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Abstract

We address the problem of online model adaptation
when learning representations from non-stationary
data streams. Specifically, we focus here on online
dictionary learning (i.e. sparse linear autoencoder),
and propose a simple but effective online model-
selection approach involving “birth” (addition) and
“death” (removal) of hidden units representing dic-
tionary elements, in response to changing inputs;
we draw inspiration from the adult neurogenesis
phenomenon in the dentate gyrus of the hippocam-
pus, known to be associated with better adapta-
tion to new environments. Empirical evaluation on
real-life datasets (images and text), as well as on
synthetic data, demonstrates that the proposed ap-
proach can considerably outperform the state-of-art
non-adaptive online sparse coding of [Mairal et al.,
2009] in the presence of non-stationary data. More-
over, we identify certain data- and model properties
associated with such improvements.

1 Introduction
1 Adaptation to a changing environment is essential for suc-
cessful functioning of both natural and artificial intelligent
systems. In human brains, adaptation is achieved via neu-
roplasticity, which includes synaptic plasticity, i.e. change
in strength of neuronal connections, and (adult) neurogenesis
[Kempermann, 2006], i.e. the birth and maturation of new
neurons, accompanied by some neuronal death; hippocampal
neurogenesis, in particular, is a “candidate mechanism for the
specific dynamic and flexible aspects of learning” [Stuchlik,
2014].

In representation learning, which always involves a hidden-
variable model such as dictionaries, autoencoders or feed-
forward neural nets, probabilistic hidden-factor models, etc.,
synaptic plasticity is analogous to parameter learning (e.g.,
neural net weight training), while neurogenesis can be mod-

∗The author contributed to this work as a research intern, who is
currently a PhD student at the University of Southern California.

1The extended version of this paper is available at
arxiv.org/abs/1701.06106 .

eled as an online architecture adapation via adding/deleting
hidden units (neurons).

However, optimal model selection in large-scale hidden-
variable models, e.g., choosing the number of layers, hidden
units, and their connectivity, can be intractable due to enor-
mous search space size. An online approach to dynamically
expanding and contracting model’s architecture can serve as
a potentially more effective alternative to the standard off-
line model selection (e.g., MDL-based off-line sparse coding
[Ramirez and Sapiro, 2012]), as well as to the currently pop-
ular network compression (distillation) approaches [Hinton
et al., 2015; Mariet and Sra, 2015; Srivastava et al., 2014;
Ba and Caruana, 2014; Bucilu et al., 2006], which involve
learning a large-scale model first, and compressing it to a
smaller one later.

In this paper, we focus on dictionary learning, a.k.a. sparse
coding [Olshausen and Field, 1997; Kreutz-Delgado et al.,
2003; Aharon et al., 2006; Lee et al., 2006] – a representation
learning approach which finds a set of basis vectors (atoms,
or dictionary elements) and representations (encodings) of
the input samples as sparse linear combinations of those el-
ements2. More specifically, our approach builds upon the
computationally efficient online dictionary-learning method
of [Mairal et al., 2009], where the data samples are processed
sequentially, one at a time (or in small batches). Online ap-
proaches are particularly important in large-scale applications
with millions of potential training samples, where off-line
learning can be infeasible; furthermore, online approaches
are a natural choice for building systems capable of contin-
ual, lifelong learning.

We propose a novel online model-selection approach for
dictionary learning, inspired by the neurogenesis process, in-
volving addition and deletion of the elements, in response to
the dynamically changing properties of input data. Namely,
at each iteration corresponding to a new batch of data, a num-
ber of random dictionary elements is added (neuronal birth);
higher representation error, indicating mismatch between the
current dictionary and the new samples, triggers more neuro-
genesis. The neuronal death involves removing “useless” dic-

2This corresponds to a sparse, singe-hidden-layer linear autoen-
coder, where the hidden units correspond to dictionary elements,
each element represented by a weight vector associated with the
unit’s outgoing links in the output layer, and the sparse vector of
hidden unit activations correspond to the encoding of an input.
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tionary elements, and is implemented by l1/l2 group-sparsity
regularization; this step is essential in neurogenesis-inspired
learning, since it reduces a potentially uncontrolled growth of
the dictionary, and helps to avoid overfitting. Note that in nat-
ural adult neurogenesis, neuronal death is also an important
factor balancing neuronal birth [Kempermann, 2006]).

Moreover, besides selecting the model complexity (i.e. the
number of hidden units) in online sparse coding, our frame-
work allows for online connectivity adaptation by imposing
sparsity on dictionary elements, rather than just on codes; this
is a more biologically plausible assumption than the full con-
nectivity, i.e. dense dictionary elements, which also results
into superior empirical performance.

Note that, although the group-sparsity constraint enforcing
deletion of some dictionary elements was introduced earlier
in the group-sparse coding method of [Bengio et al., 2009],
it was only implemented and tested in the off-line rather than
online setting, and, most importantly, it was not accompanied
by neurogenesis. On the other hand, while some prior works
considered online node addition in hidden-variable models,
and specifically, in neural networks, from cascade correla-
tions [Fahlman and Lebiere, 1989] to the recent work by
[Draelos et al., 2016; Rusu et al., 2016], no model pruning
was incorporated in those approaches to balance the model
expansion.

We demonstrate on simulated data and on two real-life
datasets, i.e. natural images and language processing task,
that our approach significantly outperform non-adaptive,
fixed-dictionary-size online method of [Mairal et al., 2009]
when the input is non-stationary. Moreover, we identify cer-
tain data properties and parameter settings associated with
such improvements. In summary, our work appears to be the
first one to propose and evaluate, both empirically and theo-
retically, online model selection in dictionary learning under
non-stationary inputs.

2 Background on Dictionary Learning
Traditional off-line dictionary learning [Olshausen and Field,
1997; Aharon et al., 2006; Lee et al., 2006], also known
as sparse coding, aims at finding a dictionary D ∈ Rm×k,
which allows for an accurate encoding of each sample in the
training data set X = {x1, · · · ,xn ∈ Rm} by a linear com-
binations of a relatively small (thus, sparse encoding) subset
of dictionary elements {d1, · · · ,dk ∈ Rm}. This is achieved
by minimizing

fn(D) =
1

n

n∑
i=1

1

2
||xi −Dαi||22 + λc||αi||1 (1)

where the first term is the representation error, and the second
term is the l1-regularization which enforces the codes αi to
be sparse. The joint minimization of fn(D) with respect to
the dictionary and codes is non-convex, and commonly used
approach is to use an alternating minimization over the codes
and the dictionary.

However, the classical dictionary learning does not scale
to very large datasets; moreover, it is not immediately ap-
plicable to online learning from a continuous stream of data.
The online dictionary learning (ODL) method proposed by

[Mairal et al., 2009] overcomes both of these limitations,
and serves as a basis for our proposed approach, presented
in Alg. 1 in the next section. While the highlighted lines in
Alg. 1 represent our extension of ODL , the non-highlighted
ones are common to both approaches, and are discussed first.
The algorithms start with some dictionary D0, e.g. a ran-
domly initialized one (other approaches include using some
of the inputs as dictionary elements [Mairal et al., 2009;
Bengio et al., 2009]). At each iteration t, both online ap-
proaches consider the next input sample xt (or a batch of
samples), in step 3 and compute its sparse codeαt by solving
the LASSO [Tibshirani, 1996] problem (step 4), with respect
to the current dictionary. Next, ODL computes the dictionary
update,D(t) (denoted simply asD in the algorithm), by opti-
mizing the surrogate objective function f̂t(D), similar to the
original one in eq. (1), for n = t, except for an important
change: in eq. (1), each code αi is computed using the same
dictionary D, while the surrogate function keeps the codes
αi from the previous iterations, computed using the corre-
sponding previous dictionaries D(i), i.e. does not recompute
the codes of previously seen samples after each dictionary
update. This speeds up the learning without worsening the
(asymptotic) performance, since the surrogate objective con-
verges to the original one in (1), under certain assumptions,
including data stationarity [Mairal et al., 2009]. Note that,
in order to prevent the dictionary entries from growing ar-
bitrarily large, [Mairal et al., 2009] impose the norm con-
straint, i.e. keep the columns of D within the convex set
C = {D ∈ Rm×k s.t. ∀j dTj uj ≤ 1}. Then the dictionary
update step computes D(t) = arg minD∈C f̂t(D), ignoring
l1-regularizer over the code which is fixed at this step, i.e. it
finds minD∈C

1
t

∑t
i=1

1
2 ||xi − Dαi||

2
2, which is equivalent

to finding

min
D∈C

1

2
Tr(DTDA)− Tr(DTB), (2)

where A =
∑t
i=1αiα

T
i and B =

∑t
i=1 xiα

T
i are the

“bookkeeping” matrices (we also call them “memories” of
the model), compactly representing the input samples and en-
coding history. At each iteration, once the new input sample
xi is encoded, the matrices are updated as A ← A + αtα

T
t

and B ← B + xtα
T
t (see the step 11 of Alg. 1). In [Mairal

et al., 2009], a block coordinate descent is used to optimize
the convex objective in eq. 2; it iterates over the dictionary
elements in a fixed sequence, until convergence, optimizing
each while keeping the others fixed as shown in eq. (3) (steps
14 and 17 in Alg. 1, except that, in our approach, uj is trans-
formed into wj to impose an additional regularizer before
computing step 17) 3.

uj ←
bj −

∑
k 6=j dkajk

ajj
; dj ←

uj
max(1, ||uj ||2)

(3)

3 Note that when the off-diagonal entries ajk in A are as large
as the diagonal ajj , the dictionary elements get “tied” to each other,
playing complementary roles in the dictionary, thereby constraining
the updates of each other - an insight used later to explain empirical
performance of the proposed approach.
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It this work, we will also impose sparsity on dictionary el-
ements (step 15 in Alg. 1), i.e. replace the objective in eq. (2)
with

min
D∈C

1

t

t∑
i=1

1

2
||xi −Dαi||22 +

∑
j

λj ||dj ||1. (4)

From now on, ODL will refer to the above extended version
of the fixed-size method of [Mairal et al., 2009] wherever we
have sparsity in dictionary elements.

3 Neurogenic Online Dictionary Learning
Our objective is to extend the state-of-art online dictionary
learning, designed for stationary input distributions, to a more
adaptive framework capable of handling nonstationary data
effectively, and learning to represent new types of data with-
out forgetting how to represent the old ones. Towards this
end, we propose a novel algorithm, called Neurogenetic On-
line Dictionary Learning (see Alg. 1), which can flexibly ex-
tend and reduce a dictionary in response to the changes in an
input distribution, and possibly to the inherent representation
complexity of the data. The main changes, as compared to
the non-adaptive, fixed-dictionary-size algorithm of [Mairal
et al., 2009], are highlighted in Alg. 1; the two parts involve
(1) neurogenesis, i.e. the addition of dictionary elements (hid-
den units, or “neurons”) and (2) the death of old and/or new
elements which are “less useful” than other elements for the
task of data reconstruction.

At each iteration in Alg. 1, the next batch of samples is
received and the corresponding codes, in the dictionary, are
computed; next, we add kn new dictionary elements sampled
at random from Rm (i.e., kn random linear projections of the
input sample). The choice of the parameter kn is important;
one approach is to tune it (e.g., by cross-validation), while an-
other is to adjust it dynamically, based on the dictionary per-
formance: e.g., if the environment is changing, the old dictio-
nary may not be able to represent the new input well, leading
to decline in the representation accuracy, which triggers neu-
rogenesis. Herein, we use as the performance measure the
Pearson correlation between a new sample and its representa-
tion in the current dictionary r(xt,D(t−1)αt), i.e. denoted as
pc(xt,D

(t−1),αt) (for a batch of data, the average over pc(.)
is taken). If it drops below a certain pre-specified threshold γ
(where 0 � γ ≤ 1), the neurogenesis is triggered (the step
5). The number kn of new dictionary elements is proportional
to the error 1 − pc(·), so that worse performance will trigger
more neurogenesis, and vice versa; the maximum number of
new elements is bounded by ck (the step 6). We refer to this
approach as conditional neurogenesis as it involves the con-
ditional birth of new elements. Next, kn random elements
are generated and added to the current dictionary (the step 7),
and the memory matrices A,B are updated, respectively, to
account for larger dictionary (the step 8). Finally, the sparse
code is recomputed for xt (or, all the samples in the current
batch) with respect to the extended dictionary (the step 9).

The next step is the dictionary update, which uses block-
coordinate descent, with the following objective function:

min
D∈C

1

t

t∑
i=1

1

2
||xi−Dαi||22 +λg

∑
j

||dj ||2 +
∑
j

λj ||dj ||1. (5)

Algorithm 1 Neurogenetic Online Dictionary Learning (NODL)
Require: Data stream x1,x2, · · · ,xn ∈ Rm; initial dictionary D ∈

Rm×k; conditional neurogenesis threshold, γ; max number of new ele-
ments added per data batch, ck; group sparsity regularization parameter,
λg ; number of non-zeros in a dictionary element, βd; number of non-
zeros in a code, βc.

1: Initialize: A← 0,B ← 0 % reset the ‘‘memory’’
% single data in a batch, for simpler exposition

2: for t = 1 to n do
3: Input xt % representing the tth batch of data

% Sparse coding of data:

4: αt = argα∈Rk min 1
2
||xt−Dα||22+λc||α||1 % λc tuned to

have βc non-zeros in αt

% Conditional neurogenesis: if accuracy below
threshold, add more elements

5: if pc(xt,D,αt) ≤ γ then
6: kn = (1−pc(xt,D,αt))ck % the count of the births

7: Dn ← initializeRand(kn),
D ← [D Dn]

8: A←
[
A 0
0 0

]
, B ← [B 0], k ← k + kn

% Repeat sparse coding, with the new elements

9: αt = argα∈Rk min 1
2
||xt −Dα||22 + λc||α||1

10: end if % End of neurogenesis

% ‘‘Memory’’ update:
11: A← A+αtαTt , B ← B + xtαTt

% Dictionary update by block-coordinate descent
12: repeat
13: for j = 1 to k do
14: uj ←

bj−
∑

k 6=j dkajk
ajj

% Sparsifying elements (optional):
15: vj ← Proxλj ||.||1 (uj) = sgn(uj)(|uj | − λj)+, % λj

tuned to get βd non-zeros in vj

% Killing useless elements with l1/l2 group
sparsity

16: wj ← vj

(
1− λg

||vj ||2

)
+

17: dj ←
wj

max(1,||wj ||2)
18: end for
19: until convergence
20: end for
21: return D

The first term is the standard reconstruction error, as before.
The second term, l1/l2-regularization, promotes group spar-
sity over the dictionary entries, where each group corresponds
to a column, i.e. a dictionary element. The group-sparsity
[Yuan and Lin, 2006] regularizer causes some columns in D
to be set to zero (i.e. the columns less useful for accurate data
representation), thus effectively eliminating the correspond-
ing dictionary elements from the dictionary (“killing” the cor-
responding hidden units). As mentioned previously, [Bengio
et al., 2009] used the l1/l2-regularizer in dictionary learning,
though not in online setting, and without neurogenesis.

Finally, the third term imposes l1-regularization on dictio-
nary elements thus promoting sparse dictionary, besides the
sparse coding. Introducing sparsity in dictionary elements,
corresponding to the sparse connectivity of hidden units in
the neural net representation of a dictionary, is motivated by
both their biological plausibility (neuronal connectivity tends
to be rather sparse in multiple brain networks), and by the
computational advantages this extra regularization can pro-
vide, as we observe later in experiments section (Sec. 4).

As in the original algorithm of [Mairal et al., 2009], the
above objective is optimized by the block-coordinate descent,
where each block of variables corresponds to a dictionary el-
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ement, i.e., a column in D; the loop in steps 12-19 of the
Alg. 1 iterates until convergence, defined by the magnitude
of change between the two successive versions of the dictio-
nary falling below some threshold. For each column update,
the first and the last steps (the steps 14 and 17) are the same
as in the original method of [Mairal et al., 2009], while the
two intermediate steps (the steps 15 and 16) are implement-
ing additional regularization. Both steps 15 and 16 (sparsity
and group sparsity regularization) are implemented using the
standard proximal operators as described in [Jenatton et al.,
2011]. Note that we actually use as input the desired number
of non-zeros, and determine the corresponding sparsity pa-
rameter λc and λj using a binary search procedure. Overall,
the key features of our algorithm is the interplay of both the
(conditional) birth and (group-sparsity) death of dictionary
elements in an online setting. 4

4 Experiments
Our empirical evaluation compares the proposed NODL ap-
proach with the standard ODL. We also investigate sepa-
rately the effects of adding or deleting dictionary elements,
by evaluating the following restricted versions of our method:
NODL+ involves only addition but no deletion (equivalent to
NODL with no group-sparsity, i.e. λg = 0), and NODL-
which, vice versa, involves deletion only but no addition
(equivalent to NODL with the number of new elements ck =
0). We use a simple non-stationary setting, where a sequence
of training samples from one environment is followed by an-
other sequence from a different environment.

4.1 Real-life Images
Our first domain includes the images of Oxford buildings, i.e.
urban environment 5, while the second uses a combination of
images from Flowers 6 and Animals 7 image databases (natu-
ral environment). We converted the original color images into
black&white format and compressed them to smaller sizes,
32x32 and 100x100; also, here we use as the input samples
full images rather than image patches.

Parameter settings. We selected 5700 images for training
and another 5700 for testing; each subset contained 1900 im-
ages of each type (i.e., Oxford, Flowers, Animals). In the
training phase, the algorithms receive a sequence of 1900
samples from the first domain (Oxford), and then a sequence
of 3800 samples from the second domain (1900 Flowers and
1900 Animals, permuted randomly); the batch size is 200 im-
ages ([Mairal et al., 2009] used a batch of size 256, though
image patches rather than full images). We use Pearson corre-
lation threshold γ = 0.9, group sparsity parameter λg = 0.03
and λg = 0.07, for 32x32 and 100x100 images, respectively;
ck = 50 is the upper bound on the number of new dictionary

4Note that the computational cost analysis, as well as the conver-
gence analysis for our proposed algorithm can be more complicated
than in the standard dictionary learning setting, since the size of the
dictionary continues to change, in a non-stationary environment.

5 www.robots.ox.ac.uk/ vgg/data/oxbuildings/
6 www.robots.ox.ac.uk/ vgg/data/flowers/102/
7 www.robots.ox.ac.uk/ vgg/data/pets/

elements at each iteration. We observed that, overall, the re-
sults were quite robust to the changes in parameter values.

Evaluation. Once the training phase is completed, the re-
sulting dictionary is evaluated on test images from both the
first (urban) and the second (natural) domains; for the sec-
ond domain, separate evaluation is performed for flowers and
animals. First, we evaluate the reconstruction ability of the
resulting dictionary D, comparing the actual inputs x ver-
sus approximations x∗ = Dα, using the mean square er-
ror (MSE), Spearman correlation, and Pearson correlation;
we only plot the latter since all metrics showed consistent re-
sults. Next, we used the codes as new features and evaluated
the corresponding image classification accuracy for flowers
vs animals. The evaluation results differed dramatically for
sparse vs dense dictionaries, as discussed below.

In Fig. 1(a), 1(b) and 1(c), we present the results for sparse
dictionaries, where each column (an element in the dictio-
nary) has 5 nonzeros out of the 1024 dimensions; the codes
are relatively dense, with at most 200 nonzeros out of k (the
number of dictionary elements), and k ranging from 5 to 1000
(i.e. the codes are not sparse for k ≤ 200). In Fig. 1(a), we
compare the dictionary size for different methods: the final
dictionary size after completing the training phase (y-axis) is
plotted against the initial dictionary size (x-axis). Obviously,
the baseline (fixed-size) ODL method (magenta plot) keeps
the size constant, deletion-only NODL- approach reduces the
initial size (red plot), and addition-only NODL+ increases
the size (light-blue plot). However, the interplay between the
addition and deletion in our NODL method (dark-blue) pro-
duces a more interesting behavior: it tends to adjust the rep-
resentation complexity towards certain balanced range, i.e.
very small initial dictionaries are expanded, while very large
ones are, vice versa, reduced.

NODL advantages. Our main results demonstrating the
advantages of the proposed NODL method are shown next
in Fig. 1(b) and Fig. 1(c), for the “old” (Oxford) and “new”
(Flowers) environment (domain), respectively. (Very similar
result are obtained for the Animals dataset). The x-axis shows
the final dictionary size, and the y-axis is the reconstruction
accuracy achieved by the trained dictionary on the test sam-
ples, measured by Pearson correlation between the actual and
reconstructed data. NODL clearly outperforms the fixed-size
ODL, especially on smaller dictionary sizes; remarkably, this
happens on both domains, i.e. besides improved adaptation
to the new data, NODL is also better at preserving the “mem-
ories” of the old data, without increasing the representation
complexity, i.e. for the same dictionary size.

Furthermore, the addition/deletion trade-off is indeed im-
portant, since the performance of deletion-only NODL- is in-
ferior to NODL, while the addition-only, or NODL+, method
matches NODL accuracy but at the cost of unnecessarily large
dictionary. NODL achieves the best trade-off here, attaining
superior performance while keeping the dictionary size under
control, in a narrower range (400 to 650 elements).

Larger-scale setting. We now focus on comparing the two
main methods, the baseline ODL and the proposed NODL.
The advantages of our approach become even more pro-
nounced on larger input sizes, 100x100 images, in similar
sparse-dictionary, dense-code settings (keeping the dictionary
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(a) Learned Dictionary Size (b) 1st domain (Oxford) (c) 2nd domain (Flowers) (d) 1st domain (Oxford) (e) 2nd domain (Flowers)

Figure 1: Reconstruction accuracy (Pearson correlation) of NODL and ODL with sparse dictionaries learned on images

elements at the same sparsity rate, 50 nonzeros out of 10k
dimensions, and just use completely non-sparse codes). In
Fig. 1(d) and Fig. 1(e), we see that NODL considerably out-
performs ODL on both the first (Oxford) and the part of the
second domain (Flowers); the results for Animals are similar.

We also performed a variety of experiments, not included
due to the space restrictions, which demonstrated robustness
of our results to the parameter perturbations across a wide
range of γ, λg , ck, βc, βd, and batch-size parameters, as well
as to various orders of the input datasets. Moreover, we ex-
plored a version of ODL mentioned in [Mairal et al., 2009]
where occasional zero-column (“dead” elements) are reini-
tialized, but did not observe significant differences in ODL
performance, since without the explicit group-sparse regular-
ization of NODL, the number of “dead” elements in ODL was
very small.

Dense vs. sparse dictionary elements. When experiment-
ing with more traditional dense dictionaries, commonly used
in sparse coding literature, we observed that both adaptive
NODL and non-adaptive ODL approaches behaved very sim-
ilarly; being adaptive never hurt the performance, but also
did not result into significant improvements observed in case
of sparse dictionaries. Furthermore, we also evaluated both
types of dictionaries, sparse vs dense, in both adaptive and
non-adaptive approaches, for the purpose of classification
rather than just reconstruction of the inputs. Namely, we use
the codes (i.e., feature vectors) computed on the test data from
the second domain (Animals and Flowers) and evaluate mul-
tiple classifiers learned on those features in order to discrim-
inate between the two classes. We find that the overall clas-
sification errors, for both ODL and NODL, are much higher
in dense dictionary setting (0.30, 0.40 error with dense and
sparse codes respectively) than in the sparse-dictionary set-
ting (0.24 error with dense codes). This again demonstrates
the advantages of sparse dictionaries over the dense ones.

In summary, (1) our adaptive NODL approach signifi-
cantly outperforms nonadaptive ODL, on both the new data
(adaptation) and the old ones (memory), when using sparse
dictionaries; (2) the results are robust to parameter and data
set order variations; (3) for dense dictionaries, adaptive ap-
proach performs as good as the nonadaptive baseline.

4.2 Sparse Orthogonal Inputs: Natural Language
Processing and Synthetic Data

Our next question was: which specific data properties (rather
than method properties) make neurogenetic adaptation most
beneficial ? We noticed that the standard ODL approach

has difficulties adapting to a new domain when: (1) the data
in both domains are sparse and (2) across the domains, the
supports (subsets of non-zero coordinates) are almost non-
overlapping, which makes the old and new datasets nearly or-
thogonal. This phenomenon was observed in a Natural Lan-
guage Processing (NLP) task presented below, further inves-
tigated on simulated data, and formalized later in Lemma 1.
Sparse Natural Language Processing Problem. We con-
sider a very sparse word co-occurrence matrix (avg. 14 nnz
per column) using the text from two different domains, biol-
ogy and mathematics, with the total vocabulary size of ap-
proximately 12,883 words. The full matrix was split in two
with math terms correspond to the first block of columns (see
Fig. 2(a)) and the biology terms correspond to the second
one (see Fig. 2(b)). We use the sparse columns (or rows)
in the matrix, indexed by the vocabulary words, as our in-
put data to learn the dictionary of sparse elements (25 non-
zeros) with sparse codes (or word embeddings with 38 non-
zeros) [Yogatama et al., 2015]. Herein, we evaluate our
NODL method (i.e. NODL (sparse) in the plots) versus base-
line ODL dictionary learning approach (i.e. ODL (sparse))
in the settings where the biology domain is processed first
and then the mathematics domain (2750 samples for train-
ing and test from each domain). The evaluation results are
shown in Fig. 2(c) and 2(d). For the first domain (biology),
both methods perform very similarly (i.e., remember the old
data equally well), while for the second, more recent domain,
our NODL algorithm is clearly outperforming its competitor.
Also, note that dense dictionaries do not work well on these
sparse data – see inferior performance of both random dense
dictionaries (random-D) and the dense dictionaries learned
with ODL (i.e. ODL (dense)).
Synthetic Sparse Data. The word co-occurrence matrix
from different domains such as mathematics and biology
tends to have approximately block-diagonal structure. So,
herein, we studied the simulated sparse dataset wherein the
data matrix is purely block-diagonal with each column of
1024 dimension with 50 nonzeros (100 samples from each
of the two domains, for training and testing). In Fig. 2(e)
and 2(f), we see reconstruction accuracy, for the first and sec-
ond domain data. For the first domain, the baseline ODL
method (i.e. ODL (sparse) in the plots) and our NODL (i.e.
NODL (sparse)) perform equally well. However, for the sec-
ond domain, the nonadaptive ODL performs much worse than
adaptive NODL, being unable to adapt to the new data com-
ing from a subspace orthogonal (due to nonoverlapping sup-
port) to the first dataset.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1700



(a) Math (b) Bio (c) 1st domain (Bio) (d) 2nd domain (Math)

(e) Synthetic: 1st domain (f) Synthetic: 2nd domain (g) D- ODL (h) D- NODL
Figure 2: Reconstruction accuracy (Pearson correlation) for the sparse NLP as well as synthetic data.

The dictionaries learned by each method are shown in
Fig. 2(g) and Fig. 2(h): nonadaptive ODL maintains the spar-
sity structure learned from the first domain, and cannot adapt
when domains change, while NODL learns elements repre-
senting the sparsity structure of the second domain, due to
its ability to add new randomly initialized dense dictionary
elements, which adapt to the new sparsity pattern.

5 Theoretical Analysis and Discussion
Sparse data modeling with sparse dictionaries. Our empir-
ical observations for the sparse data are formally supported
by the Lemma 1 below which proves that the baseline ODL
method cannot adapt to a new domain if there is no overlap
with the old domain’s support 8.
Lemma 1. Let x1,x2, · · · ,xt−1 ∈ Rm be a set of samples
from the first domain, with non-zeros (support) in the set of di-
mensions P ⊂M= {1, · · · ,m}, and let xt,xt+1, · · · ,xn ∈
Rm be a set of samples from the second domain, with non-
zeros (support) in dimensions Q ⊂ M , such that P ∩ Q =
ø, |P | = |Q| = l. Let us denote as d1,d2, · · · ,dk ∈ Rm
dictionary elements learned by ODL algorithm, with the spar-
sity constraint of at most l nonzeros in each element (l cor-
responds to βd in Alg. 1), on the data from the first domain,
x1, · · · ,xt−1. Then (1) those elements have non-zero sup-
port in P only, and (2) after learning from the second domain
data, the support (nonzero dimensions) of the corresponding
updated dictionary elements will remain in P .

Proof Sketch. When processing the data from the first do-
main, at the first iteration, a sample x1 is received, its code

8The minor adaptation, i.e., a few nonzeros, observed in our re-
sults in Fig. 2(g) occurs only due to implementation details involving
normalization of sparse dictionary elements when computing codes
in the dictionary – the normalization introduces non-zeros of small
magnitude in all dimensions.

α1 is computed, and the matrices A and B are updated, as
shown in Alg. 1 (non-highlighted part); next, the dictionary
update step is performed, which optimizes

D(1) =arg min
D∈C

1

2
Tr(DTDA)−Tr(DTB)+

∑
j

λj ||dj ||1.

Since the support of x1 is limited to P , we can show that opti-
mal dictionaryD∗ must also have all columns/elements with
support in P . Indeed, assuming the contrary, let dj(i) 6= 0
for some dictionary element/column j, where i /∈ P . But
then it is easy to see that setting dj(i) to zero reduces the
sum-squared error and the l1-norm in (1), yielding another
dictionary that achieves a lower overall objective; this con-
tradicts our assumption that D∗ was optimal. Thus, a dictio-
nary obtained after the dictionary update step must produce
a dictionary where all columns have their support in P . By
induction, this statement will also be true for the dictionary
obtained after processing all samples from the first domain.
Next, we start receiving the samples from the second domain
which belongs to a different subspace, spanning the dimen-
sions within the support set Q not intersecting with P . Thus,
using the current dictionary, the encoding αt of first sample
xt from the second domain (i.e. the solution of the LASSO
problem in step 4 of the Alg. 1 ) will be a zero vector. There-
fore, the matrices A and B remains unchanged during the
update in step 11, and thus the support of each bj , and, con-
sequently, uj and the updated dictionary elements dj will re-
main in P . By induction, every dictionary update in response
to a new sample from the second domain will preserve the
support of the dictionary elements, and thus the final dictio-
nary elements will also have their support only in P .

Non-sparse data modeling with sparse dictionaries.
When learning sparse dictionaries on non-sparse data such as
natural images, we observed that many dictionary elements
have non-overlapping supports with respect to each other.
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The non-overlapping support of dictionary elements results
into a specific structure of the matrix A. For ODL approach,
the resulting matrix A includes many off-diagonal nonzero
elements of large absolute values (along with high values
on the diagonal). Note that in the dictionary update expres-
sion uj ←

bj−
∑

k 6=j dkajk
ajj

in (3), when the values ajk/ajj
are large for multiple k, the jth dictionary element becomes
tightly coupled with other dictionary elements, which reduces
its adaptability to new, non-stationary data. In our algorithm,
the values ajk/ajj remain high if both elements j and k have
similar “age”; however, those values are much lower if one of
the elements is introduced much more recently than the other
one. This allows for an adaptation to a new domain without
forgetting the old one.

6 Conclusions
We proposed a novel algorithm, Neurogenetic Online Dictio-
nary Learning (NODL), for learning representations in non-
stationary environments. Our online algorithm builds a dic-
tionary while also adapting the dictionary structure (the num-
ber of elements/hidden units and their connectivity; connec-
tivity adaptation is possibly due to dictionary sparsity) via
continuous birth (addition) and death (deletion) of dictionary
elements, inspired by the adult neurogenesis phenomenon.

Our extensive empirical evaluation on both real world and
synthetic data demonstrated that the interplay between the
birth and death of dictionary elements learns a more adaptive,
better-performing dictionary, in non-stationary environments
as compared to both of its counterparts, such as the fixed-
size online method of [Mairal et al., 2009] (no addition and
no deletion), and the online version of the group-sparse cod-
ing method by [Bengio et al., 2009] (deletion only). Further-
more, we evaluated, both empirically and theoretically, some
conditions on the method’s parameters and on the data which
yield superior performance of the proposed method over the
baseline. Overall, neurogenetic dictionary learning performs
at least as good as, and often much better than its competi-
tors. Future work includes extending our approach to deep
and nonlinear autoencoders, as well as to supervised setting.
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