
Improved Deep Embedded Clustering with Local Structure Preservation

Xifeng Guo, Long Gao, Xinwang Liu, Jianping Yin
College of Computer, National University of Defense Technology, Changsha, China

guoxifeng1990@163.com, 1017730430@qq.com, 1022xinwang.liu@gmail.com, jpyin@nudt.edu.cn

Abstract
Deep clustering learns deep feature representation-
s that favor clustering task using neural network-
s. Some pioneering work proposes to simultane-
ously learn embedded features and perform cluster-
ing by explicitly defining a clustering oriented loss.
Though promising performance has been demon-
strated in various applications, we observe that a
vital ingredient has been overlooked by these work
that the defined clustering loss may corrupt feature
space, which leads to non-representative meaning-
less features and this in turn hurts clustering per-
formance. To address this issue, in this paper, we
propose the Improved Deep Embedded Clustering
(IDEC) algorithm to take care of data structure p-
reservation. Specifically, we manipulate feature s-
pace to scatter data points using a clustering loss as
guidance. To constrain the manipulation and main-
tain the local structure of data generating distribu-
tion, an under-complete autoencoder is applied. By
integrating the clustering loss and autoencoder’s re-
construction loss, IDEC can jointly optimize clus-
ter labels assignment and learn features that are
suitable for clustering with local structure preser-
vation. The resultant optimization problem can be
effectively solved by mini-batch stochastic gradi-
ent descent and backpropagation. Experiments on
image and text datasets empirically validate the im-
portance of local structure preservation and the ef-
fectiveness of our algorithm.

1 Introduction
Unsupervised clustering is a vital research topic in data sci-
ence and machine learning. Traditional clustering algo-
rithms like k-means [MacQueen, 1967], gaussian mixture
model [Bishop, 2006] and spectral clustering [Von Luxburg,
2007] group data on handcrafted features according to intrin-
sic characteristics or similarity. However, when the dimen-
sion of input feature space (data space) is very high, the clus-
tering becomes ineffective due to unreliable similarity met-
rics. Transforming data from high dimensional feature space
to lower dimensional space in which to perform clustering
is an intuitive solution and has been widely studied. This

can be done by applying dimension reduction techniques like
Principle Component Analysis (PCA), but the representation
ability of these shallow models is limited. Thanks to the de-
velopment of deep learning, such feature transformation can
be achieved by using Deep Neural Networks (DNN). We refer
to this kind of clustering as deep clustering.

Deep clustering is most recently proposed and leaves a
lot of problems unsolved. For example, what types of neu-
ral networks are proper? How to provide guidance informa-
tion i.e. to define clustering oriented loss function? Which
properties of data should be preserved during transforma-
tion? The primitive work in deep clustering focuses on
learning features that preserve some properties of data by
adding priori knowledge to the subjective [Tian et al., 2014;
Peng et al., 2016]. They are two-stage algorithms: fea-
ture transformation and then clustering. Latter, algorithms
that jointly accomplish feature transformation and clustering
come into being [Yang et al., 2016; Xie et al., 2016]. The
Deep Embedded Clustering (DEC) [Xie et al., 2016] algo-
rithm defines an effective objective in a self-learning man-
ner. The defined clustering loss is used to update parameters
of transforming network and cluster centers simultaneously.
The cluster assignment is implicitly integrated to soft labels.
However, the local structure preservation can not be guaran-
teed by the clustering loss. Thus the feature transformation
may be misguided, leading to corruption of embedded space.

To deal with this problem, in this paper, we assume that
both clustering oriented loss guidance and local structure p-
reservation mechanism are essential for deep clustering. In-
spired by [Peng et al., 2016], we use under-complete au-
toencoder to learn embedded features and to preserve local
structure of data generating distribution. We propose to in-
corporate autoencoder into DEC framework. In this way, the
proposed framework can jointly perform clustering and learn
representative features with local structure preservation. We
refer to our algorithm as Improved Deep Embedded Cluster-
ing (IDEC). The optimization of IDEC can directly perform
mini-batch stochastic gradient descent and backpropagation.
At last, some experiments are carefully designed and con-
ducted. The results validate our assumption and the effective-
ness of our IDEC.

The contributions of this work are summarized as below:

• We propose a deep clustering algorithm that can jointly
perform clustering and learn representative features with

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1753



local structure preservation.

• We empirically prove the importance of local structure
preservation in deep clustering.

• The proposed IDEC outperforms the newest opponent in
a large margin.

2 Related Work
2.1 Deep Clustering
Existing deep clustering algorithms broadly fall into two cat-
egories: (i) two-stage work that applies clustering after hav-
ing learned a representation, and (ii) approaches that jointly
optimize the feature learning and clustering.

The former category of algorithms directly take advan-
tage of existing unsupervised deep learning frameworks and
techniques. For example, [Tian et al., 2014] uses autoen-
coder to learn low dimensional features of original graph, and
then runs k-means algorithm to get clustering results. [Chen,
2015] layer-wisely trains a Deep Belief Network (DBN) and
then applies non-parametric maximum-margin clustering to
learned intermediate representation. [Peng et al., 2016] us-
es autoencoder with sparsity prior to learn representations in
nonlinear latent space that are adaptive to local and global
subspace structure simultaneously, and then traditional clus-
tering algorithms are employed to get label assignment.

The other category of algorithms try to explicitly define
a clustering loss, simulating classification error in supervised
deep learning. [Yang et al., 2016] proposes a recurrent frame-
work in deep representations and image clusters, which in-
tegrates two processes into a single model with a unified
weighted triplet loss and optimizes it end-to-end. DEC [X-
ie et al., 2016] learns a mapping from the observed space to
a low-dimensional latent space with deep neural networks,
which can obtain feature representations and cluster assign-
ments simultaneously.

The proposed algorithm intrinsically is a modified version
of DEC with incorporating an under-complete autoencoder
to preserve local structure. It excels [Yang et al., 2016] by
simplicity without recurrent and outperforms DEC in terms
of clustering accuracy and feature’s representativeness. Since
IDEC mainly depends on autoencoder and DEC, we will in-
troduce them in more detail in the following sections.

2.2 Autoencoder
An autoencoder is a neural network that is trained to attempt
to copy its input to its output. Internally, it has a hidden layer
z that describes a code used to represent the input. The net-
work consists of two parts: an encoder function z = fW (x)
and a decoder x′ = gW ′(z) that produces a reconstruction.
There are two widely used types of autoencoders.

Under-complete autoencoder. It controls the dimension
of latent code z lower than input data x. Learning such under-
complete representations force the autoencoder to capture the
most salient features of the data.

Denoising autoencoder. Instead of reconstructing x given
x, denoising autoencoder minimizes the following objective:

L = ‖x− gW ′(fW (x̃))‖22 (1)

where x̃ is a copy of x that is corrupted by some form of
noise. Therefore, denoising autoencoder has to recover x
from this corruption rather than simply copying their input.
In this way, denoising autoencoder can force encoder fW and
decoder gW ′ to implicitly capture the structure of data gener-
ating distribution.

In our algorithm, the denoising autoencoder is used for pre-
training and under-complete autoencoder is added to DEC
framework after initialization.

2.3 Deep Embedded Clustering
Deep Embedded Clustering (DEC) [Xie et al., 2016] start-
s with pretraining an autoencoder and then removes the de-
coder. The remaining encoder is finetuned by optimizing the
following objective:

L = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(2)

where qij is the similarity between embedded point zi and
cluster center µj measured by Student’s t-distribution [Maat-
en and Hinton, 2008]:

qij =
(1 + ‖zi − µj‖2)−1∑
j(1 + ‖zi − µj‖2)−1

(3)

And pij in (2) is the target distribution defined as

pij =
q2ij/

∑
i qij∑

j

(
q2ij/

∑
i qij

) (4)

As we can see, the target distribution P is defined by Q, so
minimizing L is a form of self-training [Nigam and Ghani,
2000].

Let fW be the encoder mapping, i.e. zi = fW (xi) where
xi is input example from datasetX . After pretraining, all em-
bedded points {zi} can be extracted using fW . Then employ
k-means on {zi} to get initial cluster centers {µj}. After-
wards, L can be computed according to (2), (3) and (4). And
the predicted label of sample xi is argmaxj qij .

During backpropagation, ∂L/∂zi and ∂L/∂µj can be easi-
ly computed. Then ∂L/∂zi is passed down to update fW and
∂L/∂µj is used to update cluster center µj :

µj = µj − λ
∂L

∂µj
(5)

The biggest contribution of DEC is the clustering loss (or
target distribution P , to be specific). It works by using high
confidential samples as supervision and then making samples
in each cluster distribute more densely. However, there is no
guarantee of pulling samples near margins towards the cor-
rect cluster. We deal with this problem by explicitly preserv-
ing the local structure of data. Under this condition, the su-
pervision information of high confidential samples can help
the marginal samples walk to the correct cluster.

3 Improved Deep Embedded Clustering
Consider a dataset X with n samples and each sample xi ∈
Rd where d is the dimension. The number of clusters K is

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1754



Figure 1: The network structure of IDEC. The encoder and decoder
are composed of fully connected layers. Clustering loss is used to
scatter the embedded points z and the reconstruction loss makes sure
that the embedded space preserves local structure of data generating
distribution.

a priori knowledge and the jth cluster center is represented
by µj ∈ Rd. Let the value of si ∈ {1, 2, . . . ,K} represen-
t the cluster index assigned to sample xi. Define nonlinear
mapping fW : xi → zi and gW ′ : zi → x′i where zi is the
embedded point of xi in the low dimensional feature space
and x′i is the reconstructed sample for xi.

We aim to find a good fW which makes embedded points
{zi}ni=1 more suitable for clustering task. To this end, t-
wo components are essential: the autoencoder and cluster-
ing loss. The autoencoder is used to learn representations in
unsupervised manner and the learned features can preserve
intrinsic local structure in data. The clustering loss, borrowed
from [Xie et al., 2016], is responsible for manipulating em-
bedded space in order to scatter embedded points. The whole
network structure is illustrated in Fig. 1. And the objective is
defined as

L = Lr + γLc (6)

where Lr and Lc are reconstruction loss and clustering loss
respectively, and γ > 0 is a coefficient that controls the de-
gree of distorting embedded space. When γ = 1 and Lr ≡ 0,
(6) reduces to the objective of DEC [Xie et al., 2016].

3.1 Clustering loss and Initialization
The clustering loss is proposed by [Xie et al., 2016]. It is de-
fined as KL divergence between distributions P andQ, where
Q is the distribution of soft labels measured by Student’s t-
distribution and P is the target distribution derived from Q.
That is to say, the clustering loss is defined as

Lc = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

(7)

where KL is KullbackLeibler divergence that measures the
non-symmetric difference between two probability distribu-
tions, P and Q are defined by (4) and (3). Details can be
found in Section 2.3 and [Xie et al., 2016].

Follow suggestions in [Xie et al., 2016], we also pretrain a
stacked denoising autoencoder before performing clustering.
After pretraining, embedded points are valid feature represen-
tations for input samples. Then cluster centers {µj}Kj=1 can
be initialized by employing k-means on {zi = fW (xi)}ni=1

3.2 Local structure preservation
The embedded points obtained in Section 3.1 are not neces-
sarily suitable for clustering task. To this end, DEC [Xie et
al., 2016] abandons the decoder and finetunes the encoder us-
ing clustering loss Lc. However, we suppose that this kind of
finetuning could distort the embedded space, weaken the rep-
resentativeness of embedded features and thereby hurt clus-
tering performance. Therefore, we propose to keep the de-
coder untouched and directly attach the clustering loss to em-
bedded space.

To ensure the effectiveness of clustering loss, the stacked
denoising autoencoder used in pretraining is not appropriate
any more. Because the clustering should be performed on
features of clean data, instead of noised data that used in de-
noising autoencoder. So we directly remove the noise. Then
the stacked denoising autoencoder degenerates into an under-
complete autoencoder (See Section 2.2). The reconstruction
loss is measured by Mean Squared Error (MSE):

Lr =
n∑

i=1

‖xi − gW ′(zi)‖22 (8)

where zi = fW (xi) and fW and gW ′ are encoder and de-
coder mappings respectively. As shown in [Peng et al., 2016]
and [Goodfellow et al., 2016], autoencoders can preserve lo-
cal structure of data generating distribution. Under this condi-
tion, manipulating embedded space slightly using clustering
loss will not cause corruption. So the coefficient γ is better
to be less than 1, which will be empirically demonstrated in
Section 4.3.

3.3 Optimization
We optimize (6) using mini-batch stochastic gradient decent
(SGD) and backpropagation. To be specific, there are three
kinds of parameters to optimize or update: autoencoder’s
weights, cluster centers and target distribution P .

Update autoencoder’s weights and cluster centers. Fix
target distribution P , then the gradients of Lc with respect to
embedded point zi and cluster center µj can be computed as:

∂Lc

∂zi
= 2

K∑
j=1

(
1 + ‖zi − µj‖2

)−1
(pij − qij)(zi − µj) (9)

∂Lc

∂µj
= 2

n∑
i=1

(
1 + ‖zi − µj‖2

)−1
(qij − pij)(zi − µj) (10)

Note that the above derivations are from [Xie et al., 2016].
Then given a mini batch with m samples and learning rate λ,
µj is updated by

µj = µj −
λ

m

m∑
i=1

∂Lc

∂µj
(11)

The decoder’s weights are updated by

W ′ =W ′ − λ

m

m∑
i=1

∂Lr

∂W ′
(12)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1755



The encoder’s weights are updated by

W =W − λ

m

m∑
i=1

(
∂Lr

∂W
+ γ

∂Lc

∂W

)
(13)

Update target distribution. The target distribution P
serves as “groundtruth” soft label but also depends on pre-
dicted soft label. Therefore, to avoid instability, P should
not be updated at each iteration (one update for autoencoder’s
weights using a mini-batch of samples is called an iteration)
using only a batch of data. In practice, we update target distri-
bution using all embedded points every T iterations. See (3)
and (4) for the update rules. When update target distribution,
the label assigned to xi is obtained by

si = argmax
j
qij (14)

where qij is computed by (3). We will stop training if label
assignment change (in percentage) between two consecutive
updates for target distribution is less than a threshold δ.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1: Improved Deep Embedded Clustering
Input: Input data: X; Number of clusters: K; Target

distribution update interval: T ; Stopping
threshold: δ; Maximum iterations: MaxIter.

Output: Autoencoder’s weights W and W ′; Cluster
centers µ and labels s.

1 Initialize µ,W ′ and W according to Section 3.1.
2 for iter ∈ {0, 1, . . . ,MaxIter} do
3 if iter%T == 0 then
4 Compute all embedded points {zi = fW (xi)}ni=1
5 Update P using (3), (4) and {zi}ni=1.
6 Save last label assignment: sold = s.
7 Compute new label assignments s via (14).
8 if sum(sold 6= s)/n < δ then
9 Stop training.

10 Choose a batch of samples S ∈ X .
11 Update µ, W ′ and W via (11), (12) and (13) on S.

It is not difficult to see that the time complexity of IDEC al-
gorithm isO(nD2+ndK), where D, d and K are maximum
number of neurons in hidden layers, dimension of embedding
layer and number of clusters. Generally K ≤ d ≤ D holds,
so the time complexity is O(nD2).

4 Experiments
4.1 DataSets
The proposed IDEC method is evaluated on two image
datasets and one text dataset:
• MNIST: The MNIST dataset [LeCun et al., 1998] con-

sists of total 70000 handwritten digits of 28x28 pixel
size. We reshaped each gray image to a 784 dimensional
vector.
• USPS: The USPS dataset contains 9298 gray-scale

handwritten digit images with size of 16x16 pixels. The
features are floating point in [0, 2].

Table 1: Datasets statistics

Dataset # examples # classes Dimension
MNIST 70000 10 784
USPS 9298 10 256
REUTERS-10K 10000 4 2000

Figure 2: Accuracies and losses during training on MNIST.

• REUTERS-10K: Reuters contains around 810000 En-
glish news stories labeled with a category tree [Lewis et
al., 2004]. Following DEC [Xie et al., 2016], we used 4
root categories: corporate/industrial, government/social,
markets and economics as labels and excluded all docu-
ments with multiple labels. Restricted by computational
resources, we randomly sampled a subset of 10000 ex-
amples and computed tf-idf features on the 2000 most
frequent words. The sampled dataset is referred as to
REUTERS-10K.

For all algorithms, we preprocessed datasets as same as DEC,
i.e. normalizing each example xi ∈ X to 1

d‖xi‖
2
2 ≈ 1.

4.2 Experiment Setup
Comparing methods. We demonstrate the effectiveness of
our IDEC algorithm mainly by comparing with DEC [Xie et
al., 2016] which can be viewed as a special case of IDEC
when the reconstruction term is set to zero. we use the pub-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1756



Figure 3: Visualization of clustering results on subset of MNIST during training. Different colors mark different clusters. The first row is
ours and second row corresponds to DEC. The proposed IDEC converges slower since it optimizes reconstruction loss as well. Both methods
separate clusters well but the data structure in the first row is preserved better than DEC. Note points with red and blue color, they are totally
mixed together in DEC while still somehow separable in our IDEC.

licly available code released by the author to report the per-
formance of DEC. The two-stage deep clustering algorithm is
denoted as AE+k-means, which means performing k-means
algorithm on embedded features of pretrained autoencoder.
This is the same as the results of DEC and IDEC before train-
ing with clustering loss. For the sake of completeness, t-
wo traditional and classic clustering algorithms, k-means and
Spectral Embedded Clustering (SEC) [Nie et al., 2011], are
also included in comparison. k-means is run 20 times with
different initialization and the result with best objective value
is chosen. SEC is a variant of spectral clustering with a lin-
earity regularization explicitly added and outperforms tradi-
tional spectral clustering methods on a wide range of datasets
according to [Nie et al., 2011]. The parameters of SEC are
fixed as default value in the code provided by the authors.

Parameters setting. Following the settings in DEC [Xie
et al., 2016], the encoder network is set as a fully connected
multilayer perceptron (MLP) with dimensions d−500−500−
2000 − 10 for all datasets, where d is the dimension of input
data (features). And the decoder network is a mirror of en-
coder, i.e. a MLP with dimensions 10−2000−500−500−d.
Except for input, output and embedding layers, all internal
layers are activated by ReLU nonlinearity function [Glorot et
al., 2011]. The autoencoder network pretraining is set exact-
ly the same as [Xie et al., 2016], please refer to the paper for
more details. After pretraining, the coefficient γ of clustering
loss is set to 0.1 (this is determined by a grid search in {0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1.0}) and batch size to 256 for all
datasets. The optimizer Adam [Kingma and Ba, 2014] with
init learning rate λ = 0.001, β1 = 0.9, β2 = 0.999 is applied
for MNIST dataset and SGD with learning rate λ = 0.1 and
momentum β = 0.99 is used for USPS and REUTERS-10K
datasets. The convergence threshold is set to δ = 0.1%. And

Table 2: Comparison of clustering performance in terms of accuracy
(%) and NMI (%, in bracket).

Methods MNIST USPS REUTERS-10K
k-means 53.24 66.82 51.62

SEC 80.37 N/A 60.08
AE+k-means 81.82(74.73) 69.31(66.20) 70.52(39.79)

DEC 86.55(83.72) 74.08(75.29) 73.68(49.76)
IDEC 88.06(86.72) 76.05(78.46) 75.64(49.81)

the update intervals T are 140, 30, 3 iterations for MNIST,
USPS and REUTERS-10K respectively. Our implementation
is based on Python and Keras [Chollet, 2015] and is available
at https://github.com/XifengGuo/IDEC.

Evaluation Metric. All clustering methods are evaluated
by clustering accuracy (ACC) and Normalized Mutual Infor-
mation (NMI) which are widely used in unsupervised learn-
ing scenario.

4.3 Results
We report the results of all comparing algorithms on 3
datasets in Table 2. As it shows, deep clustering algorithms
AE+k-means, DEC and IDEC outperform traditional cluster-
ing algorithms k-means and Spectral Embedded Clustering
(SEC) [Nie et al., 2011] with a large margin, which indi-
cates the fascinating potentials of deep learning in unsuper-
vised clustering field. The performance gap between AE+k-
means and DEC reflects the effect of clustering loss. And
the outperformance of IDEC over DEC demonstrates that the
autoencoder can help improve clustering performance.

Figure 2 illustrates the behavior of DEC and IDEC dur-
ing training on MNIST. We observe the following phenom-
ena. First, the final accuracies comply with results in Table

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1757



Figure 4: The effect of learning rate λ and clustering coefficient γ in (6) on clustering performance for MNIST dataset.

2, i.e. IDEC outperforms DEC. Second, IDEC converges s-
lower than DEC because of the fluctuation of reconstruction
loss. Third, IDEC has larger clustering loss and higher clus-
tering accuracy than DEC. This implies that the objective of
DEC may mislead the clustering procedure by distorting the
embedded feature space and breaking the intrinsic structure
of data. Finally, the reconstruction losses at last few itera-
tions approximately equal the loss at beginning. It implies
that the performance improvement from DEC to IDEC is not
likely due to the clustering ability of autoencoder. Actually,
we did conduct an experiment that finetunes the autoencoder
only using reconstruction loss Lr (by setting coefficient γ in
(6) to 0) via various optimizers, and no improvement in terms
of clustering accuracy was observed. So we assume that the
autoencoder plays the role of preserving local structure of da-
ta, and under this condition clustering loss can manipulate
embedded space to get better clustering accuracy.

We further prove our assumption about the role autoen-
coder acts by visualizing the embedded feature space during
training. The t-SNE [Maaten and Hinton, 2008] visualization
on a random subset of MNIST with 1000 samples is shown in
Fig. 3. From left to right in the top row, the training process
of IDEC, the “shape” of each cluster is almost maintained.
On the contrary, the “shape” in the bottom is changed a lot
with training proceeding. Furthermore, when you focus on
clusters colored by red and blue (digits 4 and 9), in the first
column they are still separable but become distinguishable in
the last column. This is a loophole of DEC’s objective (clus-
tering loss). Our IDEC doesn’t overcome this problem, but
does go further than DEC. To validate this, see the figures in
the last column: blue and red clusters of IDEC are still some-
how separable while in DEC they are totally mixed up. This
problem was not observed from Figure 5 in [Xie et al., 2016],
but it indeed happens by using their released code. This is
also pointed out by [Zheng et al., 2016]. It can be conclud-
ed that the autoencoder can preserve the intrinsic structure of
data generating distribution and hence help clustering loss to

manipulate the embedded feature space appropriately.
To see how the coefficient γ of clustering loss in (6) affects

the performance of IDEC algorithm, we conduct experiment
on MNIST dataset by sampling γ in range [10−2, 102]. The
optimizer is set as SGD with momentum β = 0.9, as same as
DEC’s default setting, for fair comparison. The learning rate
λ is set as 0.1, 0.01, 0.001, 0.0001 successively. As shown in
Figure 4, there are following observations.

For the best learning rate, IDEC (λ = 0.1) outperforms
DEC (λ = 0.01) when γ ∈ [0.05, 1.0]. Because γ with too
small value eliminates the positive effect of clustering loss
and large value tends to distort latent feature space. When
γ → 0, the clustering result approaches that of AE+k-means.

Learning rate λ and clustering coefficient γ are coupling.
For larger γ, it requires smaller λ to maintain performance.
But the combination of small γ and large λ leads to higher
performance. So we recommend γ = 0.1.

5 Conclusion
This paper proposes Improved Deep Embedded Clustering
(IDEC) algorithm, which jointly performs clustering and
learns embedded features that are suitable for clustering and
preserve local structure of data generating distribution. IDEC
manipulates feature space to scatter data by optimizing a K-
L divergence based clustering loss.And it maintains the local
structure by incorporating an autoencoder. Empirical experi-
ments demonstrate that structure preservation is vital to deep
clustering algorithm and can favor clustering performance.
Future work includes: adding more prior knowledge (e.g. s-
parsity) in IDEC framework, and incorporating convolutional
layers for image datasets.

Acknowledgments
This work was financially supported by the National Nat-
ural Science Foundation of China (Project no. 60970034,
61170287, 61232016 and 61672528).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1758



References
[Bishop, 2006] Christopher M Bishop. Pattern Recognition

and Machine Learning. Springer, 2006.
[Chen, 2015] Gang Chen. Deep learning with nonparametric

clustering. arXiv preprint arXiv:1501.03084, 2015.
[Chollet, 2015] François Chollet. Keras, 2015.
[Glorot et al., 2011] Xavier Glorot, Antoine Bordes, and

Yoshua Bengio. Deep sparse rectifier neural network-
s. Journal of Machine Learning Research, 15:315–323,
2011.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep learning. MIT Press, 2016.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[Lewis et al., 2004] David D Lewis, Yiming Yang, Tony G
Rose, and Fan Li. Rcv1: A new benchmark collection for
text categorization research. Journal of Machine Learning
Research, 5(Apr):361–397, 2004.

[Maaten and Hinton, 2008] Laurens van der Maaten and Ge-
offrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[MacQueen, 1967] James MacQueen. Some methods for
classification and analysis of multivariate observations. In
Berkeley Symposium on Mathematical Statistics and Prob-
ability, volume 1, pages 281–297. Oakland, CA, USA.,
1967.

[Nie et al., 2011] Feiping Nie, Zinan Zeng, Ivor W Tsang,
Dong Xu, and Changshui Zhang. Spectral embedded
clustering: A framework for in-sample and out-of-sample
spectral clustering. IEEE Transactions on Neural Net-
works, 22(11):1796–1808, 2011.

[Nigam and Ghani, 2000] Kamal Nigam and Rayid Ghani.
Analyzing the effectiveness and applicability of co-
training. In International Conference on Information and
Knowledge Management, pages 86–93. ACM, 2000.

[Peng et al., 2016] Xi Peng, Shijie Xiao, Jiashi Feng, Wei-
Yun Yau, and Zhang Yi. Deep subspace clustering with
sparsity prior. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2016.

[Tian et al., 2014] Fei Tian, Bin Gao, Qing Cui, Enhong
Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In AAAI, pages 1293–1299, 2014.

[Von Luxburg, 2007] Ulrike Von Luxburg. A tutorial on
spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

[Xie et al., 2016] Junyuan Xie, Ross Girshick, and Al-
i Farhadi. Unsupervised deep embedding for clustering
analysis. In International Conference on Machine Learn-
ing (ICML), 2016.

[Yang et al., 2016] Jianwei Yang, Devi Parikh, and Dhruv
Batra. Joint unsupervised learning of deep representations
and image clusters. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 5147–5156,
2016.

[Zheng et al., 2016] Yin Zheng, Huachun Tan, Bangsheng
Tang, Hanning Zhou, et al. Variational deep embedding:
A generative approach to clustering. arXiv preprint arX-
iv:1611.05148, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1759


