surface elec-
tromyography (sEMG). In this work, we show
that temporal relationship of sEMG signals and
data glove provides implicit supervisory signal for
learning the gesture recognition model. To demon-
strate this, we present a semi-supervised learning
framework with a novel Siamese architecture for
sEMG-based gesture recognition. Specifically, we
employ auxiliary tasks to learn visual representa-
tion; predicting the temporal order of two consecu-
tive sEMG frames; and, optionally, predicting the
statistics of 3D hand pose with a sEMG frame.
Experiments on the NinaPro, CapgMyo and csl-
hdemg datasets validate the efficacy of our pro-
posed approach, especially when the labeled sam-
ples are very scarce.

1 Introduction
AMuscle-Computer Interface (MCI) [Saponas et al., 2008] is
an interaction methodology that directly transforms myoelec-
trical signals from mere reflections of muscle activities into
interaction commands that convey the user’s intention. Ges-
ture recognition based on surface electromyography (sEMG)
is the technical core of non-intrusive MCIs, where sEMG
measures the muscle’s electrical activity from the skin sur-
face using one or more electrodes.
sEMG based gesture recognition can be naturally defined

as a pattern classification problem, where a classifier is usu-
ally trained with supervised learning approach using large
amount of labeled sEMG signals. Compared with more es-
tablished visual recognition dataset, the quantity and quality
of labeled samples in existing sEMG based gesture recogni-
tion datasets are relatively poor. The quantity issue can be
overcome via data augmentation [Atzori et al., 2016] or us-
ing data of a group of subjects [Geng et al., 2016]. The lat-
ter is important as the sEMG signals are highly subject spe-
cific and vary considerably between recording sessions of the
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Figure 1: sEMG signals recorded on different muscles and the cor-
responding 3D hand poses for a pointing gesture.

same user under the same experimental paradigm. Further-
more, the statistics of sEMG signals may also change within
the same recording session due to fatigue and changes in arm
posture [Farina et al., 2014]. Another important issue is that
the recorded samples may not perfectly match the gesture la-
bel, which is caused by the delay from human reaction time
and transition movements. To ensure the label quality, ex-
isting studies only use a relatively small segment of sEMG
signals for model training and evaluation [Atzori et al., 2012;
Amma et al., 2015; Geng et al., 2016]. For example, Atzori
et al. [2012] removed sEMG signals with ambiguous labels
by dividing each trial into three equally sized segments and
retaining data only from the center segment.
sEMG signal records muscles’ electrical activities from the

surface of the skin, which reflect the motor unit action po-
tential generated by the firing of muscles. The firing order
of the muscles measured by sEMG provides an overview of
the neuromuscular activity pattern in the movement [Konrad,
2005], and the relative timing of the firing order over changes
in rate and amplitude of movement is preserved across a vari-
ety of activities [Fowler, 1983] (Fig. 1). Therefore, temporal
relationship between neighbouring frames of sEMG signals
reflect the relative timing of muscle activity, and provide a
useful supervisory signal for the resulting gestures.
From the machine learning perspective, most of the sEMG-

based gesture recognition methods train models under the su-
pervised paradigm, where each training sample is associated
with a gesture label. Considering the limitation in the avail-
ability of large scale high quality labeled samples, a possible
solution is to deploy Semi-Supervised Learning (SSL) algo-
rithms [Shahshahani and Landgrebe, 1994], which make use
of both labeled and unlabeled data for training. In the con-
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text of deep learning, SSL is often based on multi-task learn-
ing [Caruana, 1997], in which one or more auxiliary tasks (su-
pervised or unsupervised) are simultaneously solved together
with the main task to learn a shared feature representation,
including predicting relative location of image patches [Do-
ersch et al., 2015], real-world physical interaction with ob-
served objects [Pinto et al., 2016] and predicting ambient
sound associated with a video frame [Owens et al., 2016].
Our Contribution Inspired by the recent success of deep
learning-based hand gesture recognition with a single frame
of sEMG signals [Geng et al., 2016], we present a SSL frame-
work to train a classifier by exploring the temporal coherence
between signals as an auxiliary task. We formulate the learn-
ing task as a multi-task learning problem. Specifically, we
train a ConvNet to simultaneously predict three targets with
a single frame of sEMG signals: (1) the hand gesture, (2) the
temporal order of two consecutive sEMG frames, and, op-
tionally, (3) the statistics of 3D hand pose. The two auxil-
iary tasks (i.e., task 2 and 3) implicitly require knowledge
of dynamics (i.e., derived from sEMG signals) and shapes of
the hand movements (i.e., data recorded by data glove), thus
help learning useful feature representation of sEMG signals
when available gesture labels are limited. Experiments on
three benchmark datasets (i.e., NinaPro [Atzori et al., 2014],
CapgMyo [Geng et al., 2016], and csl-hdemg [Amma et al.,
2015]) indicate that our approach outperforms state-of-the-
art methods. To the best of our knowledge, this is the first
work to address sEMG-based gesture recognition problem in
an end-to-end framework in a semi-supervised manner.

2 Related Work
Deep learning and convolutional neural networks have re-
cently revolutionized the development of machine learning
and computer vision applications [Cheng et al., 2016; Pinto et
al., 2016; Doersch et al., 2015]. In recent years, deep convo-
lutional networks (ConvNets) have also been applied to rec-
ognize hand gestures from sEMG signals [Atzori et al., 2016;
Geng et al., 2016]. However, ConvNets have numerous learn-
ing parameters that need to be trained over a large amount of
quality labeled data.
To handle the problem of the availability of labeled data,

SSL approach has been broadly explored in deep learning
where a classifier is trained using both labeled and unla-
beled samples. A classic approach in SSL is the bootstrap-
ping method, which starts with training an initial model us-
ing a small number of labeled examples followed by using the
trained model to label the unlabeled data. The model is itera-
tively retrained using the high-confidence self-labeled exam-
ples in addition to the original examples. Cheng et al. [2016]
proposed a diversity preserving co-training algorithm to
guide a ConvNet to learn from the unlabeled RGB-D data by
utilizing the complementary cues of the RGB and depth data
with bootstrapping model. It achieved competitive perfor-
mance for object recognition on benchmark RGB-D dataset
with only 5% labeled training data. However, the perfor-
mance is subject to the quality of the inital labeled data. To
address this issue, active learning was utilized to select the
most informative samples, and combined with SSL for im-
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Figure 2: Illustration of the proposed semi-supervised ConvNet for
sEMG-based gesture recognition. The networks for three tasks are
shown in different colors in which the bottom network (first 6 lay-
ers) are shared. The boxes represent the inputs and outputs of differ-
ent layers of the network. The text between the boxes describe the
layers, where Conv, LC and FC denote convolution layer, locally-
connected layer and fully-connected layer, respectively. The number
after the layer name denotes the number of filters, and the numbers
after @ denote convolution kernel size. The networks in the dashed
box are only used in training phase.

proved performance [Leng et al., 2013; Wang et al., 2016].
Guo et al. [2016] extended semi-supervised active learning
to handle a scenario where target domain has different but
related classes as source domain. SSL in deep learning are
often based on multi-task learning [Caruana, 1997], in which
one or more auxiliary tasks (supervised or unsupervised) are
simulaneously solved together with the main task to learn a
shared feature representation. The auxiliary tasks are pre-
diction tasks in which the prediction target is automatically
derived from a natural signal, instead of human annotations.
In the unsupervised learning literature, one way to learn the

visual representation (or embedding) is to create a supervised
pretext task, where a supervisory signal, or regularizer, can
be extracted from the unlabeled data. Example of the pre-
text task include temporal coherence from two consecutive
frames [Mobahi et al., 2009; Wang and Gupta, 2015], pre-
dicting the relative position of two image patches [Doersch
et al., 2015], physical interaction [Pinto et al., 2016], recon-
struction from noisy data [Bengio et al., 2014], and utilizing
ambient sound to learn visual representation [Owens et al.,
2016]. Recently, Stewart and Ermon [2017] utilized physics
and domain knowledge as constraint that should hold over
the output space to train neural networks. Our pretext task 2
(shown in Fig. 2) can be viewed as an unsupervised special
case of rank learning [Joachims, 2002], in which the objective
is to predict the relative timing order between inputs.

3 Semi-Supervised Gesture Recognition
Inspired by the recent work on deep learning-based gesture
recognition [Geng et al., 2016], we employ a ConvNet to
model the gesture classifier in task 1 and the auxiliary pre-
dictors in task 2 and 3 (see Fig. 2).
We choose temporal order of neighbouring sEMG frames

as the prediction target for task 2 because it reflects the built-
in firing order of muscles, which is insensitive to the rate
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and amplitude of the performed gesture. We hypothesize that
the task of predicting the temporal order implicitly requires
knowledge of dynamic features of muscle activity.
We choose the statistics of 3D hand pose as the predic-

tion target for task 3. This is because the sequence of 3D
hand poses directly determines the perceived hand gestures
and has richer supervisory signals than the gesture labels. 3D
hand pose describes the spatial status of the hand at a spe-
cific time, and thus provides more fine-grained supervision
for the gesture classifier (shown in Fig. 1). Moreover, 3D
hand pose is less ambiguous than gesture label in transition
movements, and thus provides more reliable supervision. In
our framework, we make task 3 as an optional task because
the ground truth of 3D hand pose, which is usually recorded
by data glove, may not always be available in the training set.
In the following sections, we first formulate the learning

problem and then describe the design of the three tasks.

3.1 Problem Statement
Let L = {(xl

i, yi)}Nl
i=1, where x

l 2 RC denotes the instanta-
neous sEMG signals of the C channels in the training ses-
sions and yi is the corresponding gesture label. Unlabeled
data in the test sessions are denoted as T = {xt

i}Nt
i=1. Gesture

recognition with instantaneous sEMG signals is a classifica-
tion problem in which a classifier f✓ is built to predict the
hand gesture to which x

t belongs, where ✓ is the unknown
parameter estimated from L.
Let U = {xu

i }Nu
i=1 denote the unlabeled sEMG frames,

V =
�
(xv

i , zi)
 Nv

i=1
denote all sEMG frames that have corre-

sponding 3D hand poses recorded, where z is the statistics of
3D hand pose. SSL for sEMG-based gesture recognition is to
train a classifier f✓ with S = L[U[V to predict the hand ges-
ture to which x

t belongs. Let X =
�
x

��
x 2 S or (x, ·) 2 S

 
, t

x

denotes the time of x, x̄ denotes a frame at time t
x

+ �, where
� 2 D = {�1, 1}. f✓ is trained by optimizing the following
objective function:

argmin

⇥

1

Nl

X

(x,y)2L

Ll(x, y|⇥) +

↵

2Ns

X

x2X ,�2D
Lu(x, ¯x|⇥)

+

�

Nv

X

(x,z)2V

Lv(x, z|⇥) (1)

where gesture classifier parameters ✓ ⇢ ⇥, Ns = Nl + Nu

is the number of elements in S, ↵ and � are weight hyper-
parameters. Ll, Lu and Lv are the loss functions for (1)
gesture classification, (2) temporal order prediction of sEMG
frames, and (3) 3D hand pose statistics prediction (optional),
respectively.
We use a ConvNet to model the predictors in Eqn. (1). In

the training phase, given the sEMG images, we make pre-
dictions for the three tasks using three sub-networks, respec-
tively (shown in Fig. 2), calculate the loss in Eqn. (1), back-
propagate the gradients and update the parameters. The sub-
networks for task 1 and 3 are activated only if the training
sample satisfies x 2

�
x

��(x, y) 2 L
 
and x 2

�
x

��(x, z) 2 V
 
,

respectively. In the recognition phase, the auxiliary sub-
networks are dropped, the configuration of the gesture classi-
fication network is same as GengNet [Geng et al., 2016], and
thus without additional runtime cost.

3.2 Gesture Classification
Our gesture classification ConvNet has eight layers (denoted
as MyoNet, colored in orange in Fig. 2). The input to the
ConvNet consists of a 1⇥10 image for NinaPro [Atzori et al.,
2014], an 8⇥16 image for CapgMyo [Geng et al., 2016] and a
7⇥24 image for csl-hdemg [Amma et al., 2015]. The first two
hidden layers are convolutional layers, each of which consists
of 64 3⇥3 filters with a stride of 1 and a zero padding of 1.
The next two hidden layers are locally-connected [Taigman et
al., 2014], each of which consists of 64 non-overlapping 1⇥1
filters. The next three hidden layers are fully-connected and
consists of 512, 512 and 128 units, respectively. The network
ends with a G-way fully-connected layer and a softmax func-
tion, where G is the number of gestures. We adopted ReLU
non-linearity [Krizhevsky et al., 2012] after each hidden
layer, batch normalization [Ioffe and Szegedy, 2015] after the
input and before each ReLU non-linearity, and dropout [Sri-
vastava et al., 2014] with a probability of 0.5 after the fourth,
fifth and sixth layers.
The first 6 layers are shared in the three tasks, denoted as

hc(·|✓c). The gesture classification sub-network consists of
the 7th and 8th layers, denoted as f̂(·|✓l). The gesture clas-
sifier is defined as f✓(x) = f̂(hc(x|✓c)|✓l), where ✓c ⇢ ⇥ and
✓l ⇢ ⇥ are learning parameters, and ✓ = ✓c [ ✓l. The loss
function Ll is a cross-entropy loss:

Ll(x, y|✓) = �
GX

i=1

1i(y) log f
i
✓(x) (2)

where f i
✓(x) is the i-th dimension of f✓(x), 1i(y) is the indi-

cator function.
Although multiple frames of sEMG signals are available,

we make predictions from a single frame, so that the learned
feature representation will be more likely to be transferred
to existing single frame recognition framework [Geng et al.,
2016].
In the recognition phase, the trained ConvNet is utilized to

recognize hand gestures from sEMG images frame by frame,
minimizing the observational latency into one frame. Addi-
tionally, a majority voting scheme is used when two or more
frames are available. Using this scheme, a window of sEMG
signals is labeled with the class that receives the most votes.

3.3 Temporal Order Prediction of sEMG frames
We define temporal order prediction of sEMG frames as a
binary classification problem, in which a classifier

hu(xi,xj |⇥) =

ˆhu

⇣⇥
hc(xi|✓c)

|
hc(xj |✓c)

|⇤|���✓u
⌘

(3)

is trained to predict the temporal order between two neigh-
bouring sEMG frames xi and xj in the same recording ses-
sion (i.e., whether i < j or i > j), where ĥu(·, ·|✓u) is the
prediction sub-network and ✓u ⇢ ⇥ are learning parameters.

The entire classifier hu(xi,xj |⇥) is modeled by a Siamese
network, in which the bottom two streams share the same pa-
rameters (the gray and the corresponding orange networks in
Fig. 2). The resulting feature vectors hc(xi|✓c) and hc(xj |✓c)
are concatenated and transformed by ĥu, which consists of
two fully-connected layers. The fully-connected layers have
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the same configuration as that of the 7th and 8th layers of My-
oNet, except that the output dimension is 2. The loss function
Lu is a cross-entropy loss.
While a direct regression between two consecutive sEMG

images is possible, the learned representation may be prob-
lematic for gesture classification. This is because the shared
network will work like an autoencoder and try to preserve all
the details needed for reconstructing the next frame of sEMG
signals at pixel level. The resulting feature representation is
often redundant for high level classification tasks [Rasmus et
al., 2015]. And it may also make the weight hyper-parameter
↵ in Eqn. (1) sensitive to the scale and the channel number of
sEMG signals.
For comparison, we trained a model to predict the next

frame of sEMG signals, which is equivalent to predicting the
difference sEMG image (i.e., changes between two consecu-
tive sEMG images in the temporal sEMG sequence), in lieu
of the classification-based model.

3.4 3D Hand Pose Statistics Prediction
In this framework, instead of regressing the joint angles or
positions directly from the corresponding sEMG image, we
define explicit hand pose categories and formulate the pre-
diction task as a classification problem. This is because the
mappings from sEMG to joint angles are different for each
joint, thus making it difficult to balance the weights of dif-
ferent joints in the regression loss. For example, extension of
the ring finger is usually harder than extension of the index
finger. Another reason is that the weight hyper-parameter �
in Eqn. (1) may be sensitive to the scale and the dimension of
hand pose z with a regression loss Lv.

We define 3D hand pose statistics prediction as a classifica-
tion problem, in which a classifier hv(x|⇥) = ĥv

�
hc(x|✓c)

��✓v
�

is trained to predict the hand pose label of x. ĥv(·|✓v) is the
hand pose statistics prediction sub-network and ✓v ⇢ ⇥ are
learning parameters. The sub-network consists of two fully-
connected layers with the same configuration as that of the
7th and 8th layers of MyoNet. The dimensionality of the out-
put layers is the same as the number of hand pose categories.
The loss function Lv is a cross-entropy loss.
The 3D hand poses in the training set were first clustered

using k-means algorithm. Each hand pose was labeled with
the index of the closest centroid. The input of k-means was
the 22 channels of raw data collected by data glove (Cyber-
glove II) and its difference in time. The number of clusters
k should be larger than the number of gestures G because we
need hand pose labels to provide more fine-grained supervi-
sory signals than gesture labels.
In this work, we also trained models to predict the raw sig-

nals collected by data glove and other vector representations
of 3D hand pose, in lieu of the classification-based model.

4 Experiments
4.1 Experimental Setup
We evaluated our approach using three public datasets,
namely NinaPro dataset [Atzori et al., 2014] (sub-dataset 1),
CapgMyo dataset [Geng et al., 2016], and csl-hdemg

dataset [Amma et al., 2015]. For all datasets, we linearly
transformed the value of sEMG signals to [0, 255].
The NinaPro sub-dataset 1 (DB1) is recorded for the devel-

opment of hand prostheses. It consists sparse multi-channel
sEMG samples of 52 gestures performed by 27 intact sub-
jects. Each sample were recorded at a sampling rate of 100
Hz with 10 sparsely located electrodes placed on upper fore-
arms (forming an image with 1⇥10 pixels). The signals were
filtered and smoothed by the acquisition device. The first 8
components corresponded to the equally spaced electrodes
around the forearm at the height of the radiohumeral joint,
where the last two components corresponded to electrodes
placed on the main activity spots of the flexor digitorum su-
perficialis and the extensor digitorum superficialis, respec-
tively. The 3D hand poses were recorded by a 22-sensor Cy-
berGlove II and synchronized with the sEMG signals.
The CapgMyo dataset consists of high-density sEMG (HD-

sEMG) signals, which were recorded at a sampling rate of
1000 Hz using an electrode array with 128 electrodes that
covered the upper forearm muscles (forming a grid of 8⇥16
channels). It consists of 3 sub-databases (DB-a, DB-b and
DB-c); The first two sub-databases consist of 8 isometric and
isotonic hand gestures obtained from 18 subjects (DB-a) and
10 subjects (DB-b), where the last sub-databases (DB-c) con-
sits of 12 basic fingers movements from 10 subjects. Each
subject in DB-b contributed two recording sessions on dif-
ferent days, with an inter-recording interval greater than one
week. Each subject performed 10 trials for each gesture.
The csl-hdemg dataset contains HD-sEMG signals of 5

subjects performing 27 finger gestures. Each subject recorded
over 5 sessions where 10 trials of each gesture is performed
in each session. The sEMG signals were bipolar recorded at
a sampling rate of 2048 Hz using an electrode array with 192
electrodes that covered the upper forearm muscles (forming a
grid of 7⇥24 channels).
The deep-learning framework is based on MxNet [Chen et

al., 2015]. In all the experiments, the ConvNet was trained
using Stochastic Gradient Descent with a batch size of 1000,
28 epoch, and a weight decay of 0.0001. The learning rate
started at 0.1 and was divided by 10 after the 16th and 24th
epochs. The weights of the ConvNet were initialized as de-
scribed in [He et al., 2015] when a pre-trained ConvNet was
not available. For all experiments that involves a majority
voting window, the sliding window advances by one frame.
The following methods are compared in this work. (1) RF:

Random Forests with a manually designed sEMG feature
set [Atzori et al., 2014]. (2) AtzoriNet [Atzori et al., 2016].
(3) GengNet [Geng et al., 2016]. (4) T2: MyoNet with
task 2. (5) T3: MyoNet with task 3. (6) T23: MyoNet with
task 2 & 3.
Based on the preliminary experiment, we fixed the tempo-

ral distance between two randomly selected frames (�) in task
2 to be 10 frames (NinaPro DB1), 100 frames (CapgMyo),
and 205 frames (csl-hdemg) (equivalent to 10 ms in each
dataset). In the experiments on NinaPro DB1, the sub-
network of task 2 was branched out from MyoNet at the 4th
layer (i.e., Siamese network for task 2 share the first 4 lay-
ers with the networks for task 1 and 3). We fix the hyper-
parameters of the proposed method in all experiments, where
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Table 1: Recognition accuracies (%) of 52 gestures in NinaPro
DB1. AtzoriNet used a analysis window of 150 ms and an aug-
mented training set [Atzori et al., 2016].

RF AtzoriNet GengNet T2 T3 T23

Per-frame 76.1 77.9 77.8 78.1
200 ms 75.3 66.6 77.8 79.4 79.3 79.5

↵ = � = 1 and k = 512.
The codes are available at http://zju-capg.org/

myo/semi.

4.2 Evaluation using NinaPro
We followed the evaluation procedure described in previous
works [Atzori et al., 2014; Geng et al., 2016]. Our ConvNet
was trained with approximately two thirds of the trials of each
subject and tested with the remaining one third. It was initial-
ized by pre-training on the union of the training sets of all
subjects. The accuracy was calculated as the proportion of
correctly recognized frames and averaged over all subjects.
As shown in Table 1, the per-frame recognition accuracy of
our method is 78.1%, or 2 percentage points improvement
over the state-of-the-art [Geng et al., 2016]. Note that the
improvement comes without additional runtime cost, because
the configurations of GengNet and our MyoNet are the same
in the recognition phase. During training phase, the computa-
tion load was higher due to the additional unlabeled data and
auxiliary networks.
In the above experiments, the gesture labels of all training

samples are available (i.e., U = ?). To investigate how many
gesture labels are required for stable recognition accuracy, we
randomly selected a 1/n subset (n 2 {8, 16, 32, 64, 128})
of the training set as L and used the remaining samples
without gesture labels as U to train the model. As shown
in Fig. 3(a), the resulting recognition accuracy achieved by
semi-supervised training with 1/32 labeled data is compara-
ble to the supervised learning counterpart with fully labeled
training set. Note that the recognition accuracy is also signif-
icantly improved by only predicting temporal order of sEMG
frames (i.e., task 2). This suggests that the improvements of
accuracy could be achieved almost without additional cost,
as the semi-supervised scheme T2 can be easily adapted to
any deep learning-based gesture classifiers and doesn’t re-
quire additional data of other modalities.
We also evaluated different configurations of the weight

hyper-parameters and the scheme of task 2 (see Table 2).
Here, we denote T2’ as the network for a regression-based
task 2, where a sub-network with two fully-connected layers
was trained to predict the difference sEMG image with an in-
stantaneous sEMG image. As shown in Table 2, our method
is not sensitive over a wide range of weight hyper-parameters.
Here, we evaluated the impact of four types of hand pose

representation for the regression-based task 3: (1) The 22
channels of raw data recorded by data glove; (2) The raw data
and its difference in time (44 channels in total); (3) The 19
channels of joint angles (and its difference in time) calculated
by mapping the raw data to a 3D virtual hand [Saric, 2011];
(4) The 60 channels of joint positions in the local frame (and
its difference in time) calculated by mapping the raw data to

Table 2: Per-frame recognition accuracies (%) of various hyper-
parameter settings. The training of T2’ (i.e., MyoNet with a
regression-based task 2) did not converge when ↵ = 10.
Param Network 0.1 1 10

↵ T2 77.6 77.9 77.6
↵ T2’ 77.4 77.5 Did not converge

� T3 77.5 77.8 76.8

Table 3: Per-frame recognition accuracies (%) of various hand pose
representations based on T3.
T3 Raw Raw & Diff Angle Pos

77.8 77.5 77.6 77.4 77.4

the 3D virtual hand. All representations were independently
normalized with z-score normalization on data part (Raw) and
difference part (Diff). As shown in Table 3, the model based
on statistics (clustering) of hand pose outperforms the models
that predict vector representations of hand pose, and predict-
ing the temporal changes of hand pose is helpful.

4.3 Evaluation using CapgMyo
Geng et al. [2016] only used the static part of the movement to
evaluate the recognition algorithms. In other words, only the
middle one-second window of each trial (i.e., 1,000 frames
of data, about 1/3 of the entire trial) was used to ensure that
no transition movements are included in training and testing.
Here we use the remaining 2/3 of the training data as U to
perform SSL with task 2.
We followed the evaluation procedure as described in the

previous study [Geng et al., 2016]. For each subject, a clas-
sifier was trained with 50% of the data (i.e., trials 1, 3, 5, 7
and 9 for that subject) and tested on the remaining trials. The
ConvNet was initialized by pre-training on the union of the
training sets of all subjects. This procedure was performed
on each sub-database. For DB-b, the second session of each
subject was used for the evaluation. As shown in Table 4, our
method achieved per-frame improvements of 0.2, 0.3 and 0.4
percentage points for the three sub-dataset, respectively.
We also evaluated our method with downsampled gesture

labels as that in the experiment for NinaPro. As shown
in Fig. 3(b-d), the resulting recognition accuracy was im-
proved by semi-supervised training, especially when the la-
beled samples are very scarce. These results further con-
firmed that predicting temporal order of sEMG frames also
helps gesture recognition with HD-sEMG.

4.4 Evaluation using csl-hdemg
Lastly, we evaluated our method with more gestures (total of
27 finger gestures) in csl-hdemg. We followed the evaluation
procedure as described in the previous works [Amma et al.,
2015; Geng et al., 2016]. For each recording session, we
performed a leave-one-out cross-validation, in which each of
the 10 trials was used in turn as the test set and a ConvNet
was trained by using the remaining 9 trials. The ConvNet
was initialized by pre-training on the union of the training
sets of all subjects in each round. The standard evaluation
protocol [Amma et al., 2015] used only a small window of
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Figure 3: Per-frame recognition accuracies with different downsample factors of labeled training samples.

Table 4: Recognition accuracies (%) on NinaPro, CapgMyo and
csl-hdemg datasets. The performance is obtained with majority vot-
ing using 200 ms window (i.e., 20 frames) on NinaPro and 150 ms
window (i.e., 150 frames) on CapgMyo, where the entire trial were
selected for csl-hdemg. Per-frame accuracies are shown in parenthe-
ses. * indicates models are trained with 1/16 gesture labels.

NinaPro DB-a DB-b DB-c csl-hdemg

GengNet 77.8(76.1) 99.5(89.3) 98.6(85.6) 99.2(84.6) 96.8(55.8)
T2 79.4(77.9) 99.6(89.5) 98.7(85.9) 99.2(85.0) 96.9(56.0)

GengNet⇤ 75.7(73.8) 98.1(76.4) 97.0(73.2) 97.9(68.0) 92.9(48.2)
T2⇤ 77.6(76.0) 98.8(79.7) 97.2(76.2) 98.5(73.1) 94.3(49.1)

each trial, of which the average amplitude of sEMG signals
is relatively high, for evaluation. Here we use the unlabeled
512 frames before and 512 frames after the training windows
as U to do semi-supervised learning with task 2.
As shown in Table 4, our method achieved a per-trial

recognition accuracy of 96.9%, or 0.1 percentage points im-
provement, over the latest work [Geng et al., 2016] on csl-
hdemg. Compared to NinaPro and CapgMyo, csl-hdemg con-
sists of sEMG signals recorded with much higher sampling
rate and higher number of recording sessions for each subject.
The standard evaluation protocol used a leave-one-out cross-
validation, where each trial was reused 9 times for training.
Given that there were sufficient gesture labels in each train-
ing set, the performance of GengNet and T2 are almost same.
To demonstrate the efficacy of the proposed model, we down-
sampled gesture labels as that for the other two datasets. As
shown in Fig. 3(e) and Table 4, with a downsample factor of
16, our method achieved a per-trial recognition accuracy (per-
frame results shown in parenthesis) of 94.3% (49.1%), an 1.4
(0.9) percentange points improvement over GengNet.

5 Conclusion
Temporal relationship between neighbouring sEMG frames
embed information about the underlying muscles firing or-
der, which is invariant with respect to the rate and amplitude
of the performed gestures. Furthermore, 3D hand pose de-
scribes the fine-grained spatial status of the hand at a spe-
cific time. Normally, these information are available without
human annotations, which make them an useful supervisory
signals for gesture classifier training.

In this work, we proposed using temporal order of sEMG
frames and, optionally, statistics of 3D hand pose to learn
feature representations of instantaneous sEMG signals. We
presented a semi-supervised learning framework with a novel
Siamese architecture, which learns a shared ConvNet by pre-
dicting the statistics of 3D hand pose with a sEMG frame and
predicting the temporal order of the two neighbouring sEMG
frames. Our method improves recognition accuracies on both
sparse multi-channel sEMG and high-density sEMG, espe-
cially when the labeled training data are very scarce.
Unlike typical multi-modal gesture recognition methods

that require multi-modality input in the recognition phase, our
semi-supervised approach uses multi-modality data only in
the training phase, and thus without additional runtime cost.
Moreover, our method also works on single-modality training
data, thus making it easy to be adapted to any deep learning-
based gesture classifiers. In future work, we plan to (1) extend
our framework using temporal models (e.g., RNNs) and ac-
commodate dynamic transitional motions, and (2) extend our
framework to recognize gestures in inter-session scenario in
which the sEMG signals used for training and validation are
recorded in different sessions.
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