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Abstract

In practice, even very high-dimensional data are
typically sampled from low-dimensional subspaces
but with intrusion of outliers and/or noises. Re-
covering the underlying structure and the pollution
from the observations is key to understanding and
processing such data. Besides properly modeling
the low-rank structure of subspace, how to handle
the pollution is core regarding the performance of
recovery. Often, the observed data is posed as a su-
perimposition of the clean data and residual, while
the residual can be roughly divided into two groups,
including small dense noises and gross sparse out-
liers. Compared with small noises, outliers more
likely ruin the recovery, as they can be arbitrarily
large. By considering the above, this paper design-
s a method for recovering the low rank matrix with
robust outlier estimation, termed as ROUTE, in a u-
nified manner. Theoretical analysis on convergence
and optimality, and experimental results on both
synthetic and real data are provided to demonstrate
the efficacy of our proposed method and show its
superiority over other state-of-the-arts.

1 Introduction

Low rank matrix recovery (LRMR) is a process of discover-
ing underlying structures from given measurements, the in-
spiration and motivation of which are both that, in real cas-
es, even very high-dimensional observations should be from a
low-dimensional subspace but unfortunately with intrusion of
outliers and/or noises. As a theoretic foundation in computer
vision, pattern recognition and machine learning, the effec-
tiveness of LRMR has been confirmed by numerous funda-
mental tasks, such as principal component analysis [Pearson,
1901; Candès et al., 2011], collaborative filtering [Zhang and
Wang, 2016; Chen et al., 2014] and subspace clustering [Nie
and Huang, 2016; Liu et al., 2013], as well as a wide spec-
trum of applications, like image denoising [Gu et al., 2014],
reflection separation [Guo et al., 2014] and super-resolution
[Jing et al., 2015], to name just a few.

Formally, the LRMR problem can be directly or indirectly

written in the following form:

min
L,E

rank(L) + αΨ(E) s. t. PΩ(Y) = PΩ(L + E),

(1)
where Y ∈ Rm×n, L ∈ Rm×n and E ∈ Rm×n designate
the given data, the desired structure and the error residue, re-
spectively. The function Ψ(·) is a penalty on the residual be-
tween the observed and recovered signals, rank(·) stands for
the low-rank constraint, and α is a non-negative parameter
that provides a trade-off between the recovery fidelity and the
low-rank promoting regularizer. Furthermore,PΩ(·) is the or-
thogonal projection operator on the support Ω ∈ {0, 1}m×n.
From Eq. (1), we can find that the quality of recovery depends
on both the models of rank(L) and Ψ(E).

As one of the two pivotal factors in LRMR, a proper low-
rank promoting constraint on L is required to advocate the
expected structure. It is computationally intractable (NP-
hard) to directly minimize the rank function, say rank(L),
due to its non-convexity and discontinuity. A widely used
scheme is employing its tightest convex proxy, i.e. the nu-
clear norm ‖L‖∗ [Recht et al., 2010; Candès et al., 2011;
Zhou et al., 2013]. Nuclear norm minimization (NNM)
based approaches can perform stably without knowing the
target rank of recovery in advance. But, their applicabili-
ty is often limited by the necessity of executing expensive
singular value decomposition (SVD) for multiple times. At
(much) less expense, bilinear factorization (BF) [Eriksson
and van den Hengel, 2010; Srebro and T.Jaakkola, 2003;
Meng and De la Torre, 2013; Salakhutdinov and Mnih, 2008;
Lakshminarayanan et al., 2011] is an alternative by replac-
ing L with UV, where the product of two factor matrices
U ∈ Rm×r and V ∈ Rr×n implicitly guarantees that the
rank of UV is never over r, typically r � min(m,n).
This factorization strategy, through getting rid of SVDs, can
greatly release the pressure of computation and provide ac-
curate results when the target rank is given. Unfortunately,
in some tasks, the target rank is unknown beforehand. In
such a situation, the performance of BF would sharply de-
grade because of its sensitivity to the guess of target rank,
especially when the data are severely contaminated. For
bridging NNM and BF, and inheriting their respective mer-
its, some bridges are recently built [Zheng et al., 2012;
Wang et al., 2012]. One representative is adding ‖U‖2F +
‖V‖2F into the objective of the BF [Cabral et al., 2013]. Al-
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though the techniques above have made great progresses, the
tolerance to dirty data is expected to be further improved.

In practical scenarios, acquiring perfect data is never the
case. Furthermore, “a little gall spoils a great deal of honey”
is quite a common issue. This is to say, without an effec-
tive strategy to reduce the negative effect from outliers and/or
noises, the low rank matrix recovery is very likely prevented
from reasonable solutions. Hence, besides properly model-
ing the low-rank structure, how to handle the pollution, espe-
cially gross outliers, is core to the performance of recovery.
Arguably, the square loss (a.k.a. `2 loss) is the most com-
monly used penalty, which is optimal to Gaussian noises, like
PCA [Pearson, 1901]. But, the square loss lacks robustness
to outliers that are not unusual to find in real data. To be ro-
bust against gross corruptions, the `1 loss becomes popular,
e.g. Robust PCA [Candès et al., 2011]. For better fitting the
residual, combining the `1 loss for the outlier component and
the `2 for the small noise one is considered in [Zhou et al.,
2010]. Although the `1 loss can perform better than the `2 in
dealing with the outlier, it still suffers from the scale issue.
The ideal option to model outliers is the `0 loss, due to its s-
cale invariance. The non-convexity and discreteness of the `0
penalty make it not so preferred by the community, although
many works have proven that the `0 loss can improve the per-
formance on different tasks, like [Pan et al., 2017] for image
deblurring, [Zhou et al., 2013] for foreground detection and
[Guo et al., 2013] for video editing.

Back to the general formulation (1), if the support of both
outliers and missing elements is given, the problem turns out
to be a simpler version, i.e. the low rank matrix completion
(LRMC). Compared with LRMC, the difficulty of LRMR, be-
cause of the unknown outlier support, significantly increas-
es, which corroborates the intuition and theoretical fact that
knowing the corruption location is beneficial. Therefore, it is
natural to ask that if we can connect the LRMR to the LRMC
via robustly estimating outliers, since by doing so the LRMR
will be conquered more easily.

To answer the question, this paper proposes a Robust OUT-
lier Estimation method, called ROUTE, for recovering low
rank matrices. More concretely, the contributions of this work
are summarized as follows:

1. We design a method to jointly estimate outliers and
recover the low rank matrix, namely ROUTE-LRMR,
which unifies the LRMR and LRMC by treating both
the missing and estimated outliers as weights;

2. Compared with the hard binary support, our weighting
scheme assigns real-valued weights [0, 1], which can be
viewed as classification with confidence/probability;

3. Our design employs a maximum entropy regularization
term to minimize the prediction bias, which behaves like
a sigmoid function, arguably the most suitable classifi-
cation function;

4. To seek the optimal solution for ROUTE-LRMR, we
customize an Alternating Direction Minimization based
algorithm. Theoretical analysis together with experi-
mental results on both synthetic and real data are pro-
vided to show the efficacy of our ROUTE and reveal its
superiority over other state-of-the-arts.

2 Methodology
2.1 Problem Formulation
In the simplest case, the support of observed elements is at
hand, and the data are clean or just with slight noises. An
option for recovering the low rank component (LRMC) is to
optimize the following problem:

min
L
‖L‖∗ +

α

2
‖Ω ◦ (Y − L)‖2F , (2)

where ◦ is the Hadamard product operator. As mentioned,
the nuclear norm minimization requires to execute expensive
SVDs on the whole data. To mitigate the computational pres-
sure, Theorem 1 provides a bridge between NNM and BF
models.

Theorem 1. For any matrix L ∈ Rm×n, the following rela-
tionship holds [Mazumder et al., 2010]:

‖L‖∗ = min
U,V

1

2
‖U‖2F +

1

2
‖V‖2F s. t. L = UV.

If rank(L) = r ≤ min(m,n), then the minimum solution
above is attained at a factor decomposition L = UV, where
U ∈ Rm×r and V ∈ Rr×n.

In the sequel, applying Theorem 1 on (2) reads:

min
U,V

1

2
‖U‖2F +

1

2
‖V‖2F +

α

2
‖Ω ◦ (Y −UV)‖2F . (3)

Compared with directly minimizing ‖Ω ◦ (Y −UV)‖2F , the
model (3) inherits the advantage of (2), which avoids over-
fitting when r is larger than the intrinsic rank.

In the real world, however, the data are frequently polluted
by, besides small noises, gross corruptions, which may pre-
vent the recovery from reasonable results. Hence, some steps
should be taken for reducing the negative effect of such pol-
lution. Recall that the `0 loss is ideal to host outliers, with
slight modification, we have:

min
1

2
‖U‖2F +

1

2
‖V‖2F +

α

2
‖W ◦ (Y −UV)‖2F + β‖W‖1

s. t. W + W = 1; W and W ∈ {0, 1}m×n,
(4)

where β is a weight to the corresponding term and 1 repre-
sents an all-one matrix with comparable size. We can see that
from Eq. (4), the support Ω is replaced by a weight matrix
W that can contain both the given support and the estimated
outlier support. Please note that, under the binary weighting,
‖W ◦ (Y − UV)‖2F =

∑
i,j wij [Y − UV]2ij and ‖W‖1

equals to ‖W‖0 that imposes the sparsity on the outliers.
The hard weighting, for one thing, frequently leads the op-

timization to be stuck into bad local minima. For another
thing, the pollution in data is often non-homogeneously dis-
tributed. To address the discreteness issue and reflect the im-
portance of elements more faithfully, we employ an entropy
term. The definition of entropy is −

∑k
c=1 pc log pc with∑k

c=1 pc = 1. The principle of maximum entropy tells that,
the probability distribution which best represents the current
state of knowledge is the one with largest entropy subject to
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accurately stated prior data. In other words, it is able to min-
imize the prediction bias. Return to our problem, the weight-
ing variable wij can be equally viewed as the probability of
the corresponding entry being classified as an outlier. It is in-
structive to note that maximizing the entropy (concave) is e-
quivalent to minimizing its negative (convex). Consequently,
we have the final formulation of ROUTE-LRMR as follows:

min
U,V,W

1

2
‖U‖2F +

1

2
‖V‖2F +

α

2
‖
√
W ◦ (Y −UV)‖2F

+ β‖W‖1 + γ
∑
i,j

(wij logwij + w̄ij log w̄ij)

s. t. W + W = 1; W and W ∈ [0, 1]m×n,
(5)

where γ is a non-negative coefficient controlling the impor-
tance of the corresponding term. Further, due to the relax-
ation,

√
W with entries√wij is used to hold the equivalence:∑

i,j wij [Y − UV]2ij = ‖
√
W ◦ (Y − UV)‖2F . For (4),

‖
√
W ◦ (Y −UV)‖2F = ‖W ◦ (Y −UV)‖2F .

2.2 Optimization
As we have seen in (5), it has embraced all the aforemen-
tioned concerns for simultaneously pursuing outliers and re-
covering the low rank matrix. The Augmented Lagrange
Multiplier (ALM) with Alternating Direction Minimization
(ADM) scheme [Lin et al., 2011] has proven to be an ef-
ficient and effective solver for problems like (5). To apply
ALM-ADM on our problem, the objective is required to be
separable. To this end, an auxiliary variable L is introduced
to replace UV in the third term. Accordingly, L = UV per-
forms as an additional constraint. It is worth noting that the
constraints on W and W are enforced as hard constraints.
The augmented Lagrangian function of (5) is defined as:

Lµ{W+W=1;W,W∈[0,1]m×n}(U,V,L,W,Z) :=

1

2
‖U‖2F +

1

2
‖V‖2F +

α

2
‖
√
W ◦ (Y − L)‖2F+

β‖W‖1 + γ
∑
i,j

(wij logwij + w̄ij log w̄ij)+

µ

2
‖L−UV‖2F + 〈Z,L−UV〉,

(6)

where 〈·, ·〉 designates the inner product, µ is a positive penal-
ty and Z is a Lagrangian multiplier. The solver updates the
variables in an iterative manner. For ease of exposition, we s-
plit the variables, except for Z and µ, into two groups, includ-
ing Group I: {U,V,L} and Group II: {W,W}, connected
by L.

Group I – Dropping the unrelated terms yields:

min
U,V,L

1

2
‖U‖2F +

1

2
‖V‖2F +

α

2
‖
√
W(p) ◦ (Y − L)‖2F

+
µ(t)

2
‖L−UV‖2F + 〈Z(t),L−UV〉.

(7)
For all of U, V and L, their respective solutions in closed-
form are calculated via equating the derivatives of (7) in U,

V and L to zero:

U(p+1) ← (µ(t)L(p) + Z(t))VT
(p)(I + µ(t)V(p)V

T
(p))
−1;

V(p+1) ← C−1
(p+1)U

T
(p+1)(µ

(t)L(p) + Z(t));

L(p+1) ←
αW(p) ◦Y + µ(t)U(p+1)V(p+1) − Z(t)

αW(p) + µ(t)1
,

(8)
where I means the identity matrix with proper size, C(p+1)

stands for I+µ(t)UT
(p+1)U(p+1), and the division in updating

L is element-wise.
Group II – Picking out the terms relevant to W and W

results in the following optimization problem:

min
W,W

α

2
‖
√
W ◦ (Y − L(p+1))‖2F + β‖W‖1

+ γ
∑
i,j

(wij logwij + w̄ij log w̄ij)

s. t. W + W = 1; W and W ∈ [0, 1]m×n.

(9)

From the objective of (9), we find that the problem can be
decomposed into a set of independent sub-problems. Now,
without any loss of generality, let us take the (i, j)-th element
for example. Casting the problem into the Lagrange Multipli-
er framework gives the following Lagrange function:

Q(wi, wi, λi) :=
α

2
wij [Y − L(p+1)]

2
ij + βwij+

γ(wij logwij + wij logwij) + λi(wij + wij − 1),
(10)

where λi is a Lagrange multiplier. Taking the derivative of
Q(wi, wi, λi) to wi, wi and λi respectively and setting them
to zero gives the optimal solution to wi as:

wij(p+1) ←
exp(−α[Y − L(p+1)]

2
ij/2γ)

exp(−α[Y − L(p+1)]
2
ij/2γ) + exp(−β/γ)

=
1

1 + exp((α[Y − L(p+1)]
2
ij/2− β)/γ)

,

(11)
which is in a standard sigmoid form. And its complementary
wij(p+1) ← 1− wij(p+1).
Remarks (a) When wij ∈ {0, 1} adopted and the entropy
term disabled (hard weighting), the solution to Eq. (9) is: if
α
2 [Y − L]2ij < β, then wij ← 1; if α

2 [Y − L]2ij = β, then
wij could be either of {0, 1}; otherwise wij ← 0. (b) When
wij ∈ [0, 1] adopted and the entropy term disabled (relaxed
version), the solution to Eq. (9) is: if α

2 [Y − L]2ij < β, then
wij ← 1; if α2 [Y − L]2ij = β, then wij could be any value in
[0, 1]; otherwise wij ← 0.

Multiplier and µ – The Lagrange multiplier Z and µ are
updated via:

Z(t+1) ← Z(t) + µ(t)(L(t+1) −U(t+1)V(t+1));

µ(t+1) ← µ(t)ρ, ρ > 1.
(12)

The parameter µ is monotonically increased by ρ during iter-
ations, leading the solution to the feasible region.
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Algorithm 1: ROUTE-LRMR: Solver to Eq.(5)
Input: Observation matrix Y ∈ Rm×n; support

Ω ∈ {0, 1}m×n; a guess/target rank r;
non-negative parameters α, β and γ.

Init.: µ(0) ← 1 and ρ← 1.1; W(0) ∈ Rm×n ← Ω ◦ 1;
L(0) ∈ Rm×n, U(0) ∈ Rm×r and V(0) ∈ Rr×n are all
initialized randomly; Z(0) ∈ Rm×n ← 0; t← 0.

while not converged do
p← 0;
while not converged do

Update U(p+1), V(p+1) and L(p+1) via (8);
for ∀ (i, j) & Ωij do

Update wij(p+1) via (11);
end
p← p+ 1;

end
{L(t+1),U(t+1),V(t+1)} ← {L(p),U(p),V(p)};
Update Z(t+1) and µ(t+1) via (12); t← t+ 1

end
Output: Optimal W∗ and L∗

For clarity and completeness, the procedure of solving (5)
is outlined in Algorithm 1. The algorithm should not be ter-
minated until the equality constraint L = UV is satisfied up
to a given tolerance, that is ‖L − UV‖F ≤ ς‖Y‖F , or the
maximal number of iterations is reached. In all our experi-
ments, the tolerance factor ς is chosen as 1e−7. Please refer
to the complete Algorithm 1 for other details that we can not
cover in the text.

3 Theoretical Analysis
We first provide some useful theoretical results, including
Lemma 1 and Proposition 1 for Group II, as well as Theo-
rem 2 for the inner loop of Algorithm 1.
Lemma 1. At stage p with L(p) fixed, the solution to Eq. (9)
(Group II), i.e. wij given in Eqn.(11), is global optimal to the
corresponding intermediary problem.

Proof. First, having L(t) fixed, the objective function in (9)
is convex with respect to wij ∈ [0, 1]. The solution in Eq.(11)
is computed by the Lagrange multiplier method, which guar-
antees that the obtained solution is feasible and satisfies the
KKT conditions for the convex problem (9). Thus, we reach
the conclusion.

Proposition 1. The function defined in Eq. (9), containing
three parameters including β̃ := β/α, γ̃ := γ/α and εij :=
[Y − L]2ij , has the following properties:

1. wij(β̃, γ̃, εij) is monotonically decreasing with re-
spect to εij , which holds limεij→0 wij(β̃, γ̃, εij) =

1
1+exp(−β̃/γ̃)

and limεij→+∞ wij(β̃, γ̃, εij) = 0;

2. wij(β̃, γ̃, εij) is monotonically increasing with respec-
t to β̃, which holds that limβ̃→0 wij(β̃, γ̃, εij) =

1
1+exp(εij/γ̃) and limβ̃→+∞ wij(β̃, γ̃, εij) = 1;

3. wij(β̃, γ̃, εij) is an inverse-‘S’ shaped function, which
approaches a binary function when γ̃ → 0 and the con-
stant 1/2 when γ̃ → +∞.

Each statement takes care of one target parameter with the
others fixed to be constants.

Proof. It can be easily verified by the definition.

Theorem 2. At stage t with Z(t−1) fixed, the inner loop of
Algorithm 1 is guaranteed to converge to a partial minimum
(either a stationary point or a local minimum) of the corre-
sponding intermediary problem.

Proof. The updating of U, V, L and W in the inner loop fol-
lows the manner of alternate convex search (ACS) [Bazaraa et
al., 1993]. As can be seen from Eq. (8) together with Lemma
1, the KKT conditions to all the involved variables are satis-
fied, which is sufficient to draw the conclusion [Gorski et al.,
2007].

Next, we shall consider the following lemmas required
by analysis on convergence and optimality of the designed
ROUTE-LRMR algorithm.

Lemma 2. Let {(U(t),V(t),L(t),W(t))} be a sequence
generated by Algorithm 1. Then the sequence approaches to
a feasible solution.

Proof. First, we come to prove the boundedness of {Z(t)}.
According to Theorem 1 and the optimality condition for (5)
with respect to L̂ := UV, we have:

Z(t−1) + µ(t−1)(L(t) −U(t)V(t)) = Z(t) ∈ ∂‖L̂(t))‖∗.

Through applying Lemma 3 on the above:

Lemma 3. [Fazel, 2002] Let H be a real Hilbert space en-
dowed with an inner product 〈·, ·〉 and a corresponding norm
‖·‖, and any y ∈ ∂‖x‖, where ∂‖·‖ denotes the subgradient.
Then ‖y‖∗ = 1 if x 6= 0, and ‖y‖∗ ≤ 1 if x = 0, where ‖ · ‖∗
is the dual norm of the norm ‖ · ‖.

we obtain that the sequence {Z(t)} is bounded via observing
the fact that the dual norm of ‖ · ‖∗ is the spectral norm. To-
gether with the boundedness of {Z(t)} and limt→∞ µ(t) =

∞, the relationship L(t) − U(t)V(t) = Z(t)−Z(t−1)

µ(t−1) gives

limt→∞ L(t) − U(t)V(t) = 0. Further, the constraints of
W +W = 1 and W,W ∈ [0, 1]m×n are immediately satis-
fied at each update, please see Lemma 1. Thus the statement
holds.

Having the above theoretical results, we finally come to the
convergence and optimality of ROUTE-LRMR.
Theorem 3. The proposed Algorithm 1 converges to a partial
minimum to the optimization problem (5).

Proof. By Lemmas 1 and 2, Theorem 2, and the updating
rule of multiplier Z, the KKT conditions for the constraints
as well as the solutions to the variables U, V, L, W and Z
are all satisfied. The first order optimality of (5) is sufficient
to guarantee that the ROUTE-LRMR converges to a partial
optimum to the problem (5).
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Figure 1: Parameter effect of γ and convergence speed

Method PRMF MoG L1Reg factEN Unifying PSMSV HW Ours
RMSEs=0.3 0.1106 0.7440 1.2789 0.2121 0.0608 1.0214 0.2731 0.0523
MAEs=0.3 0.0573 0.0984 0.2844 0.1069 0.0457 0.2813 0.2084 0.0445

RMSEs=0.4 0.5803 0.9796 1.6146 0.3731 0.0762 1.9496 0.4089 0.0624
MAEs=0.4 0.1716 0.1430 0.4432 0.2030 0.0565 0.7361 0.3114 0.0480

RMSEs=0.5 1.0920 1.3344 1.9255 0.5181 0.0975 2.7295 0.7953 0.0676
MAEs=0.5 0.3719 0.2201 0.6576 0.2868 0.0719 1.4310 0.5944 0.0520

RMSEs=0.6 1.6075 1.6381 2.4863 0.6861 0.1492 3.7988 0.9730 0.1092
MAEs=0.6 0.6287 0.3607 1.0438 0.4048 0.1093 2.3843 0.7236 0.0651

RMSEs=0.7 2.2421 1.9513 3.2555 0.8734 0.3566 4.8753 1.7483 0.3294
MAEs=0.7 1.0660 0.4956 1.7142 0.5677 0.2352 3.3894 1.2933 0.2088

Table 1: Performance comparison in terms of RMSE and
MAE with different outlier ratios s. The numbers are aver-
aged over 10 runs. The best results are highlighted in bold.

Further, based on Theorem 1, the problem (5) is equivalent
to the following one:

min
L,W

‖L‖∗ + α

2
‖
√
W ◦ (Y − L)‖2F + β‖W‖1

+ γ
∑

i,j

(wij logwij + w̄ij log w̄ij)

s. t. W +W = 1; W and W ∈ [0, 1]m×n,

(13)

which is biconvex in W and L. The convergence to a partial
optimum holds for the problem (13) too. Our ROUTE-LRMR
is free to switch modes between NNM and BF. Concretely,
instead of separately refreshing U and V, the updating of

L̂ := UV in (7) can be done by minimizing the problem:

min
L̂

‖L̂‖∗ + μ(t)

2
‖L(p) − L̂‖2F + 〈Z(t),L(p) − L̂〉, (14)

which can be solved in closed-form by the singular value
thresholding [Cai et al., 2010]. Except for this step, no other
changes happen in Algorithm 1.

4 Experimental Verification
In this section, we assess the performance of ROUTE-LRMR
in comparison with several state-of-the-art methods including
RegL1 [Zheng et al., 2012], PRMF [Wang et al., 2012], MoG
[Meng and De la Torre, 2013], factEN [Kim et al., 2015],
PSMSV [Oh et al., 2016] and Unifying [Cabral et al., 2013],
the codes of which are either downloaded from the authors’
websites or provided by the authors. Their settings follow the
suggestions by the authors or the given parameters.

4.1 Synthetic Data
Data Preparation and Quantitative Metrics Similar to
[Candès et al., 2011; Cabral et al., 2013], we generate a ma-
trix Y0 as a product Y0 = U0V0. The U0 and V0 are

Figure 2: Outlier ratio s versus RMSE and MAE

of size m × r and r × n respectively, both of which are
randomly produced by sampling each entry from the Gaus-
sian distribution N (0, 1), leading to a ground truth rank-r
matrix. Then we corrupt the entries via replacing a frac-
tion s of Y0 with errors drawn from a uniform distribution
over [−20, 20] at random, and the rest entries are polluted
by Gaussian noise N (0, 0.12). To quantitatively measure the
recovery performance, we employ 1) root mean square er-
ror (RMSE): 1√

mn
‖Y0− ÛV̂‖F and 2) mean absolute error

(MAE): 1
mn‖Y0 − ÛV̂‖1.

Parameter Effect We here focus on the parameter γ that con-
trols the entropy term, the other two parameters α and β are
empirically set to 50 and 1 throughout this paper. In this ex-
periment, without loss of generality, square matrices of di-
mension m = n = 100 and rank r = 4 are considered. The
left picture in Fig. 1 depicts RMSE and MAE curves (av-
eraged over 10 trials) with respect to different outlier ratios.
From the plots, we see that when γ approaches to 0, the er-
rors rapidly go up. This is because, as analyzed in Sec. 3, the
smaller γ is, the harder the weighting carries out, say the risk
of being stuck into bad minima gets higher. It is also the ev-
idence to prove the soft weighting is beneficial. In opposite,
if γ gets too large, the performance also drops. The reason is
that, in this situation, the weighting becomes almost constan-
t (0.5 for each entry), which degenerates ROUTE-LRMR to
PCA. Although the work range of γ shrinks as s grows, γ in
[0.005, 0.8] can perform stably and sufficiently well. For the
rest experiments unless stated otherwise, we set γ = 0.01.
To better reveal the advantage of our method over the com-
petitors especially on heavily ruined data, Table 1 reports the
numerical comparison. As can be seen from Tab. 1, ROUTE-
LRMR wins for all the cases, and the closest performance to
ours is from Unifying. Note that the method HW is ROUTE
with γ = 0.001 for mimicking the hard weighting strategy.

Convergence As regards convergence speed, for different
cases, the right graph in Fig. 1 shows that the stop criteri-
on quickly declines within 20 iterations, while the algorithm
converges within 60 ∼ 80 iterations. Moreover, experimental
findings here and follow-up tell that our algorithm has very
stable convergence behavior even with respect to random ini-
tializations.

Tolerance to Outliers To more thoroughly show the toler-
ance to outliers, we fix m = n = 400 and test the tendency by
varying outlier ratio s ∈ [0, 0.6] and rank r ∈ {20, 40, 60}.
According to the results in Tab. 1, Unifying is the method
chosen to compare. From the left picture of Fig. 2, we see
that at the beginning, Unifying and our method are close in
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Figure 3: Visual comparison on the task of photometric stereo. ROUTE-LRMR adopts γ = 0.001 in this experiment.

terms of RMSE, but as s increases, the margin between them
enlarges. The second graph in Fig. 2 further confirms the
first one. In the case of r = 20, both the RMSE and MAE of
ROUTE-LRMF stay very low even when s reaches 0.6. The
tolerance to outliers becomes weaker when r gets larger, not
just for our method and Unifying but also for all the methods.
The reason is that a higher-dimensional space requires more
data to accomplish the recovery.

4.2 Real Data
Photometric Stereo Images of a static Lambertian objec-
t sensed by a fixed camera under a varying but distant point
lighting source lie in a rank-3 subspace [Hayakawa, 1994].
This experiment aims to evaluate the effectiveness of the L-
RMR techniques on modeling the face under different illumi-
nations. The cropped Extended YaleB-10 sequence, contain-
ing 64 faces of one subject with size 192× 168, is adopted as
the dataset. The light imbalance including shadows and high-
lights on the face significantly breaks the low-rank structure
(please see the 1st column in Fig. 3 for example). In this part,
we set the guess rank r to 5 for all the competitors.
Comparison Figure 3 gives several comparison. We can ob-
serve that PRMF, factEN, MoG and Unifying perform rea-
sonably well, which are superior to PSMSV and L1Reg but
inferior to ours. As shown in the 2nd and 4th rows of Fig. 3,
PSMSV and L1Reg fail to remove shadows. The results by
PRMF, factEN, MoG and Unifying, although recalling some
details previously hidden in the dark, look unreal in the 2nd

and 3rd cases. Our ROUTE-LRMR1 provides visually pleas-
ant and real results for all the given cases, the benefit of which
mainly comes from the effective outlier detection. The 2nd

column in Fig. 3 displays the estimated weights W (brighter
regions indicate closer values to 1, while darker ones stand
for those to 0), from which we can find our strategy success-
fully detects and thus eliminates outliers. On the right side

1In image/video data, the outliers, such as shadows and fore-
grounds, often appear coherently. Considering this, in this experi-
ment, we employ a 2× 2 median filter on W.

of Fig. 3, we further provide several results by our method
(only, due to space limit). One may wonder if the weights
can be formed by treating as outliers the pixels with inten-
sity greater (highlights) or lower (shadows) than predefined
thresholds like [Zheng et al., 2012]. This way can reduce
the problem to LRMC, but is too heuristic, at high risk of
sacrificing much useful information for recovery. Taking the
bottom-right original for example, the thresholding may de-
termine all the pixels as outliers, while our strategy can finish
the job wisely and nicely. Moreover, in many real-world ap-
plications, manually seeking appropriate thresholds is, if not
impossible, very difficult. Being able to adaptively assign
weights to data is definitely desired, which is the goal and
motivation of our design.

5 Conclusion
This paper has shown a method for jointly detecting out-
liers and recovering the underlying low-rank matrix, called
ROUTE-LRMR. Our weighting strategy employs an entropy
regularization term to minimize the prediction bias, which be-
haves like a sigmoid function. To seek the optimal solution
for ROUTE-LRMR, we have developed an Alternating Direc-
tion Minimization based algorithm. The theoretical analysis
and the experimental results compared to the state-of-the-arts,
have demonstrated the advantages of the proposed ROUTE-
LRMR. Our strategy can be applied to numerous tasks such
as regression, clustering, inpainting and foreground detection.
It is also ready to embrace specific domain knowledge, like
graph regularizer on the weight, for further boosting the per-
formance on different applications.
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