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Abstract
In this paper, we propose a novel online event dis-
covery model DP-density to capture various events
from the social media data. The proposed model
can flexibly accommodate the incremental arriving
of the social documents in an online manner by
leveraging Dirichlet Process, and a density based
technique is exploited to deduce the temporal dy-
namics of events. The spatial patterns of events
are also incorporated in the model by a mixture
of Gaussians. To remove the bias caused by the
streaming process of the documents, Sequential
Monte Carlo is used for the parameter inference.
Our extensive experiments over two different real
datasets show that the proposed model is capable
to extract interpretable events effectively in terms
of perplexity and coherence.

1 Introduction
The geo-temporal-tagged data in social media services (i.e.
Flickr, Twitter, Blog) are well matching the 3W perspective
(what, when, where) of events in the real world, thus, are
popularly used for the task of event discovery. In general,
most of the existing discovery techniques only work on a
fixed static collection of the dataset [Guo and Gong, 2016;
Zhao et al., 2016; Pan and Mitra, 2011]. This seriously re-
strains their application scope in the context of online stream-
ing data from the social media, which are incrementally gen-
erated by users along the time.

Practically, users desire the mining work (i.e. document
summarization, item recommendation, emergency detection)
could be achieved in an online manner. The requirement mo-
tivated researchers towards the online techniques, and gener-
ated several works for the online event discovery. However,
the existing algorithms reveal several limitations when apply-
ing them to social media. In this paper, we are going to tackle
the problem and propose a robust parameter-free online algo-
rithm for the event discovery from the social media data.

1.1 Limitations of the Existing Online Techniques
In order to deal with incremental streaming texts, both Recur-
rent Chinese Restaurant Process(RCRP)[Ahmed and Xing,

∗Corresponding author.

2008] and Dynamic Clustering Topic model(DCT)[Liang et
al., 2016] are built on a sequence of continuous epochs along
the time frame. The generation of topics in the current epoch
are jointly influenced by the data distribution from prior and
current epochs. One of the main deficiencies of RCRP and
DCT is that no one knows what should be the optimal setting
for the length of the epoch.

To solve the problem, [Du et al., 2015] modeled the tem-
poral dynamics of events with an approach named Dirichlet-
Hawkes Process. Specifically, the Hawkes Process utilized
a fixed number of Gaussian kernels with different predefined
bandwidths (variances), and set the means of those kernels
to some points (called reference time points in the paper)
along the timeframe. The current document is temporally in-
fluenced by the history of the stream by summing all those
weighted kernels. However, it is not clear how to set the ref-
erence time points, the different bandwidths of the kernels,
and the number of those kernels.

Besides the limitations addressed above, none of them take
into account the geospatial influences of the documents. It
is intuitive that geographical features of social messages are
capable to better define and distinguish events. In this paper,
we are going to tackle those problems.

1.2 Contributions
In this paper, we propose a nonparametric model for the on-
line event discovery from social media data.

We assume the document stream is generated under a den-
sity function over the temporal space. By regarding the gen-
erating time (temporal tag) of each document as a sampling
point in the temporal space, we can estimate the density func-
tion λ(t) using the summation of Gaussian kernels [Hinneb-
urg et al., 1998]. When a document d arrives at time t, we
regard the temporal influence on d from the stream as λ(t).

For the online event discovery, the number of the events
(topics) may dynamically increase with more documents ar-
riving. To accommodate this complexity, Dirichlet Process is
exploited to infer the parameters in the model. When the new
arrival of a document tells a different story from the previous,
a new event is likely to be generated according to Dirichlet
Process.

The social media data are not only tagged with temporal
features, but also geospatial features. It is intuitive that a real
world event may occur in one region or across several re-
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gions and one region may encompass multiple events along
the time. We assume that events detected from the social
media are distributed over a set of regions, and a mixture of
Gaussians is thus employed to model the geographical distri-
butions of events.

We integrate all those components together to formulate
the Density Based Dirichlet Process for the online event dis-
covery. Sequential Monte Carlo [Arnaud Doucet, 2001] is
applied to perform the inference.

To summarize, we make the following contributions

• We incorporate the textual contents, timestamps and
geo-locations of the social media data in a uniformed
model for the online event discovery.

• We combine Dirichlet Process and density-based tempo-
ral dynamic technique together, where Dirichlet Process
is used to capture the diversity of events while density
estimation technique is exploited to learn the temporal
influence of the document stream. To our best knowl-
edge, this is the first model with parameter-free for the
online event discovery in the joint space crossing tem-
poral and geographical dimensions.

• We perform extensive experiments on two different real
datasets to evaluate the proposed model, which show
that our model is capable to discover meaningful events
in terms of low perplexity and high coherence.

1.3 Organization of the Paper
The rest of this paper is organized as follows. In Section 2,
we give a brief introduction of Dirichlet Process and density
estimation method. Section 3 presents the proposed model
and inference process. We discuss the experimental results
in Section 4 and introduce the related work in Section 5.
Section 6 concludes our work.

2 Preliminaries
In this section, we give a brief introduction to two fundamen-
tal techniques used in the paper, Dirichlet Process and the
sample-based density estimation algorithm.

2.1 Dirichlet Process
Dirichlet Process [Teh et al., 2006] is one member of the
nonparametric stochastic processes, which is used to model
the data in a "rich get richer" fashion without specifying the
parameter (e.g. topic number). We write G ∼ DP (α,G0)
to denote the draw from a DP which is parameterized by
a concentration parameter α and base distribution G0. We
can draw samples θ1:n from it since G itself is a distribution.
Specifically, we resort to the scenario of Chinese Restaurant
Process to illustrate this process, where each data point is re-
garded as a customer of entering a Chinese Restaurant with
infinite tables and dishes (topics). When the first customer
arrives, she can randomly select one empty table (cluster), sit
and order one dish. Then, the second customer can either join
with the first customer and share the dish, or she can start a
new table and order a new dish. In this way, when the nth
customer arrives, she can select one table from k occupied
tables with probability proportional to the number of guests

already seated there, or start a new table with probability pro-
portional to α. Formally, the conditional probability can be
written as

CRP (θn|θ1, θ2, ...θn−1) ∝


mk

n− 1 + α
θk exists

α

n− 1 + α
θ is new,

where mk represents the number of guests selecting θk and n
is the total number of customers in the restaurant by now.

2.2 Density Estimation
Suppose points t1, t2, ..., tN in an interval [a, b] are randomly
generated under a density distribution λ(t), then λ(t) can
be estimated using those samples as λ̂N (t) [Fukunaga and
Hostetler, 1975]

λ̂N (t) ∝
N∑
i=1

κ(ti, t, σ),

where κ(ti, t, σ) = e−
(t−ti)

2

2σ2 is Gaussian kernel, and σ is
called bandwidth of the Gaussian kernel, which indicates
the influence range of the kernel. Theoretically, the value
of σ varies depending on N , that is σ = σN , such that
limN→∞ σN = 0 in order to guarantee the unbiasedness
of the estimate. A condition N · σN → ∞ is required to
ensure limN→∞ λ̂N (t) = λ(t) consistently [Fukunaga and
Hostetler, 1975]. Therefore, the value of σN should be set
smaller if the number of samples (N ) is larger.

3 Proposed Model
If we take each new arriving document dj(w, l, t) as a sam-
ple, it is intuitive to utilize Dirichlet Process for deriving top-
ics (events) incrementally. Since the documents for the same
event are temporally cohesive, we use the estimated density
over time dimension to bring the temporal influence from the
prior documents to the current one. Further, the documents
for the same event may also be spatially clustered, a mixture
of Gaussians is used for modeling the spatial distribution of
events.

The overall model is presented in Figure 1, where notations
in shade are observed variables, notations in dotted circles
are hyper parameters, and the remains are latent variables. In
detail, (ti, ..., tj) are the arriving time points of documents
in the L-length sliding window (which will be discussed in
the following subsection), w and l are the bag of words and
location of the current document, respectively; z is the event
(topic) which is generated jointly from the influence of prior
documents in the sliding window and Dirichlet Process; r is
the region variable with mean µ and variance Σ; w and l are
generated from respective distribution ϕ and π given event z.

3.1 Sliding Window and the Dynamic Bandwidth
In the situation of online modeling, documents are received
continuously in a stream manner. We suppose the first docu-
ment d1 in the stream arrives at time t1 and the current doc-
ument dj arrives at tj . As introduced before, if we take all
those received documents until tj as the samples in [t1, tj ]
then, the density at tj can be roughly estimated as:
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Figure 1: Graphical representation of the proposed model

λ̂N (tj) ∝
j∑
i=1

κ(ti, tj , σj),

where σj indicates the bandwidth, which is associated with
both the number of points in [t1, tj ] and length of the temporal
space (|tj − t1|).

This estimation dynamically brings the influences of all
those prior documents on the current document dj in a nat-
ural manner. However, there are two problems when using
it directly in the online modeling: (1) the dynamic increas-
ing of the temporal space [t1, tj ] which requires all previous
documents to be in the computation, and (2) the previously
determined optimal value of σj may become improper along
the document streaming.

To deal with the first problem, we introduce a sliding win-
dow [tj−L, tj ] to account only documents arriving after time
tj − L for the density estimation at tj . The intuition of this
measure is based on the significant decay of the Gaussian ker-
nel influence to λ̂N (tj) when |ti − tj | is large enough (i.e.
larger than L).

To solve the second problem, we suppose the arriving of
documents is generated uniformly under the density function
λ(t) in a relatively short time duration with fixed length Γ
(i.e. a duration of one or two months). However, the arriving
of documents may become nonuniform in a larger timeframe
because of the the significant increase of users in the social
media system along the time. Let σj denote the bandwidth in
the timeframe [tj − Γ, tj ], and Nj denote the number of doc-
uments received in this period. Then, σj will be dynamically
tuned to maintain σ0N0 ≈ σjNj , where σ0 is the optimal
setting for the bandwidth in the initial period [t1, t1 + Γ].

3.2 Generating Topics

The joint process of Dirichlet Process and temporal density is
parameterized by an intensity parameter α and a base distri-
bution G over a given space θ. Each event is associated with
an unique θ .

Let D = {dj−Lj , dj−Lj+1, ..., dj} denote the set of docu-
ments in the sliding window of the current document dj , and
Lj is the number of documents in it. The probability of sam-

pling θ for document dj is computed as:

P (θj |θj−Lj , ...θj−1) ∝


λθk(tj)∑j

i=j−Lj λθi(tj) + α
reuse θk

α∑j
i=j−Lj λθi(tj) + α

θ is new,

(1)
where λθk(tj) :=

∑j
i=j−Lj κ(ti, tj , σj)I[θ(ti) = θk] de-

notes the aggregated influence to the current document dj
from the documents in the corresponding sliding widow,
whose event assignments are θk.

Therefore, the combination of Dirichlet Process and tem-
poral density can not only infer the event number automati-
cally, but also take into account the temporal influence of the
documents in the stream.

3.3 Generating Location and Word
It is intuitive that a real world event may occur in one re-
gion or across several regions, and one region may encom-
pass multiple events along the time. To capture the footprints
of events from the social media, we assume that each event
geographically is distributed over a set of regions, and each
region is modeled by a Bi-Variant Gaussian parameterized as
(µ,Σ). Thus the spatial distribution of an event is represented
by a mixture of Gaussians, and geographical popularity of a
region to a specific event is determined by its weight. Such
spatial modeling allows a complex and diverse spatial pattern
of an event. In detail, given an event indicator z of document
d, the probability of generating location l is computed as:

P (l|z, rest) =

N∑
r=1

P (r|πz) · N (l|r),

where r denotes the geospatial region, πz denotes the weights
of the Gaussian mixture for topic z, and N is the number of
regions.

In general, documents generated from social media (e.g.
Twitter, Weibo and Flickr photos) share a common property
that each of them is short and always tells one story. Hence in
our problem setting, each document is only assigned to one
event. Under such an assumption, given an event z the proba-
bility of generating the content w of document d is computed
as:

P (w|z, rest) =

nd∏
i=1

P (wi|ϕz).

3.4 SMC Inference Process
Given the documents arriving in a stream manner, our goal
is to conduct an online computation of the posterior distribu-
tion P (z1:n, r1:n|d1:n), where d1:n, z1:n and r1:n represent
all the past documents, their event indicators and region as-
signments.

At time t = n − 1, let P (zi:n−1, ri:n−1|di:n−1) denote
the posterior distribution in the corresponding sliding win-
dow. With the new document dn arriving, the posterior would
yield the most recent value P (zi:n, ri:n|di:n) by reusing
P (zi:n−1, ri:n−1|di:n−1) , which motivates us to apply Se-
quential Monte Carlo (SMC) method [Doucet et al., 2000;
Arnaud Doucet, 2001] to infer the sampling process.
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The overall structure of Sequential Monte Carlo (SMC) is
described in Algorithm1. Briefly, the posterior approxima-
tion is maintained as a set of particles, each of which rep-
resents a hypothesis about the latent variables. There is an
importance weight associated with each particle to indicate
how well the hypothesis explains the data. The main in-
gredient for designing an SMC is the proposal distribution
Q(zi:n, ri:n|di:n) which can be regarded as the biased poste-
rior estimation given the streaming documents in our online
model. The weight ωfn of each particle f ∈ {1, ..., F} is
therefore defined as the ratio of the true posterior distribu-
tion over the proposal distribution ωfn = P (zi:n,ri:n|di:n)

Q(zi:n,ri:n|di:n) . In
order to minimize the variance of resulting particle weights,
a commonly used technique in SMC [Arnaud Doucet, 2001;
Ahmed et al., 2011b], is to takeQ(zn, rn|zi:n−1, ri:n−1, di:n)
as the posterior P (zn, rn|zi:n−1, ri:n−1, di:n). Therefore the
unnormalized importance weight for particle ωfn can be up-
dated as

ωfn ∝ ω
f
n−1 · P (dn|zfn, rfn, di:n−1).

Since each document is denoted by a triplet di =
{wi, ti, li}, the above equation can be detailed as

ωfn ∝ ω
f
n−1 · P (wn|zfn, rest) · N (ln|rfn, rest). (2)

The event and region indicator can be alternatively sampled
for each newly arriving document in the following way.

Sampling event indicator z. When the new document
dn = {wn, tn, ln} arrives, the probability of its topic assign-
ment is computed as

P (zn|zi:n−1, ri:n−1, di:n, rest) ∝ P (zn|tn, rest)·

P (wn|zn, rest) ·
N∑
r

P (r|πzn)N (ln|r),
(3)

where P (zn|tn, rest) is computed by Equation 1. Because
of the one-event restriction for each document in our context,
the probability of generating textual content w for document
d can be computed as

P (w|z, rest) ∝
∏V
v=1

∏ndv
q=0(nzv + q + β)∏nd

q=0(nvz + q + β|V |)
, (4)

where ndv records the occurrence number of word v in doc-
ument d, nzv describes the co-occurrence number of word v
and event z, nvz denotes the word number assigned to event z,
and nd records word number in document d.

Sampling region indicator r. Given the event indicator
and new document, the probability of sampling region is

P (r|zn, dn, rest) ∝ P (r|πzn) · N (ln|r). (5)

4 Experimental Evaluation
All the experiments are conducted on a computer with Intel
Core i7 2.93GHz CPU and 8GB RAM, and all the algorithms
are implemented using Visual C#.

4.1 Experimental Setup
Dataset. Our experiments are based on two real datasets,
which are crawled from Flickr through its API1. The first

1http://www.flickr.com/services/api

Algorithm 1 SMC algorithm over document stream

1: Initialize ωf1 to 1
F for all f ∈ {1, ..., F}

2: for each document dn, n = 1, 2, ... do
3: for f ∈ {1, ..., F} do
4: Sample event indicator zfn by Equation 3
5: Sample region indicator rfn by Equation 5
6: Update each particle weight ωfn by Equation 2
7: end for
8: Normalize particle weights
9: if ||ωn||−22 = 1/

∑F
f=1(ωfn)2 < threshold then

10: Resample particles
11: end if
12: end for

Table 1: The statistics of the datasets
Dataset Time span images vocabulary

Paris 06/01/10-08/22/10 21436 2042
NY 01/01/10-03/31/10 33780 2366

dataset is collected for Paris, which consists of more than 26
thousands photos from June to August 22th in 2010. The
second dataset is for New York (NY), which includes more
than 40 thousands photos from January to March in 2010.
For each dataset, the photos without any textual description
are discarded, and we split the Flickr tag (phrase) into single
word and remove the irrelevant words (e.g. camera names).
After the preprocessing, the statistics of the two datasets are
as shown in Table 1.
Compared methods.
• RCRP-geo. RCRP is regarded as one of the benchmark

algorithms in modeling online event detection [Ahmed
and Xing, 2008]. Since RCRP does not involve spa-
tial distributions of events, we extend it to the spatio-
temporal space by associating each topic with regions
using a mixture of Gaussians(the same as the proposed
model). The extended model is referred to as RCRP-geo.

• DCT-geo. DCT is one of the-state-of-art algorithms for
modeling online topics [Liang et al., 2016]. Similar to
RCRP-geo, we extend it to spatial-temporal space. The
topic number is predefined as the same value as DP-
density.

• DP-density-fixed. It is a variation of the proposed model
by fixing the event number as predefined. This model
is used to measure the effectiveness of the proposed ap-
proach in inferring the right number of events.

4.2 Event Discovery from the Datasets
Content Analysis. First of all, to have an intuitive idea of
events discovered from streaming datasets, Figure 2 shows
some interesting events extracted from New York city, includ-
ing Women Summit, Orchid Show, New York Fashion Week
and Chinese New Year Parade. Even though tag vocabulary
attached to Women Summit photos are very concise, still the
semantic feature of this event is quite clear. From the per-
spective of interpretability and word coherence, our proposed
model can effectively discover the meaningful events.
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Figure 2: Events discovered from New York
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Figure 3: Event of Chinese New Year Parade in the temporal space

Temporal Dynamics. Figure 3 (a) and (b) plot the den-
sity and cumulative density distribution of Chinese New Year
Parade on February 21th, respectively. As we notice, during
the first one and half hour, indicated from the density value of
Figure 3 (a), document arrivals are sparse, which is also con-
firmed by the gradient of cumulative density distribution in
Figure 3 (b). Starting from 11:30 to 13:00, this event starts to
be popular since the density value approximately keeps stable
around 0.4. In the duration from 13:00 to 14:30, more doc-
uments are densely received and density value ranges from
0.4 to the peak of 1.6. During the last interval, the arrivals of
documents are decreased as shown in the figure.

4.3 Perplexity Evaluation
In this section, we quantitatively evaluate the performance of
the proposed method.

Metric perplexity [Blei et al., 2003] is widely used to
measure how well a probabilistic model predicts a sample.
A lower perplexity indicates a better generalization of the
model. Distinct from the conventional random selection of
the testing dataset in the offline models, a set of documents
are collected at each regular interval along the time, the ag-
gregated testing collection accounts for 10% of the overall
dataset. Specifically, the text perplexity is defined as

perplexity = exp{−
∑M
d=1 log p(wd)∑M

d=1Nd
},

where M represents the testing collection, Nd records the
number of words in document d, and wd denote the words
in document d.

Perplexity over varying temporal epochs. Figure 4 plots
the perplexity value via varying numbers of epochs over both
New York and Paris dataset. As we notice, our proposed
model DP-density achieves a significant decrease in perplex-
ity compared with competitor models over the two datasets.
The performances of RCRP-geo and DCT-geo are greatly af-
fected by the manual setting of epoch numbers, both of which
gain their optimal value at the epoch number of 50 in two

datasets. Specifically, DCT-geo outperforms RCRP-geo at
any setting of epoch numbers in New York dataset.

Perplexity over varying event numbers. Figure 5 shows
the comparison between the proposed DP-density and its vari-
ation DP-density-fixed. In the case of Paris dataset, the au-
tomatically inferred event number by the proposed model
ranges from 55 to 62 through many trials, which is consis-
tent with the performance of DP-density-fixed in terms of
perplexity metric. In the New York dataset, perplexity of DP-
density-fixed tells the optimal event number around 75, which
is coincided with the automatical derived result (ranging from
70 to 75) by the proposed approach.

4.4 Term Coherence
We proceed to validate the interpretability of each discov-
ered event using the coherence measure. Similar to [Guo and
Gong, 2016], we define the coherence of the top-10 terms of
each event as the average of PMI(Pointwise Mutual Informa-
tion), which is calculated based on the coherence computa-
tion from [Röder et al., 2015]. A higher PMI-Score indicates
the terms within an event are more coherent and consistent to
describe the event.

The coherence results are presented in Figure 6. It is
observed that the coherence score of DP-density is always
higher with any setting of epoch numbers, while the perfor-
mances of RCRP-geo and DCT-geo decrease with the grow-
ing epoch number. In Paris dataset, RCRP-geo performs bet-
ter than DCT-geo before the setting of 50 epoch number, and
gains close result with DCT-geo as the epoch number in-
creases. In New York dataset, DCT-geo outperforms RCRP-
geo at any setting of epoch number, which is consistent with
perplexity performance.

4.5 Efficiency
Figure 7 presents the event number with time evolution and
document efficiency in Paris dataset. Since the event number
is automatically learned in our proposed model, it is observed
the event number grows gradually over time and keeps con-
stant at 63 in Figure 7 (a) . Correspondingly, we expect av-
erage time cost of processing each document keeps roughly
stable after running a time period, which is confirmed by the
Figure 7 (b) from 18000th document after the long build-up
period.

5 Related Work
Most of online event detection models are extensions of
Latent Dirichlet Allocation(LDA) [Blei et al., 2003]. We
summarize the related work into two categories, Sequential
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Figure 4: Perplexity performance over varying epoch numbers
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Figure 5: Perplexity performance over varying event numbers
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Figure 6: Coherence measure over two datasets

6/26 7/10 7/24 8/7 8/21
Date

54

56

58

60

62

#
E
v
e
n
t 

n
u
m

b
e
r

(a) Event number with time
evolution

0.6 1.0 1.4 1.8
#Document 1e4

18

118

218

318

418

518

T
im

e
(m

s)

(b) Document efficiency
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Monte Carlo (SMC) based and Gibbs Sampling based infer-
ence approach according to the way of estimation.
Sequential Monte Carlo based inference process [Doucet
et al., 2000; Arnaud Doucet, 2001], requires one time pass
over the streaming data since it sequentially processes the
documents according to their arriving time. [Canini et al.,
2009] introduced online inference of SMC based on LDA
while [May et al., 2014] improved rejuvenation step of SMC.
Whereas these two methods suffer from the manual setting of
topic number in the case of online modeling. [Ahmed et al.,
2011b; 2011a] relieved such a setting and applied SMC infer-
ence to detect a hybrid of topics and storylines. However, all
these methods fail to depict dynamic density of topics along
the time. [Du et al., 2015] exploited Dirichlet-Hawkes Pro-
cess model to detect online topics from streaming news arti-
cles. But how to give the specific the number of kernels, and
their respective locations and widths is an challenge, since
documents are received continuously along the time. An-

other drawback is that it fails to investigate the function of
spatial patterns of topics. In comparison, we proposed a den-
sity based online model in the joint spatio-temporal space,
and temporal dynamics of events are flexibly learned from
estimated density distribution in a sliding window.
Gibbs Sampling based inference process, requires multi-
ple passes over the streaming collection to obtain a sta-
ble sampling for each document. Thus it is unsuitable for
streaming data. Given the set of predefined time epochs,
both RCRP[Ahmed and Xing, 2008] and DCT[Liang et al.,
2016] detected the most recent topic depending on learned
results from previous epochs. One of main deficiencies of
RCRP, DCT and their related work [Blei and Lafferty, 2006;
Cheng et al., 2014] is that it requires an explicit division
of streaming documents into unit episode. Rather than di-
vide time, [Wei et al., 2007; Iwata et al., 2009; Wang et
al., 2012; Amoualian et al., 2016] built online topic mod-
elings on the assumption of dependency between temporal
consecutive documents. Among them, [Wei et al., 2007;
Wang et al., 2012] modeled the dependency of topic distribu-
tion while [Iwata et al., 2009; Amoualian et al., 2016] mod-
eled dependency of both topic distribution and topic transition
between consecutive documents. However, the dependency
assumption is rigid, since two consecutive documents from a
dense document stream is possibly contributed by two simul-
taneous events and there is no temporal dependency between
them. [Yin and Wang, 2016] presented an online clustering
scheme in which the number of clusters (topics) is flexible to
grow with data but limited by a predefined threshold. In con-
trast, the proposed DP-density aims to detect online events
from social media data where both event number and event
density can be flexibly learned without restrictions.

Besides, there are other online studies focused on specific
events. [Zhang et al., 2016] aimed to detect real-time lo-
cal events from geo-tagged tweet streams. [Sakaki et al.,
2010] explored real-time earthquake detection while [Li et
al., 2012] detected crime and disaster events(CDE) with self-
adaptive crawler.

6 Conclusion
We present a novel online event discovery model for social
media data. The key aspects of our model are (1) flexibly in-
ferring event number using Dirichlet Process to accommodate
the complexity of continuous document arrivals, (2) dynam-
ically learning the temporal dynamics of events using den-
sity estimation, (3) integrating combination of DP and density
estimation into topic modeling in the joint spatio-temporal
space. Our extensive experiments have demonstrated that
our proposed model is able to discover interpretable events
in terms of low perplexity and high coherence.

Acknowledgments
This work was supported in part by Fund of Science
and Technology Development of Macau Government under
FDCT/116/2013/A3 and FDCT/007/2016/AFJ and in part by
University Macau Research Committee under MYRG2015-
00070-FST and MYRG2017-00212-FST.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1737



References
[Ahmed and Xing, 2008] Amr Ahmed and Eric P. Xing. Dy-

namic non-parametric mixture models and the recurrent
chinese restaurant process: with applications to evolution-
ary clustering. In SDM, pages 219–230, 2008.

[Ahmed et al., 2011a] Amr Ahmed, Qirong Ho, Jacob
Eisenstein, Eric Xing, Alexander J Smola, and Choon Hui
Teo. Unified analysis of streaming news. In WWW, pages
267–276, 2011.

[Ahmed et al., 2011b] Amr Ahmed, Qirong Ho, Choon Hui
Teo, Jacob Eisenstein, Alexander J Smola, and Eric P
Xing. Online inference for the infinite topic-cluster model:
Storylines from streaming text. In AISTATS, pages 101–
109, 2011.

[Amoualian et al., 2016] Hesam Amoualian, Marianne
Clausel, Éric Gaussier, and Massih-Reza Amini.
Streaming-lda: A copula-based approach to model-
ing topic dependencies in document streams. In KDD,
pages 695–704, 2016.

[Arnaud Doucet, 2001] Nando de Freitas & Neil Gordon Ar-
naud Doucet, editor. Sequential Monte Carlo Methods in
Practice. Springer, 2001.

[Blei and Lafferty, 2006] David M. Blei and John D. Laf-
ferty. Dynamic topic models. In ICML, pages 113–120,
2006.

[Blei et al., 2003] David M Blei, Andrew Y Ng, and
Michael I Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3(Jan):993–1022, 2003.

[Canini et al., 2009] Kevin Robert Canini, Lei Shi, and
Thomas L. Griffiths. Online inference of topics with la-
tent dirichlet allocation. In AISTATS, pages 65–72, 2009.

[Cheng et al., 2014] Xueqi Cheng, Xiaohui Yan, Yanyan
Lan, and Jiafeng Guo. Btm: Topic modeling over short
texts. TKDE, 26(12):2928–2941, 2014.

[Doucet et al., 2000] Arnaud Doucet, Nando De Freitas,
Kevin Murphy, and Stuart Russell. Rao-blackwellised par-
ticle filtering for dynamic bayesian networks. In UAI,
pages 176–183, 2000.

[Du et al., 2015] Nan Du, Mehrdad Farajtabar, Amr Ahmed,
Alexander J Smola, and Le Song. Dirichlet-hawkes
processes with applications to clustering continuous-time
document streams. In KDD, pages 219–228, 2015.

[Fukunaga and Hostetler, 1975] Keinosuke Fukunaga and
Larry Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE
Transactions on information theory, 21(1):32–40, 1975.

[Guo and Gong, 2016] Jinjin Guo and Zhiguo Gong. A non-
parametric model for event discovery in the geospatial-
temporal space. In CIKM, pages 499–508, 2016.

[Hinneburg et al., 1998] Alexander Hinneburg, Daniel A
Keim, et al. An efficient approach to clustering in large
multimedia databases with noise. In KDD, volume 98,
pages 58–65, 1998.

[Iwata et al., 2009] Tomoharu Iwata, Shinji Watanabe,
Takeshi Yamada, and Naonori Ueda. Topic tracking
model for analyzing consumer purchase behavior. In
IJCAI, volume 9, pages 1427–1432, 2009.

[Li et al., 2012] Rui Li, Kin Hou Lei, Ravi Khadiwala, and
Kevin Chen-Chuan Chang. Tedas: A twitter-based event
detection and analysis system. In ICDE, pages 1273–1276,
2012.

[Liang et al., 2016] Shangsong Liang, Emine Yilmaz, and
Evangelos Kanoulas. Dynamic clustering of streaming
short documents. In KDD, pages 995–1004, 2016.

[May et al., 2014] Chandler May, Alex Clemmer, and Ben-
jamin Van Durme. Particle filter rejuvenation and latent
dirichlet allocation. In ACL (2), pages 446–451, 2014.

[Pan and Mitra, 2011] Chi-Chun Pan and Prasenjit Mitra.
Event detection with spatial latent dirichlet allocation. In
JCDL, pages 349–358, 2011.

[Röder et al., 2015] Michael Röder, Andreas Both, and
Alexander Hinneburg. Exploring the space of topic co-
herence measures. In WSDM, pages 399–408, 2015.

[Sakaki et al., 2010] Takeshi Sakaki, Makoto Okazaki, and
Yutaka Matsuo. Earthquake shakes twitter users: real-time
event detection by social sensors. In WWW, pages 851–
860, 2010.

[Teh et al., 2006] Yee Whye Teh, Michael I Jordan,
Matthew J Beal, and David M Blei. Hierarchical dirichlet
processes. Journal of the American Statistical Association,
101(476), 2006.

[Wang et al., 2012] Yu Wang, Eugene Agichtein, and
Michele Benzi. TM-LDA: efficient online modeling of
latent topic transitions in social media. In KDD, pages
123–131, 2012.

[Wei et al., 2007] Xing Wei, Jimeng Sun, and Xuerui Wang.
Dynamic mixture models for multiple time-series. In IJ-
CAI, volume 7, pages 2909–2914, 2007.

[Yin and Wang, 2016] Jianhua Yin and Jianyong Wang. A
text clustering algorithm using an online clustering scheme
for initialization. In KDD, pages 1995–2004, 2016.

[Zhang et al., 2016] Chao Zhang, Guangyu Zhou, Quan
Yuan, Honglei Zhuang, Yu Zheng, Lance Kaplan,
Shaowen Wang, and Jiawei Han. Geoburst: Real-time lo-
cal event detection in geo-tagged tweet streams. In SIGIR,
pages 513–522, 2016.

[Zhao et al., 2016] Kaiqi Zhao, Lisi Chen, and Gao Cong.
Topic exploration in spatio-temporal document collec-
tions. In SIGMOD, pages 985–998, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1738


