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Abstract
The graphical lasso is the most popular approach
to estimating the inverse covariance matrix of high-
dimension data. It iteratively estimates each row
and column of the matrix in a round-robin style un-
til convergence. However, the graphical lasso is in-
feasible due to its high computation cost for large
size of datasets. This paper proposes Sting, a fast
approach to the graphical lasso. In order to re-
duce the computation cost, it efficiently identifies
blocks in the estimated matrix that have nonzero
elements before entering the iterations by exploit-
ing the singular value decomposition of data ma-
trix. In addition, it selectively updates elements of
the estimated matrix expected to have nonzero val-
ues. Theoretically, it guarantees to converge to the
same result as the original algorithm of the graph-
ical lasso. Experiments show that our approach is
faster than existing approaches.

1 Introduction
As a result of development of the Internet technologies, large
datasets are common in many fields [Shiokawa et al., 2015;
Mishima and Fujiwara, 2015; Nakatsuji et al., 2014]. Since
real-world data typically has high-dimensionality, many re-
searchers are interested in estimating the graph structure of
a Gaussian Markov random field in the many variable set-
ting. The graph structure is a natural representation of the
conditional dependence among many variables. In the graph
structure, each node is a single variable and an edge between
two variables implies that they have conditional dependency
[Fujiwara et al., 2017; 2014]. For real-world data, the graph
structure typically results in a complete graph where every
pair of nodes is connected by an edge. This is because real-
world data inevitably includes noise; some of the dependen-
cies indicated by the structure might be due to noise. In order
to increase the robustness of the graph structure against data
noise, it is important to estimate a sparse structure from high-
dimensional data so that the graph structure can effectively
represent essential relationships among variables.

AI researchers have proposed approaches to estimating
sparse undirected graphical models that exploit L1 regular-
ization [Grechkin et al., 2015; Chen et al., 2010]. Many stud-

ies assume that the observations have a multivariate Gaussian
distribution with mean µ and covariance matrix Σ. Thus, the
conditional independence can be represented by the inverse
covariance matrix, Θ(= Σ−1). If the (i, j)-th element of
matrix Θ is zero (i.e., Θ[i, j] = 0), then the i-th and j-th
variables are conditionally independent. The approaches for
estimating sparse graph structures impose the penalty of L1

to estimate matrix Θ so as to increase its sparsity. The graph-
ical lasso by Friedman et al. is the most popular approach
[Friedman et al., 2008]. It is based on penalized maximum-
likelihood estimation and has been widely adopted by statis-
ticians and computer scientists [Zhao et al., 2015]. If S is an
empirical covariance matrix such that S = X>X where X is
a N × P data matrix of N observations and P variables, the
graphical lasso estimates the sparse graph by maximizing the
following objective function:

log detΘ− Tr(SΘ)− ρ‖Θ‖1 (1)

where det denotes the determinant, Tr is the trace, and ‖ · ‖1
is the L1 norm. In Equation (1), ρ is a positive L1 regular-
ization parameter that determines the sparseness of the esti-
mated graph; if ρ is large, the graph has greater sparsity. Note
that the problem of Equation (1) is convex [Friedman et al.,
2008]. The graphical lasso exploits a coordinate descent algo-
rithm that updates coefficients of the lasso to solve the prob-
lem [Fujiwara et al., 2016a; 2016b]. Specifically, it iteratively
computes each row and column of the estimated matrix as a
solution of the lasso problem in a round-robin manner until
convergence. Since the graphical lasso can obtain the ex-
act maximization of the above L1-penalized log-likelihood,
it can effectively estimate the graph structure from high di-
mensional data.

Due to its high effectiveness, the graphical lasso is actively
used on the front lines of various fields. One example is mar-
ket risk management by computing the portfolio risk of finan-
cial assets such as credit default swaps (CDS) [Neuberg and
Glasserman, 2016]. In market risk management, it is crucial
to accurately estimate a correlation matrix so as to minimize
the risk of underestimating the true variance of the portfolio.
By effectively reducing unimportant pairwise dependencies
among assets, the graphical lasso can estimate the correlation
matrix in an economically meaningful way. In fact, it has
revealed high correlations such as New York Times - Gan-
nett and Ford - General Motors. In addition, the graphical
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lasso is being used in detecting psychiatric disorders [Rosa
et al., 2015]. Many psychiatric disorders, such as depression
and schizophrenia, result from brain connectivity disorders.
Thus, they are effectively detected from the fMRI signals of
brains. Beyond those above, the graphical lasso is used in
many other applications such as generating novel hypotheses
in strategic management [Li et al., 2016] and inferring bio-
logical networks [Vinciotti et al., 2016].

Although the graphical lasso is widely used, the original
algorithm by Friedman et al. incurs high computation cost.
In order to improve the efficiency of the graphical lasso, a
screening approach was proposed to locate blocks in the es-
timated inverse covariance matrix that can have nonzero ele-
ments [Witten et al., 2011]. The approaches by Friedman et
al. are a standard in estimating the inverse covariant matrix;
the famous method, glasso, is based on the coordinate descent
algorithm and the screening approach [Friedman et al., 2015].
However, since the screening approach needs to compute all
elements of the empirical covariance matrix before entering
the iterations, it can incur high computation cost.

This paper proposes Sting as a novel and efficient approach
for the graphical lasso. To improve the efficiency, we ef-
ficiently identify blocks in the estimated matrix that have
nonzero elements by computing the singular value decom-
position (SVD) of data matrix. Since the use of SVD avoids
computing all elements of the covariance matrix, we can im-
prove the efficiency of the graphical lasso. In addition, we
selectively update coefficients of the lasso; we iteratively up-
date only those coefficients expected to have nonzero values
until convergence so as to increase the efficiency. After con-
vergence, we check unselected coefficients to ensure they do
not have nonzero values. Since our approach can safely prune
unnecessary update computations, it provably guarantees to
converge to the same result as the original algorithm of the
graphical lasso. With the enhanced efficiency, the proposed
approach can improve the effectiveness of AI-based decision-
making, risk management, and data science. In the case of
psychiatric disorder detection, disease diagnosis is an impor-
tant application of AI [Xu et al., 2016], and our approach
can realize even small delays in the onset and in the progress
of depression and schizophrenia; we can effectively reduce
the burden of psychiatric disorders such as depression and
schizophrenia by providing adequate institutional and home
healthcare based on the proposed approach.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 gives an overview of
our research background. Section 4 introduces our approach.
Section 5 reviews our experiments and their results. Section 6
provides our conclusions.

2 Related Work
The screening approach proposed by Friedman et al. is the
most famous way of improving the efficiency of the graphi-
cal lasso [Witten et al., 2011]. This approach computes small
blocks of nonzero elements in the inverse covariance ma-
trix. Theoretically, it is derived from the KKT condition of
the optimization problem of Equation (1). Therefore, it does
not sacrifice the exact maximization property of the graphi-

cal lasso. Hsieh et al. proposed approximation approaches
based on Newton’s method [Hsieh et al., 2013]. It improves
the efficiency of Newton’s method in estimating the inverse
covariance matrix since straightforward implementation of
the method suffers high computation cost. However, this
approach does not guarantee the same results as the graph-
ical lasso unlike our proposal. Liu et al. proposed StART,
which can effectively choose the regularization parameter for
high dimensional inferencing of undirected graphs based on
edge stability [Liu et al., 2010]. It uses the least amount of
regularization that simultaneously makes a graph sparse and
replicable under random sampling. Liu et al. also proposed
a nonparanormal approach that uses a semiparametric Gaus-
sian copula for high dimensional inference [Liu et al., 2012].
It efficiently computes the inverse covariance matrix by us-
ing nonparametric rank-based statistics to estimate the corre-
lation matrix. In this paper, we proposed more efficient ap-
proach than the above approaches.

3 Preliminaries
Given N × P data matrix X of N observations and P vari-
ables, the graphical lasso estimates inverse matrix Θ of co-
variance matrix Σ from matrix X by maximizing the penal-
ized log-likelihood of Equation (1) [Friedman et al., 2008].
Let S be an empirical covariance matrix, it optimizes each
row and corresponding column of W = S + ρI in coordinate
descent fashion where I is an identity matrix. Specifically, it
first partitions matrices W and S as follows:

W =

(
W11 w12

w>12 w22

)
, S =

(
S11 s12
s>12 s22

)
, (2)

where W11 and S11 are p−1×p−1 matrices, w12 and s12 are
column vectors of length p − 1, and w22 and s22 are scalars.
The graphical lasso iteratively permutates each row/column
of matrices W and S by exploiting the coordinate descent so
that target columns are always the last to compute the solution
of the lasso. Let β̂i be the i-th coefficient of the lasso that
corresponds to the i-column of matrix W11, the graphical
lasso updates coefficient β̂i as follows:

β̂[i]← S(s12[i]−
∑
j 6=iW11[j, i]β̂j , ρ)/W11[i, i] (3)

where S is the soft-threshold operator (i.e., S(z, ρ) =
sign(z)(|z| − ρ)+), s12[i] is the i-th element of s12, and
W11[j, i] is the (j, i)-th element of W11. Note that the diag-
onal of matrix W remains unchanged in the iterations. In ad-
dition, coefficients obtained by the lasso are typically sparse.
If β̂ is a column vector of length p− 1 whose i-th element is
β̂[i], the graphical lasso fills in the corresponding column and
row of matrix W by computing w12 = W11β̂. These proce-
dures are repeated until matrix W reaches convergence. The
graphical lasso estimates elements of inverse matrix Θ after
the iterations. If θ̂12 is a column vector of length p − 1 in
matrix Θ that corresponds to vector w12, it computes the es-
timated matrix as θ̂12 = −β̂/(w22 − w>12β̂). This equation
indicates that θ̂12 is a rescaling of vector β̂.

In order to reduce the high computation cost, Friedman et
al. proposed the screening approach as described in Section 2
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[Witten et al., 2011]. It is based on the observation that the i-
th variable would be an isolated node in the estimated graph
if |S[i, j]| ≤ ρ holds for all j-th variables such that j 6= i
in empirical covariance matrix S. Specifically, it computes
an adjacency matrix where each pair of nodes is connected
if |S[i, j]| > ρ holds, and then computes blocks of con-
nected components. The screening approach limits the up-
date computations to those coefficients that are contained in
the connected components; it can effectively reduce the num-
ber of coefficients of the lasso by exploiting the block struc-
tures. The screening approach is the most popular approach
for implementing the graphical lasso. In fact, the standard
method of the graphical lasso, glasso, improves the efficiency
by exploiting the screening approach [Friedman et al., 2015].
However, it still needs to compute all elements of the empiri-
cal covariance matrix to obtain the adjacency matrix. There-
fore, the graphical lasso incurs high computation cost. If T
is the number of update computations for each row/column
of matrix Σ and B is the numbers of nonzero coefficients of
the lasso for each row/column of the estimated matrix, the
graphical lasso requires O(NP 2 + PBT ) time.

4 Proposed Method
The proposed approach, Sting, can efficiently estimate the in-
verse covariance matrix and so reduce the high computation
cost of the graphical lasso. First, we overview the idea under-
lying Sting. That is followed by a full description including
its theoretical properties.

4.1 Ideas
So as to reduce the number of coefficients updated in
each iteration, the existing algorithms of the graphical lasso
compute each covariance of matrix S and add an edge if
|S[i, j]| > ρ holds to obtain the block structures. This in-
dicates that it must compute all the covariances of matrix
S. In addition, it updates all the coefficients obtained by the
block structures in round-robin style even though almost all
the coefficients are expected to be zero due to the sparseness
property of the lasso. To reduce the computation cost, our
approach efficiently computes upper and lower bounds of co-
variance S[i, j] by exploiting SVD. Only if the covariance
is determined to have an edge by the bounds, we exactly
compute S[i, j]; this avoids computing all the covariances
of matrix S. In addition, Sting iteratively updates selected
coefficients expected to have nonzero values until conver-
gence. Since our approach updates only a few of the coeffi-
cients of the block structures, it can efficiently solve the lasso.
Since our approach checks unselected coefficients whether
they have nonzero values, it can provably guarantee to con-
verge to the same results as the graphical lasso.

4.2 Upper and Lower Bounds
Before the iterations, we compute the upper and lower bounds
of covariance S[i, j]. This approach approximates data ma-
trix X of N × P size by computing SVD where the target
rank is set to n (n � N ). SVD is orthogonal transformation
and gives high approximation quality in terms of squared loss
[Press et al., 2007]. Let U be a unitary matrix of N × n size

and X̃ be the transformed matrix of n× P size. Matrix X is
represented as X ≈ UX̃. Therefore, let xi and x̃i be the i-th
column vector of matrix X and X̃, respectively, which yields
xi ≈ Ux̃i. The upper bound is defined as follows:

Definition 1 Let S[i, j] be the upper bound of covariance
S[i, j], S[i, j] is given as follows:

S[i, j] = 1
2{‖xi‖

2
2 + ‖xj‖22 −

∑n
k=1(x̃i[k]− x̃j [k])2} (4)

where ‖ · ‖2 is the L2-norm of a column vector.

Note that we can efficiently compute the L2-norm of the col-
umn vectors in O(NP ) time before the iterations. Simi-
larly, we can efficiently compute the SVD of matrix X by
using the existing approach of [Halko et al., 2011]; this takes
O(NP log n) time. The lower bound is defined as follows:

Definition 2 S[i, j] is the lower bound of covariance S[i, j]
and is given by the following equation:

S[i, j] = 1
2{−‖xi‖

2
2−‖xj‖22 +

∑n
k=1(x̃i[k] + x̃j [k])2} (5)

We introduce the following lemma that S[i, j] and S[i, j] give
the upper and lower bounds, respectively:

Lemma 1 For each covariance S[i, j] of matrix S, we have
S[i, j] ≤ S[i, j] ≤ S[i, j].

Proof We first prove that S[i, j] ≤ S[i, j] holds. For each el-
ement of column vector xi and xj , we have xi[k]xj [k] =
1
2{(xi[k])2 + (xj [k])2 − (xi[k] − xj [k])2} [Blitzstein and
Hwang, 2014]. Since S = X>X, we have

S[i, j] = x>i xj =
∑N
k=1 xi[k]xj [k]

= 1
2

∑N
k=1{(xi[k])2 + (xj [k])2 − (xi[k]− xj [k])2}

= 1
2{‖xi‖

2
2 + ‖xj‖22 −

∑N
k=1(xi[k]− xj [k])2}

Since SVD is orthogonal transformation,
∑N
k=1(xi[k] −

xj [k])2 =
∑N
k=1(x̃i[k]− x̃j [k])2 holds. In addition, (x̃i[k]−

x̃j [k])2 ≥ 0 holds. Therefore, we have

S[i, j] ≤ 1
2{‖xi‖

2
2+‖xj‖22−

∑n
k=1(x̃i[k]−x̃j [k])2} = S[i, j]

Similarly, we have the property of S[i, j] ≤ S[i, j] since
xi[k]xj [k] = 1

2{−(xi[k])2 − (xj [k])2 + (xi[k] + xj [k])2}
holds for each element of column vector xi and xj . �

In terms of computation cost, it takes O(n) time to com-
pute the bounds from Definition 1 and 2 if we have the L2-
norm of each column vector in matrix X and SVD of the ma-
trix. This indicates that we can compute the upper and lower
bounds, S[i, j] and S[i, j], much faster than S[i, j] since it
needs O(N) time to compute S[i, j] =

∑N
k=1 xi[k]xj [k].

As described in Section 3, the screening approach by Fried-
man et al. obtains the block structures by computing the ad-
jacency matrix from matrix S. We can effectively identify
edges in the adjacency matrix by exploiting the bounds. The-
oretically, our approach is based on the following lemma:

Lemma 2 The node pair of the i-th and j-th variables must
meet the condition of S[i, j] > ρ or S[i, j] < −ρ if the node
pair have an edge in the adjacency matrix.
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Proof In order to prove Lemma 2, we show that the node pair
of the i-th and j-th variables does not have an edge in the ad-
jacency matrix if S[i, j] ≤ ρ and S[i, j] ≥ −ρ. As described
in Section 3, the adjacency matrix has an edge between the
i-th and j-th variables if and only if |S[i, j]| > ρ holds. If
S[i, j] ≤ ρ and S[i, j] ≥ −ρ, we have −ρ ≤ S[i, j] ≤
S[i, j] ≤ S[i, j] ≤ ρ from Lemma 1. Therefore, the node
pair does not have an edge in the adjacency matrix. As a re-
sult, if the node pair of the i-th and j-th variables has an edge,
we have S[i, j] > ρ or S[i, j] < −ρ. �

This lemma indicates that we can avoid computing S[i, j]
when obtaining edges in the adjacency matrix if S[i, j] ≥ −ρ
and S[i, j] ≤ ρ; we compute S[i, j] only if S[i, j] < −ρ or
S[i, j] > ρ. Thus, we can avoid computing all the covariances
of matrix S when exploiting the screening approach.

4.3 Selective Update
As described in Section 3, the screening approach updates
the coefficients of the block structures in round-robin style
even though almost all the coefficients are zero due to the
sparseness property of the lasso. In order to further improve
efficiency, we update only those coefficients expected to have
nonzero values until convergence and then check unselected
coefficients after the iterations.

Our approach is based on the observation that, if |S[i, j]| >
ρ, the (i, j)-th element of inverse matrix Θ is likely to have
nonzero value and thus the corresponding coefficient of the
lasso is expected to have nonzero value [Langfelder and Hor-
vath, 2008]. Note that vector θ̂12 is a rescaling of vector β̂ as
described in Section 3. LetBi be the block that contains the i-
th variable obtained by the screening approach and Bi be a set
such that Bi = {j|Bj = Bi}; the screening approach updates
the i-th coefficient by exploiting Bi−i. Instead, our approach
updates the corresponding coefficients given by using Ui un-
til convergence from Equation (3) for the i-th variable where
Ui is initialized as Ui = {j|S[i, j] > ρ ∧ j ∈ Bi ∧ j 6= i}.
Note that it is clear that Ui ⊆ Bi and we can efficiently obtain
Ui by exploiting the upper and lower bounds. In addition, if
U′i is a set such that U′i = {j|j /∈ Ui ∧ j ∈ Bi ∧ j 6= i}, we
check the coefficients in U′i whether they have nonzero val-
ues after the iterations. Our approach exploits set Ui + U′i in
computing the i-th coefficient. Since Ui+U′i = Bi− i holds,
our approach can obtain the same coefficient of the the i-th
variable as the screening approach that exploits Bi − i. This
approach is theoretically based on the following property:

Lemma 3 Let β̂
′

be a converged coefficient vector for set
Ui +U′i. If (1) coefficient vector β̂ reaches convergence after
the iterations for set Ui and (2) β̂[i] = 0 and β̂′[i] = 0 hold
for all i such that i ∈ U′i, we have β̂

′
= β̂ after computing

vector β̂
′

from vector β̂ by using coordinate descent.

Proof Since β̂[i] = 0 and β̂′[i] = 0 hold ∀i ∈ U′i, we have
β̂
′

= β̂ for all i such that i ∈ U′i. If β̂′[i] = 0 holds ∀i ∈ U′i,
it is clear that such coefficients do not have any impact on
the update results from Equation (3). In addition, coefficient
vector β̂ has already reached convergence for Ui. Therefore,

Algorithm 1 Sting
Input: matrix X, parameter ρ, target rank of SVD n
Output: matrix Θ
1: compute rank-n SVD of matrix X;
2: A = 0;
3: for i = 1 to P do
4: for j = 1 to P do
5: compute the upper and lower bounds of S[i, j];
6: if S[i, j] > ρ or S[i, j] < −ρ then
7: compute S[i, j];
8: if S[i, j] > ρ or S[i, j] < −ρ then
9: add edge e[i, j] to adjacency matrix A;
10: compute the blocks of connected components from adjacency matrix A;
11: for i = 1 tom do
12: compute S(i);
13: W(i) = S(i) + ρI(i);
14: repeat
15: for each j ∈ Bi do
16: compute Uj ;
17: repeat
18: compute β̂ until convergence by using Uj ;
19: compute U′

j ;
20: for each k ∈ U′

j do
21: compute β̂[k] from Equation (3);
22: if β̂[k] 6= 0 then
23: add k to Uj ;
24: until ∀k ∈ U′

j , β̂[k] = 0

25: w
(i)
12 = W

(i)
11 β̂;

26: until W(i) reaches convergence
27: compute Θ(i) from W(i);

return Θ;

β̂[i] = β̂′[i] holds ∀i ∈ Ui after the update computations to
obtain coefficient vector β̂

′
if we use coefficient vector β̂ in

the update computation. As a result, β̂
′

= β̂ holds. �

Lemma 3 indicates that, while the screening approach up-
dates coefficients in Bi in round-robin style, our approach can
selectively update the coefficients in Ui (Ui ⊆ Bi) without
sacrificing accuracy by checking the coefficients in U′i. While
the coefficients in Ui are iteratively updated, we do not per-
form the iterative computation for coefficients in U′i; this im-
proves efficiency. In the proposed approach, if a coefficient in
U′i has a nonzero value, we add the coefficient to set Ui and
recursively perform these procedures until we have β̂′[i] = 0
for all i such that i ∈ U′i. We show a detailed algorithm of
this approach in the next section.

4.4 Algorithm
Algorithm 1 gives a full description of our approach. In Al-
gorithm 1, A is the adjacency matrix of size P × P needed
by the screening approach and m is the number of blocks
obtained by the screening approach. By following the paper
of the screening approach [Witten et al., 2011], it processes
each block one by one. In addition, let S(i), W(i), I(i), w

(i)
12 ,

W
(i)
11 , and Θ(i) be matrix and vector of the i-th block that

correspond to S, W, I, w12, W11, and Θ, respectively.
Our approach starts by computing the SVD of data ma-

trix X and initializing adjacency matrix A (lines 1-2). In
order to efficiently obtain edges in the adjacency matrix, it
computes the upper and lower bounds of each covariance of
matrix S and, if the bounds meet the condition to have an
edge (Lemma 2), it exactly computes elements of the em-
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Figure 1: Estimation time of each approach.

pirical covariance matrix (lines 3-9). Then, it computes the
blocks from matrix A (line 10). Following the screening ap-
proach, it computes the elements of matrix Θ by exploiting
the block structures. For each block, it first computes matrix
S(i) and W(i) (lines 12-13). Then, it iteratively computes the
coefficients by exploiting Uj until convergence (lines 15-18).
It terminates the iterations if β̂[k] = 0 holds for all k such
that k ∈ U′j based on Lemma 3 (lines 19-24). After the it-
erations, it updates matrix W(i) (line 25). It performs these
procedures until matrix W(i) reaches convergence (line 26).

Sting has the following property for the computation cost:
Lemma 4 Let t be the number of update computations
for each row/column of the proposed approach, it requires
O(NP log n+nP 2 +PBt+NP 2/m) time to estimate ele-
ments of the inverse covariance matrix.
Proof As shown in Algorithm 1, it first computes the SVD
of data matrix X that needs O(NP log n) time [Halko et al.,
2011]. To obtain the block structures, it computes the upper
and lower bounds for all covariances of matrix S in O(nP 2)
time. In addition, it computes the covariances of matrix S cor-
responding to the blocks inO(NP 2/m) time. So as to reduce
the number of update computations, it first updates the coeffi-
cients expected to have nonzero values until convergence and
then checks whether the other coefficients have nonzero val-
ues inO(PBt+P 2/m) time. Therefore, the computation cost
of Sting is O(NP log n+nP 2+PBt+NP 2/m). �

Sting has the following property for the estimation results:
Lemma 5 Our approach converges to the same results as the
graphical lasso in estimating matrix Θ.
Proof As shown in Algorithm 1, it computes the (i, j)-th co-
variance of matrix S if we have S[i, j] > ρ or S[i, j] < −ρ.
This indicates that it does not compute the covariance of ma-
trix S if S[i, j] ≤ ρ and S[i, j] ≥ −ρ hold. From Lemma 2,
it is clear that the (i, j)-th covariance does not have an edge
in the adjacency matrix in that case. Therefore, our approach
can exactly obtain the same adjacency matrix as the graphical
lasso. In addition, although it selectively updates coefficients
in solving the lasso, it can obtain the same convergence re-
sults by checking unselected coefficients based on Lemma 3.
As a result, since the optimization problem of Equation (1) is
convex [Friedman et al., 2008], the proposed approach con-
verges to the same results as the graphical lasso. �

As shown in Theorem 4 and 5, the proposed approach the-
oretically converges to the same results as the graphical lasso
with improved efficiency.

5 Experimental Evaluation
In this section, we experimentally evaluate the efficiency
of our approach. We perform experiments on the datasets
of Madelon, ISOLET, Gisette, and Arcene. These datasets
have 600, 6238, 1000, and 700 observations, respectively.
In addition, these datasets have 500, 618, 5000, and 10000
variables, respectively. Details of the datasets are shown
in the UC Irvine Machine Learning Repository1. In the
datasets, each column vector is standardized to have mean
zero and variance one [Tan et al., 2015]. In the experiments,
we compare the proposed approach to glasso, QUIC, and
huge. As described in Section 3, glasso is the most popu-
lar method for the graphical lasso based on the coordinate
descent algorithm and the screening approach. QUIC is a
recent method based on the Newton’s method [Hsieh et al.,
2013]. Note that QUIC does not guarantee the same re-
sults as the graphical lasso as described in Section 3. In
addition, huge is a state-of-the-art method for the graphical
lasso that is based on the coordinate descent algorithm [Fried-
man et al., 2008] and recent approaches [Liu et al., 2012;
2010] detailed in Section 2. This method can yield the same
results as the graphical lasso. In the experiments, we used
the latest versions; glasso 1.8 [Friedman et al., 2015], QUIC
1.1 [Hsieh et al., 2015], and huge 1.2.7 [Zhao et al., 2015].
In this section, “glasso”, “QUIC”, and “huge” represent the
results of glasso, QUIC, and huge, respectively. In addition,
“Sting(n)” denotes the results of our approach where we set
the target rank of SVD to n. We set the convergence threshold
to 10−4. We conducted all experiments on a Linux 2.70 GHz
Intel Xeon server. While glasso is implemented in Fortran,
sting, QUIC, and huge are implemented in C/C++.

5.1 Efficiency
We evaluated the estimation time of each approach. Figure 1
shows the results where we set L1 regularization parameter,
ρ, to 0.5, 0.7, and 0.9. Note the results of the proposed ap-
proach include the time taken to compute the SVD of the data
matrix before entering the iterations.

As shown in Figure 1, our approach is much faster than
the previous approaches. Specifically, our approach is up
to 300 times faster than glasso, up to 100 times faster than
QUIC, and up to 45 times faster than huge. As described
in Section 4.2, Sting does not compute all the elements of
the empirical covariance matrix by exploiting the upper and

1https://archive.ics.uci.edu/ml/index.html
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computations.

lower bounds. In addition, it selectively updates coefficients
that are expected to have nonzero values as described in Sec-
tion 4.3. As a result, our approach is superior to the existing
approaches in terms of computation time as shown in Fig-
ure 1. This figure also indicates that the estimation time of our
approach only slightly varies against the target rank of SVD,
n. As described in Section 4.2, it takesO(n) time to compute
the upper and lower bounds by SVD. Therefore, we can in-
crease the efficiency of computing the bounds if rank n have
a small value. On the other hand, we can reduce the number
of covariance computations if rank n has a large value. In
conclusion, we can efficiently compute the bounds by reduc-
ing the target rank at the sacrifice of the number of covariance
computations. Due to the trade-off derived from rank n, our
approach is not so sensitive to the number of the target rank.
In addition, Figure 1 indicates that the efficiency of Sting rises
with ρ. This is because the proposed approach effectively ex-
ploits the sparseness property of the graphical lasso. Note
that the proposed approach is theoretically guaranteed to con-
verge to the same estimation results as the graphical lasso as
shown in Theorem 5. Therefore, Figure 1 and Theorem 5 in-
dicate that our approach can successfully reduce the compu-
tation time while providing the same guaranteed solution as
the graphical lasso in estimating the inverse covariance ma-
trix. Note that huge yield the same result as the graphical
lasso while QUIC is an approximate approach.

5.2 Effectiveness
In the following experiments, we examine the effectiveness
of the two core methods: (1) computing the upper and lower
bounds and (2) selective update in the coordinate descent.

Covariance computations
As described in Section 4.2, we compute the upper and lower
bounds of each covariance in matrix S to efficiently obtain
the block structures used in the screening approach. In this
section, we evaluate the number of covariance computations
needed to evaluate the effectiveness of this approach. Figure 2
shows the results where we set ρ = 0.7 and n = 100. In this
figure, “without bounds” represents the number of covariance
computations where the upper and lower bounds are not used
in obtaining the block structures; i.e., all the covariances in
matrix S are computed. In addition, “with bounds” indicates
the results when we used the upper and lower bounds in ob-
taining the block structures.

As shown in Figure 2, our approach can effectively reduce
the number of covariance computations by exploiting the up-
per and lower bounds. For computing the block structures,

the screening approach by Friedman et al. needs to compute
all the covariances in matrix S to obtain the covariances that
have high absolute values. Therefore, it incurs the high com-
putation cost of O(NP 2) where N and P are the numbers
of observations and variables, respectively. Even though our
approach needs to compute the bounds for all covariances in
matrix S, the computation cost is small since we can effi-
ciently compute the bounds by using SVD of rank n; the com-
putation cost of this procedure is O(nP 2) where n � N . In
addition, since we can effectively approximate the data matrix
by exploiting SVD, our approach can successfully prune the
unlikely covariances that have low absolute values. As a re-
sult, by exploiting the upper and lower bounds, we can effec-
tively reduce the number of covariance computations needed
to obtain the block structure in the screening approach.

Update computations
In order to improve the efficiency, we selectively update the
coefficients expected to have nonzero values as described in
Section 4.3. We plot the number of update computations
needed to compute the coefficients in Figure 3 to show the
effectiveness of this approach. In this figure, “round-robin”
is the number of update computations where the coefficients
are updated in round-robin style. In addition, “selective” indi-
cates the results where the coefficients are selectively updated
by using our approach. We set ρ = 0.7 and n = 100.

Figure 3 indicates that our approach can effectively reduce
the number of updated computations. As described in Sec-
tion 3, the graphical lasso computes the blocks of connected
components from the adjacent matrix. While an edge be-
tween a variance pair in the adjacent matrix indicates that
the variance pair has a covariance of high absolute value, the
covariances can be included in the same block of connected
components even if they do not have high absolute value. In
addition, if covariance has low absolute value, the coefficient
corresponding to the covariance is expected to be zero due to
the L1 penalty of the objective function [Langfelder and Hor-
vath, 2008]. As a result, the coefficients in the graphical lasso
have the property of sparseness. This indicates that the graph-
ical lasso performs unnecessary update computations where
many coefficients result in zero since it updates the coeffi-
cients of each block in round-robin style. On the other hand,
our approach selectively updates only those coefficients that
correspond to covariances with high absolute values. Since
we do not iteratively compute the unlikely coefficients, we
can effectively reduce the number of update computations in
obtaining the inverse covariance matrix.

6 Conclusions

We proposed Sting, an efficient algorithm that improves the
efficiency of the graphical lasso. Our approach computes the
upper and lower bounds of covariances and selectively up-
dates the coefficients of the lasso expected to have nonzero
values. Experiments showed that it offers improved efficiency
over existing approaches. Sting will allow many the graphi-
cal lasso-based applications to be processed more efficiently,
and will improve the effectiveness of AI-based applications.
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jit S. Dhillon, Pradeep Ravikumar, and Russell A. Pol-
drack. BIG & QUIC: Sparse Inverse Covariance Estima-
tion for a Million Variables. In NIPS, pages 3165–3173,
2013.

[Hsieh et al., 2015] Cho-Jui Hsieh, Matyas A. Sustik, Inder-
jit S. Dhillon, and Pradeep Ravikumar. Package ‘QUIC’.
https://cran.r-project.org/web/packages/QUIC/index.html,
2015.

[Langfelder and Horvath, 2008] Peter Langfelder and Steve
Horvath. WGCNA: an R Package for Weighted Correla-
tion Network Analysis. BMC Bioinformatics, 9, 2008.

[Li et al., 2016] Mei Li, Ying Lin, Shuai Huang, and Craig
Crossland. The Use of Sparse Inverse Covariance Estima-
tion for Relationship Detection and Hypothesis Generation

in Strategic Management. Strategic Management Journal,
37(1):86–97, 2016.

[Liu et al., 2010] Han Liu, Kathryn Roeder, and Larry A.
Wasserman. Stability Approach to Regularization Selec-
tion (StARS) for High Dimensional Graphical Models. In
NIPS, pages 1432–1440, 2010.

[Liu et al., 2012] Han Liu, Fang Han, Ming Yuan, John D.
Lafferty, and Larry A. Wasserman. High Dimensional
Semiparametric Gaussian Copula Graphical Models. In
ICML, 2012.

[Mishima and Fujiwara, 2015] Takeshi Mishima and Ya-
suhiro Fujiwara. Madeus: Database Live Migration Mid-
dleware under Heavy Workloads for Cloud Environment.
In ACM SIGMOD, pages 315–329, 2015.

[Nakatsuji et al., 2014] Makoto Nakatsuji, Yasuhiro Fuji-
wara, Hiroyuki Toda, Hiroshi Sawada, Jinguang Zheng,
and James Alexander Hendler. Semantic Data Represen-
tation for Improving Rensor Factorization. In AAAI, pages
2004–2012, 2014.

[Neuberg and Glasserman, 2016] Richard Neuberg and Paul
Glasserman. The Correlation Structure of Credit Default
Swaps. Columbia Business School Research Paper, 2016.

[Press et al., 2007] William H. Press, Saul A. Teukolsky,
William T Vetterling, and Brian P. Flannery. Numerical
Recipes 3rd Edition. Cambridge University Press, 2007.

[Rosa et al., 2015] Maria J. Rosa, Liana Portugal, Tim Hahn,
Andreas J. Fallgatter, Marta I. Garrido, John Shawe-
Taylor, and Janaina Mourão Miranda. Sparse Network-
based Models for Patient Classification Using fMRI. Neu-
roImage, 105:493–506, 2015.

[Shiokawa et al., 2015] Hiroaki Shiokawa, Yasuhiro Fuji-
wara, and Makoto Onizuka. SCAN++: Efficient Algo-
rithm for Finding Clusters, Hubs and Outliers on Large-
scale Graphs. PVLDB, 8(11):1178–1189, 2015.

[Tan et al., 2015] Kean Ming Tan, Daniela M. Witten, and
Ali Shojaie. The Cluster Graphical Lasso for Improved
Estimation of Gaussian Graphical Models. Computational
Statistics & Data Analysis, 85:23–36, 2015.

[Vinciotti et al., 2016] Veronica Vinciotti, Ernst C. Wit, Rick
Jansen, Eco J. C. N. de Geus, Brenda W. J. H. Penninx,
Dorret I. Boomsma, and Peter A. C. ’t Hoen. Consistency
of Biological Networks Inferred from Microarray and Se-
quencing Data. BMC Bioinformatics, 17(1):254, 2016.

[Witten et al., 2011] Daniela M. Witten, Jerome H. Fried-
man, and Noah Simon. New Insights and Faster Compu-
tations for the Graphical Lasso. Journal of Computational
and Graphical Statistics, 20(4):892–900, 2011.

[Xu et al., 2016] Zenglin Xu, Shandian Zhe, Yuan Qi, and
Peng Yu. Association Discovery and Diagnosis of
Alzheimer’s Disease with Bayesian Multiview Learning.
JAIR, 56:247–268, 2016.

[Zhao et al., 2015] Tuo Zhao, Xingguo Li, Han
Liu, Kathryn Roeder, John Lafferty, and Larry
Wasserman. Package ‘huge’. https://cran.r-
project.org/web/packages/huge/huge.pdf, 2015.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1688


