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Abstract
People consume and rate products in online shop-
ping websites. The historical purchases of cus-
tomers reflect their personal consumption habits
and indicate their future shopping behaviors. Tradi-
tional preference-based recommender systems try
to provide recommendations by analyzing users’
feedback such as ratings and clicks. But unfortu-
nately, most of the existing recommendation algo-
rithms ignore the budget of the users. So they can-
not avoid recommending users with products that
will exceed their budgets. And they also cannot un-
derstand how the users will assign their budgets to
different products. In this paper, we develop a gen-
erative model named collaborative budget-aware
Poisson factorization (CBPF) to connect users’ rat-
ings and budgets. The CBPF model is intuitive
and highly interpretable. We compare the pro-
posed model with several state-of-the-art budget-
unaware recommendation methods on several real-
world datasets. The results show the advantage of
uncovering users’ budgets for recommendation.

1 Introduction
Online market is expanding to an unparalleled scale. Facil-
itated by websites such as Amazon.com and Alibaba.com,
people more and more rely on online shopping and consume
millions of products every day. This is accompanied with the
rapid increase of the online retail. In 2010, the Internet econ-
omy accounts for 4.7% of the US gross domestic product
(GDP) while in 2016 the contribution has increased to 5.4%
1. And the proportion of the online retail tends to continue to
rise in the years ahead. This phenomenon inevitably has a big
impact on every aspects of our life.

With the growth of the online market, there is an urgent
need for intelligent recommendation of products for cus-
tomers. Most of the online shopping websites leverage rec-
ommender systems to record users’ usage data such as rat-
ings and clicks to uncover their latent preferences. How-
ever, most of the recommendation algorithms are budget-
unaware, in other words, they cannot avoid recommending
∗Corresponding author.
1https://www.bcg.com/documents/file100409.pdf

users with products that exceed their budgets and they also
cannot understand how users will assign their budgets to
different products. According to [Du and Kamakura, 2008],
consumers allocate their budgets by considering both the
“whether to spend” and the “how much to spend” deci-
sions to maximize the utility function. Thus the consumers’
decisions imply an unified preference structure for differ-
ent products within a category. In this paper, we propose a
model called collaborative budget-aware Poisson factoriza-
tion (CBPF) to consider users’ ratings and budgets simulta-
neously. With the understanding of how users’ budgets affect
their purchasing behaviors, we can provide more intelligent
recommendations. Few works in recommender systems com-
munity consider the monetary limit of users. To the best of
our knowledge, this is the first work that considers modeling
users’ budgets in a generative way for product recommenda-
tion.
Why try to model users’ budgets? Unlike the category of
books or movies, price plays a more important role in affect-
ing users’ purchases of commercial goods such as cellphones
or jewelries. As pointed out by [Du and Kamakura, 2008;
Kooti et al., 2016], users usually have finite budgets and they
will assign more budgets to the products that they prefer. So
to understand how the users will divide their budgets across
different products is of great practical importance. Moreover,
some users may put more budgets on certain kinds of product
attributes. For example, some customers may willing to pay
extra budgets for a larger cellphone screen compared with a
powerful battery. All these phenomena demonstrate the ratio-
nality and importance of uncovering users’ budgets for intel-
ligent item recommendation. This is a blind spot of traditional
recommender systems.
Why model with Poisson factorization? Hierarchical Pois-
son factorization (HPF) [Gopalan et al., 2013] is an effec-
tive item recommendation model for users’ ratings. It has
been used for content-based recommendation [Gopalan et al.,
2014], social-based recommendation [Chaney et al., 2015]
and dynamic recommendation [Charlin et al., 2015]. There
are three reasons for modeling users’ budgets based on HPF.
First is that HPF can be interpreted as a two-stage process
that the user first decides a budget, then allocates this budget
accross different products. This interpretation makes HPF in-
tuitive to model the process of users’ allocation of budgets.
Second is that previous works [Gopalan et al., 2013; Chaney
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Figure 1: A simple illustration of users’ budget preference and rating
preference. The user’s budget preference corresponds to the money
the user spent on the product and the user’s rating preference corre-
sponds to the rating the user gave to the product. The orange bars
represent the latent vector representations of users’ preferences.

et al., 2015] point out HPF is better than Gaussian matrix
factorization based models [Salakhutdinov and Mnih, 2008a;
2008b] in estimating users’ activity levels. Third is that the
inference of HPF is generally fast due to it only relies on the
observed cells of the feedback matrix.
Case study: In Figure 1, we take a user’s purchasing records
as an example. The user bought two shoes from Amazon.com.
He spent more on the first one but rated it lower. So from the
perspective of preference-based recommender systems, the
user preferred the second shoe to the first. On the other hand,
from the perspective of budget-aware recommendation, since
the user spent more on the first shoe, he preferred the first
shoe to the second. That means the first shoe has some proper-
ties that the user preferred and decided to allocate more funds.
This reflects that the products the users actually bought do not
necessarily cost less. If the user spent a lot on a product, this
means the user preferred the product to other products. So in
generally users will buy products that they both prefer and
afford. The ratings the user given to the products and the bud-
get the user allocated to the products are both indicators of the
user’s inclinations. Thus for intelligent recommendation, it is
crucial to take both perspectives into consideration.The or-
ange bars represent the latent vector representations of users’
preferences. The height of the bars means what attribute the
user will assign more budget and how the user will rate the
attribute accordingly.
Summary and contributions: In this paper, we develop a
generative model named collaborative budget-aware Poisson
factorization (CBPF) to connect users’ ratings and budgets si-
multaneously. The model is intuitive and highly interpretable.
The contributions of the paper are summarized below:

• We propose a generative model to connect users’ ratings
and budgets in a cohesive manner.

• We develop an efficient variational inference optimiza-
tion algorithm to approximate the posterior distribution
of the model.

• The experimental results reveal the advantage of the
proposed model compared with state-of-the-art budget-
unaware recommendation models.

2 Related Work
Recommender systems have drawn more attentions from
the machine learning community since the emergence of
the e-commerce [Resnick and Varian, 1997]. Various ap-
proaches have been proposed to provide better product rec-
ommendations. Among them, collaborative filtering [Gold-
berg et al., 1992; Koren, 2008; Koren and Bell, 2011] is
a leading technique which tries to recommend a user with
products by analysing similar users’ records. Gaussian ma-
trix factorization models [Salakhutdinov and Mnih, 2008a;
2008b] were proposed recently to handle extremely large
datasets and to deal with cold-start users who have very few
ratings. In matrix factorization models, users and items are
represented as low-dimensional vectors. The latent user vec-
tors indicate user preferences and latent item vectors indicate
item attributes. This representation is also called latent factor
model [Koren, 2008; Koren et al., 2009].

In order to better handle the data sparsity problem and
the long-tail of users and items, hierarchical Poisson fac-
torization [Gopalan et al., 2013] was proposed recently to
be an alternative to Gaussian matrix factorization models.
The main problem with Gaussian matrix factorization mod-
els is that they systematically overestimate users’ activity lev-
els [Gopalan et al., 2013]. Recently, many variants of hier-
archical Poisson factorization model [Gopalan et al., 2014;
Chaney et al., 2015; Charlin et al., 2015] were developed to
provide more flexible item recommendations.

Understanding how budgets affect users’ purchasing deci-
sions is an important topic in the field of economics [Kao et
al., 2001; Gourinchas and Parker, 2002; Du and Kamakura,
2008]. However, all these works are taken from an econom-
ical perspective. Based on our analysis above, uncovering
users’ budgets can also be an important issue in the field
of recommender systems. However, few works consider in-
corporating budgets into recommender systems. [Xie et al.,
2010] considers the situation that users choose a travel pack-
age on a limited budget. To the best of our knowledge, this
paper is the first one that works on incorporating users’ bud-
gets into recommender systems in a generative way.

3 Preliminaries
3.1 Problem Definition and Notations
In this paper, we assume that there are U users and V items.
Following the convention of latent factor models, we repre-
sent each entity as a low-dimensional latent vector and the
latent dimension is denoted as K. For a user u, we represent
the latent assignment vector as φu, which indicates how the
user will assign the budget to different item attributes. And
we denote the latent rating vector as θu, which indicates how
the user will rate each item attribute. So the orange bars in
Figure 1 are illustrations of φu and θu. Meanwhile, the latent
attribute vector of item v is denoted as βv . The monetary al-
location of the user u to item v is puv and the rating that the
user u give to item v is yuv .

We denote the observed feedback (the set of products that
the user bought) of user u as Ou. For each unseen item v (the
product that the user did not buy) of the user u, the task of
a recommendation model m is to construct a ranking score
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Figure 2: The graphical model of CBPF.

fu(v) based on Ou and then recommend the user with items
with high ranking scores.

3.2 Hierarchical Poisson Factorization
Hierarchical Poisson factorization [Gopalan et al., 2013] is
a probabilistic collaborative filtering recommendation model
for users’ ratings. In hierarchical Poisson factorization, users
and items are represented as low-dimensional and non-
negative sparse vectors. The latent user vectors indicate user
preferences and the latent item vectors indicate item at-
tributes. The ratings that users give to items are assumed to
be drawn from Poisson distributions. The rate of the Poisson
distribution is set to be the inner product of the latent user vec-
tor and latent item vector. Meanwhile, each component of the
latent user vector and the latent item vector is drawn from a
Gamma distribution whose rate is assumed to be drawn from
another Gamma distribution with fixed parameters.

4 Proposed Model
In CBPF, we try to uncover how users will assign their bud-
gets to each item attribute and how users will rate the attribute
accordingly. Unlike HPF [Gopalan et al., 2013] which only
considers users’ ratings, we model users’ ratings and budgets
in a cohesive manner which captures the intuition that for
intelligent recommendation it is important to involve users’
budgets. The generative process of HPF is similar to CBPF
and we omit it due to space limitation. Based on above anal-
ysis, the generative process of CBPF is defined as follows:

1. For each user u:
(a) Sample ζu ∼ Gamma(a′,a′/b′).
(b) For each component k, sample preference

θuk ∼ Gamma(a, ζu). (1)

(c) Sample πu ∼ Gamma(e′,e′/f ′).
(d) For each component k, sample assignment

φuk ∼ Gamma(e, πu). (2)

2. For each item v:
(a) Sample ηu ∼ Gamma(c′,c′/d′).
(b) For each component k, sample attribute

βvk ∼ Gamma(c, ηu). (3)

3. For each user u and item v,
(a) sample rating

yuv ∼ Poisson(θTu βv). (4)

(b) sample allocation

puv ∼ Poisson(φTuβv). (5)

In this paper, we use budget to refer to the monetary limit
of a user, which equals to the sum of all allocations. The mon-
etary allocation of the user u to item v is just the price of item
v. And we use assignment to refer to the monetary allocation
to a particular item attribute. So the latent assignment vector
φu indicates how the user u will allocate her budget to differ-
ent item attributes. The allocation puv of user u for item v is
assumed to be drawn from a Poisson distribution whose rate
is the inner product of the latent assignment vector and the
latent attribute vector.

Users’ ratings and allocations are highly correlated and
both stem from the interaction of user preferences and prod-
uct attributes. In CBPF, they are coupled in a natural and co-
hesive manner. HPF is a special case of the proposed model
which only considers users’ ratings. The latent variables of
CBPF are θ1:U , φ1:U , β1:V , ζ1:U , π1:V and η1:U . The observed
variables are users’ ratings y and users’ allocations p.
Interpretation: Due to the relation between Poisson distri-
bution and multinomial distribution, we can re-write the gen-
erative process of users’ allocations as a two-stage procedure
similar to [Gopalan et al., 2013]. The user u first decides an
amount of budget bu and then chooses how to allocate the
budget across different products:

bu ∼ Poisson(φTu
∑
v

βv), (6)

[pu1, ..., puV ] ∼ Mult(bu,
φTuβv

φTu
∑
βv

). (7)

This interpretation makes it intuitive to model users’ budgets
with Poisson distribution. Moreover, the non-negative con-
straint of the latent assignment vectors makes it practically
reasonable to model users’ assignments of budgets.
Recommending new products: To recommend new prod-
ucts for each user, we fit the posterior distribution
p(ζ1:U , θ1:U , π1:V , β1:V , η1:U , φ1:U |y, p) using a variational
inference algorithm [Jordan et al., 1999; Blei et al., 2016].
Once we fit the posterior, we can form recommendations for
the user u by using the posterior expected Poisson parame-
ters to compute the ranking score of each unseen item v of
the user u,

fu(v) = E[(θTu + φTu )βv|y, p] (8)

The intuition of above recommendation score is that users’
preferences consist of two parts: (1) how much budget the
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user will allocate to the item, and (2) how the user will rate
the item. We encode both the factors into above equation.
The items with high ranking scores will be recommended to
the user.

5 Approximate Posterior Inference
Given users’ purchasing history, our goal is to infer the la-
tent rating vectors θ1:U , latent assignment vectors φ1:U , la-
tent attribute vectors β1:V and the corresponding rate pa-
rameters. However, to compute the exact posterior distri-
bution p(ζ1:U , θ1:U , π1:V , β1:V , η1:U , φ1:U |y, p) is very diffi-
cult, so we adopt an approximate inference algorithm based
on mean-field variational inference [Jordan et al., 1999;
Hoffman et al., 2013; Blei et al., 2016].

Variational inference framework first specifies a family of
distributions Ω over the hidden variables and then approxi-
mates the exact posterior distribution by finding the best can-
didate from Ω which is closest to the exact posterior. In mean-
field variational inference, each hidden variable is assumed
to be independent from each other and is governed by its
own variational parameters. This assumption simplifies the
optimization procedure. We define the mean-field variational
family as:

q(ζ, θ, π, β, η, φ) =
∏
u

q(ζu|ζ̃u)
∏
u,k

q(θuk|θ̃uk)
∏
u

q(πu|π̃u)
∏
u,k

q(βuk|β̃uk)
∏
u

q(ηu|η̃u)
∏
u,k

q(φuk|φ̃uk).
(9)

This is a very flexible parameterization which can capture
each user’s and each item’s unique characteristics. To mea-
sure the closeness of the variational distribution to the exact
posterior, we adopt the Kullback-Leibler divergence. So the
optimization task is as follows,

q∗(ζ, θ, π, β, η, φ) =

argmin
q∈Ω

KL(q∗(ζ, θ, π, β, η, φ)||p(ζ, θ, π, β, η, φ|y, p)).

(10)

The proposed model is one member of the important family
of models named conditionally conjugate models [Blei et al.,
2016]. With the conditional conjugate property, we can easily
obtain a closed-form coordinate ascent algorithm.
Conditionally conjugate models. Conditionally conjugate
models are a familiy of models that the complete conditional
of each hidden variable is in the exponential family and is
in the same family as its prior. And the complete conditional
is the conditional distribution of a hidden variable given the
observations and other hidden variables in the model. The
updates are obtained by setting each variational parameter
equals to the expected natural parameter under the variational
distribution q of the complete conditional.
Auxiliary variables. To obtain a fully conditionally conju-
gate model, we need to construct two auxiliary latent vari-
able za and zb. Following [Gopalan et al., 2013], we define
K latent variables zauvk ∼ Poisson(θukβvk) such that yuv =

∑
k z

a
uvk and K latent variables zbuvk ∼ Poisson(φukβvk)

such that puv =
∑

k z
b
uvk. Recall that the sum of independent

Poisson variables is a new Poisson variable. When marginal-
izing out these auxiliary variables, we preserve the marginal
distributions of the observations.
Coordinate ascent algorithm. With the conditionals, we can
easily develop a coordinate ascent variational algorithm. The
update of each variational parameter is obtained by comput-
ing the expected natural parameter of the conditional under
the variational distribution. We take the updates of parameters
θ1:K and zauv as examples. The updates of other variational
parameters follow similar patterns. The algorithm is shown
in Algorithm 1.

The updates of the variational shape and rate parameter of
the user preference vectors θuk are as follows,

θ̃uk = < a+
∑
v

yuv z̃
a
uvk,

ζshpu

ζrteu

+
∑
v

β̃shp
uk

β̃rte
uk

> . (11)

This equation is derived from the expected natural parameter
of the complete conditional of θuk under the variational dis-
tribution q. We use Eq[zauvk] = yuv z̃

a
uvk to update the shape

parameter. And we use the expectation of a Gamma variable
is the shape divided by the rate to update the rate parameter.

The update for the multinomial ˜zauv is

z̃auv ∝ exp{Ψ(θ̃shpuk )− log(θ̃rteuk ) + Ψ(β̃shp
uk )− log(β̃rte

uk )}.
(12)

Where Ψ() is the digamma function (the first derivative
of the log Γ function). We use the fact that Eq[log θuk] =
Ψ(θ̃shpuk ) - log θ̃rteuk . The hidden variables, complete condition-
als and relevant expectations are shown in Table 1.

Algorithm 1 The variational inference algorithm of collabo-
rative budget-aware Poisson factorization.

For all users and items, initialize the user parameters θ̃u, φ̃u,
ζ̃rteu , π̃rte

u and item parameters β̃u, η̃rteu randomly.
Set ζ̃shpu , π̃shp

u and η̃shpu as follows:

ζ̃shpu = a′ +Ka. π̃shp
u = c′ +Kc. η̃shpu = e′ +Ke. (13)

Repeat until convergence:
1. For each rating ruv > 0, set z̃auv to the expected condi-

tional parameter of zauv as shown in Table 1.
2. For each budget puv > 0, set z̃buv to the expected condi-

tional parameter of zbuv as shown in Table 1.

3. For each user u, update θ̃u, ζ̃rteu , φ̃u and π̃rte
u to their

expected conditional parameters as shown in Table 1.

4. For each item v, update β̃u, π̃rte
u to their expected con-

ditional parameters as shown in Table 1.

6 Empirical Studies
6.1 Data Preparation
We test our model on several large datasets from Ama-
zon.com [McAuley and Leskovec, 2013]. The datasets
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Table 1: Hidden variables, complete conditionals, variational parameters and relevant expectations in CBPF.

Variable Type Complement Conditional Parameters Relevant Expectations

θuk Gamma a +
∑
v z

b
uik, πu+

∑
v βvk θ̃shpuk ,θ̃rteuk a+

∑
v yuv z̃

a
uvk,

ζshp
u
ζrteu

+
∑
v

β̃
shp
uk

β̃rte
uk

φuk Gamma e +
∑
v z

a
uik, ζu+

∑
v βvk φ̃shpuk ,φ̃rteuk e+

∑
v puv z̃

b
uvk,

πshp
u
πrte
u

+
∑
v

β̃
shp
uk

β̃rte
uk

βuk Gamma c +
∑
u z

a
uvk +

∑
u z

b
uvk ,

ηu+
∑
u θuk+

∑
u φuk

β̃shpuk ,
β̃rteuk

c+
∑
u yuv z̃

a
uvk +

∑
u puv z̃

b
uvk,

ηshp
u
ηrteu

+
∑
u

θ̃
shp
uk

θ̃rte
uk

+
∑
u

φ̃
shp
uk

φ̃rte
uk

ζu Gamma a′ +Ka, b′ +
∑
k θuk ζ̃shpuk ,ζ̃rteuk a+

∑
v yuv z̃

a
uvk,

ζshp
u
ζrteu

+
∑
v

β̃
shp
uk

β̃rte
uk

ηv Gamma c′ +Kc, d′ +
∑
k βuk η̃shpuk ,η̃rteuk a+

∑
v yuv z̃

a
uvk,

ζshp
u
ζrteu

+
∑
v

β̃
shp
uk

β̃rte
uk

πu Gamma e′ +Ke, f ′ +
∑
k φuk π̃shpuk ,π̃rteuk a+

∑
v yuv z̃

a
uvk,

ζshp
u
ζrteu

+
∑
v

β̃
shp
uk

β̃rte
uk

zauv Mult log θuk + log βvk z̃auv exp{Ψ(θ̃shpuk )− log(θ̃rteuk ) + Ψ(β̃shpuk )− log(β̃rteuk )}
zbuv Mult log φuk + log βvk z̃buv exp{Ψ(φ̃shpuk )− log(φ̃rteuk ) + Ψ(β̃shpuk )− log(β̃rteuk )}

Table 2: Statistics of the Datasets.

Shoes Tools Toys Baby Sports Arts Pet Clothing Cellphone Patio
Users 12,421 4,566 8,869 7,057 14,124 1,815 2,035 14,560 1,485 2,700
Items 3,278 2,668 12,512 1,320 5,658 1,057 1,486 3,139 1,120 1,484

Observations 60,974 15,995 18,607 18,607 25,705 4,073 4,941 49,890 4,530 4,607
Average spending ($) 416.30 11,985.25 243.94 129.69 122.83 71.60 61.26 68.72 170.26 183.83

Average rating 4.36 4.21 4.27 4.00 4.29 4.28 4.12 4.23 3.74 4.06

(a) (b)

Figure 3: Distributions of users’ expenditures on products in the cat-
egories of Sports and Baby.

contain a variety of categories ranging from Shoes to
Cellphones. Moreover, we crawled the price information of
the products from a Amazon price tracking website 2. The
detailed statistics of the datasets are listed in Table 2. We are
also interested in the diversities of users’ total budgets. We
plot the distributions of users’ expenditures on products in the
categories of Sports and Baby in Figure 2. The results show
that few users spent much in online shopping while most of
the users spent little. This phenomenon is in inline with the
user activity levels [Gopalan et al., 2013].

We further normalize the prices to be compatible with the
range of the ratings. We denote the maximum and minimum
price of a specific category as pmax and pmin separately. And

2www.camelcamelcamel.com

the maximum rating is denoted as L, which is usually 5. We
then translate a specific price p using L p−pmin

pmax−pmin
and round

the result to the nearest integer.

6.2 Baselines
We compare our model with several state-of-the-art budget-
unaware recommendation models.
HPF: Hierarchical Poisson factorization (HPF) [Gopalan et
al., 2013] is the state-of-the-art collaborative filtering recom-
mendation model. It only considers users’ ratings. We adopt
the implementation of HPF by the original authors.
BPR: Bayesian personalized ranking (BPR) [Rendle et al.,
2009] is the state-of-the-art pairwise recommendation model
for implicit feedback.We view ratings below 3 as positive
feedback and implement BPR as described in [Rendle et al.,
2009].
CliMF: CliMF [Shi et al., 2012] is the state-of-the-art rank-
ing model for optimizing mean reciprocal rank. We use the
implementation of CliMF of Graphchi [Kyrola et al., 2012].
PopRank: This is a naive baseline which considers recom-
mending the users with the most popular items in the training
set.

6.3 Parameter Settings and Evaluations
Similar to the settings of [Gopalan et al., 2013], we split each
dataset into three parts: 70% of the dataset is served as train-
ing set, 20% of the dataset is served as test set and the remain-
ing 10% is served as validation set. All the hyperparameters
are tuned to work the best on the validation set. For CBPF and
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Table 3: Results of precision-at-10 of the compared models.

Shoes Tools Toys Baby Sports Arts Pet Clothing Cellphones Patio
CBPF 0.12203 0.01614 0.05612 0.02930 0.03476 0.04653 0.01952 0.09549 0.02335 0.03364
HPF 0.11750 0.01508 0.04782 0.02457 0.03416 0.04365 0.01727 0.08509 0.02081 0.03225
BPR 0.10968 0.00801 0.01629 0.02229 0.01075 0.04790 0.01556 0.01535 0.02284 .0.02469

CliMF 0.02515 0.00396 0.00461 0.02707 0.01197 0.01942 0.01209 0.01124 0.01838 0.01926
PopRank 0.00150 0.00362 0.00475 0.02733 0.00886 0.01813 0.01266 0.01189 0.02017 0.01802

Table 4: Results of NCRR of the compared models.

Shoes Tools Toys Baby Sports Arts Pet Clothing Cellphones Patio
CBPF 0.32247 0.11307 0.09571 0.16953 0.08610 0.13842 0.04145 0.21608 0.15588 0.16473
HPF 0.30376 0.10845 0.08603 0.15072 0.07968 0.11528 0.03265 0.20645 0.15271 0.15964
BPR 0.02342 0.01345 0.02105 0.08304 0.01980 0.06993 0.03113 0.05042 0.03766 0.03852

CliMF 0.03102 0.03526 0.00729 0.04257 0.02823 0.07507 0.03061 0.04464 0.14778 0.14759
PopRank 0.00269 0.01828 0.00573 0.04919 0.00984 0.03470 0.02741 0.02118 0.04348 0.03081

Figure 4: Results of recall-at-K of the compared models.

HPF, we set each Gamma shape and rate hyperparameter to
0.3. For BPR, the learning rate is 0.001 and the regularization
parameter is 0.5. For CliMF, the learning rate is 0.005 and the
regularization parameter is 0.01. And we fix the dimension of
the latent vectors of all models to 10 for fair comparison.

In each round, we compute the average predictive log-
likelihood of the validation set, the convergence of CBPF is
guaranteed when the change of the log-likelihood is less than
0.001%. After fitting the model in the training set, for a spe-
cific user u, we calculate the ranking score fu(v) for each
item v in the test set. The items with higher ranking scores are
ranked higher in the recommended list. We adopt precision-
at-K, recall-at-K and normalized cumulative reciprocal rank
(NCRR) [Chaney et al., 2015] to measure the ranking perfor-
mance of the models.

6.4 Results Analysis
We show the results of precision-at-10 and NCRR of all
models in Table 3 and Table 4. Best performance is in bold
font. And the results of recall-at-K (K ∈ {10,20,30,40,50})
are shown in Figure 4. As we can see, CBPF nearly beats
all the baselines across all the categories. In most of the
categories the improvements are significant. Moreover, our
model exhibits particularly obvious improvements over some
cold start categories where users have few ratings. The av-
erage improvement of precision-at-10 is 9.72%. The results
empirically prove the importance of modeling users’ budgets

for recommendation. By finding what attributes the users will
assign more budgets and avoiding recommending users with
inappropriately expensive or cheap products, we can form
more reasonable and more accurate recommendation results.
The performance of BPR and CliMF is consistently lower
than CBPF and HPF. One plausible reason is that their op-
timization goal is not directly related to the ranking metrics
we compare here. We also examine the parameter sensitivity
of CBPF. The results show that our model is rather stable with
respect to the change of hyperparameters.

7 Conclusion
In this paper, we propose an original generative model named
collaborative budget-aware Poisson factorization (CBPF) to
connect users’ ratings and budgets in a natural and cohesive
manner. The model enjoys high interpretability and empha-
sizes the significance of modeling users’ budgets. Extensive
experimental results empirically prove the rationality and im-
portance of the proposed model. We hope that the proposed
model will prove useful for online shopping websites. Future
works include considering modeling users’ ratings and bud-
gets in a dynamic and sequential manner.

Acknowledgments
This research is supported by the National Natural Sci-
ence Foundation of China (NSFC) No.61672449 and
No.61472347.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1786



References
[Blei et al., 2016] David M Blei, Alp Kucukelbir, and Jon D

McAuliffe. Variational inference: A review for statisti-
cians. arXiv preprint arXiv:1601.00670, 2016.

[Chaney et al., 2015] Allison JB Chaney, David M Blei, and
Tina Eliassi-Rad. A probabilistic model for using social
networks in personalized item recommendation. In Pro-
ceedings of the 9th ACM Conference on Recommender
Systems, pages 43–50. ACM, 2015.

[Charlin et al., 2015] Laurent Charlin, Rajesh Ranganath,
James McInerney, and David M Blei. Dynamic poisson
factorization. In Proceedings of the 9th ACM Conference
on Recommender Systems, pages 155–162. ACM, 2015.

[Du and Kamakura, 2008] Rex Y Du and Wagner A Ka-
makura. Where did all that money go? understanding how
consumers allocate their consumption budget. Journal of
Marketing, 72(6):109–131, 2008.

[Goldberg et al., 1992] David Goldberg, David Nichols,
Brian M Oki, and Douglas Terry. Using collaborative fil-
tering to weave an information tapestry. Communications
of the ACM, 35(12):61–70, 1992.

[Gopalan et al., 2013] Prem Gopalan, Jake M Hofman, and
David M Blei. Scalable recommendation with poisson fac-
torization. arXiv preprint arXiv:1311.1704, 2013.

[Gopalan et al., 2014] Prem K Gopalan, Laurent Charlin,
and David Blei. Content-based recommendations with
poisson factorization. In Advances in Neural Information
Processing Systems, pages 3176–3184, 2014.

[Gourinchas and Parker, 2002] Pierre-Olivier Gourinchas
and Jonathan A Parker. Consumption over the life cycle.
Econometrica, 70(1):47–89, 2002.

[Hoffman et al., 2013] Matthew D Hoffman, David M Blei,
Chong Wang, and John William Paisley. Stochastic varia-
tional inference. Journal of Machine Learning Research,
14(1):1303–1347, 2013.

[Jordan et al., 1999] Michael I Jordan, Zoubin Ghahramani,
Tommi S Jaakkola, and Lawrence K Saul. An introduc-
tion to variational methods for graphical models. Machine
learning, 37(2):183–233, 1999.

[Kao et al., 2001] Chihwa Kao, Lung-fei Lee, Mark M Pitt,
et al. Simulated maximum likelihood estimation of the lin-
ear expenditure system with binding non-negativity con-
straints. Annals of Economics and Finance, 2(1):203–223,
2001.

[Kooti et al., 2016] Farshad Kooti, Kristina Lerman,
Luca Maria Aiello, Mihajlo Grbovic, Nemanja Djuric,
and Vladan Radosavljevic. Portrait of an online shopper:
Understanding and predicting consumer behavior. In
Proceedings of the Ninth ACM International Conference
on Web Search and Data Mining, pages 205–214. ACM,
2016.

[Koren and Bell, 2011] Yehuda Koren and Robert Bell. Ad-
vances in collaborative filtering. In Recommender systems
handbook, pages 145–186. Springer, 2011.

[Koren et al., 2009] Yehuda Koren, Robert Bell, Chris Volin-
sky, et al. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
426–434. ACM, 2008.

[Kyrola et al., 2012] Aapo Kyrola, Guy Blelloch, and Carlos
Guestrin. Graphchi: large-scale graph computation on just
a pc. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
12), pages 31–46, 2012.

[McAuley and Leskovec, 2013] Julian McAuley and Jure
Leskovec. Hidden factors and hidden topics: understand-
ing rating dimensions with review text. In Proceedings of
the 7th ACM Conference on Recommender Systems, pages
165–172. ACM, 2013.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In
Proceedings of the twenty-fifth conference on uncertainty
in artificial intelligence, pages 452–461. AUAI Press,
2009.

[Resnick and Varian, 1997] Paul Resnick and Hal R Varian.
Recommender systems. Communications of the ACM,
40(3):56–58, 1997.

[Salakhutdinov and Mnih, 2008a] Ruslan Salakhutdinov and
Andriy Mnih. Bayesian probabilistic matrix factoriza-
tion using markov chain monte carlo. In Proceedings of
the 25th International Conference on Machine Learning,
pages 880–887. ACM, 2008.

[Salakhutdinov and Mnih, 2008b] Ruslan Salakhutdinov
and Andriy Mnih. Probabilistic matrix factorization. In
Advances in Neural Information Processing Systems,
volume 20, 2008.

[Shi et al., 2012] Yue Shi, Alexandros Karatzoglou, Linas
Baltrunas, Martha Larson, Nuria Oliver, and Alan Han-
jalic. Climf: learning to maximize reciprocal rank with
collaborative less-is-more filtering. In Proceedings of the
sixth ACM conference on Recommender systems, pages
139–146. ACM, 2012.

[Xie et al., 2010] Min Xie, Laks VS Lakshmanan, and Pe-
ter T Wood. Breaking out of the box of recommenda-
tions: from items to packages. In Proceedings of the fourth
ACM conference on Recommender systems, pages 151–
158. ACM, 2010.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1787


