
Improved Strong Worst-case Upper Bounds for MDP Planning

Anchit Gupta and Shivaram Kalyanakrishnan
Department of Computer Science and Engineering, Indian Institute of Technology Bombay

{anchit, shivaram}@cse.iitb.ac.in

Abstract
The Markov Decision Problem (MDP) plays a cen-
tral role in AI as an abstraction of sequential de-
cision making. We contribute to the theoretical
analysis of MDP planning, which is the problem
of computing an optimal policy for a given MDP.
Specifically, we furnish improved strong worst-
case upper bounds on the running time of MDP
planning. Strong bounds are those that depend only
on the number of states n and the number of ac-
tions k in the specified MDP; they have no depen-
dence on affiliated variables such as the discount
factor and the number of bits needed to represent
the MDP. Worst-case bounds apply to every run of
an algorithm; randomised algorithms can typically
yield faster expected running times. While the spe-
cial case of 2-action MDPs (that is, k = 2) has
recently received some attention, bounds for gen-
eral k have remained to be improved for several
decades. Our contributions are to this general case.
For k ≥ 3, the tightest strong upper bound shown
to date for MDP planning belongs to a family of al-
gorithms called Policy Iteration. This bound is only
a polynomial improvement over a trivial bound of
poly(n, k) · kn [Mansour and Singh, 1999]. In
this paper, we generalise a contrasting algorithm
called the Fibonacci Seesaw, and derive a bound
of poly(n, k) · k0.6834n. The key construct that
we use is a template to map algorithms for the 2-
action setting to the general setting. Interestingly,
this idea can also be used to design Policy Itera-
tion algorithms with a running time upper bound of
poly(n, k)·k0.7207n. Both our results improve upon
bounds that have stood for several decades.

1 Introduction
The Markov Decision Problem (MDP) [Bellman, 1957; Put-
erman, 1994] is widely used as a model of sequential deci-
sion making under uncertainty. An MDP abstracts a setting in
which an agent must decide which action to take from every
possible state. The agent’s current state and action determine
(in general stochastically) the next state and an accompanying
reward. In order to maximise its expected long-term reward,

which action must the agent pick at every state? Presumably,
this question would be among the foremost to answer about
any given MDP. Formally, it constitutes the problem of MDP
planning: that is, of finding an optimal policy (a mapping
from states to actions) for a given MDP.

Even though MDPs have existed for over half a century,
and several practically-efficient planning algorithms have
been developed over the years, our theoretical understand-
ing of the complexity of MDP planning has remained unsat-
isfactory. As a case in point, consider an MDP with n ≥ 2
states and k ≥ 2 actions. We assume a computational model
in which arithmetic operations on real numbers can be per-
formed in constant time (regardless of the number of bits
used to represent the operands). Under this “infinite-precision
arithmetic” model, any given policy for our MDP can be
tested for optimality in poly(n, k) time. Hence, by testing
each of the possible kn deterministic policies (of which one
is guaranteed to be optimal), we can identify an optimal pol-
icy in poly(n, k) · kn time. This bound is strong, in the sense
that it has no dependence on affiliated parameters of the MDP,
such as its discount factor and the precision of representing its
transition probabilities and rewards. Bounds that depend on
such parameters are termed weak. Ignoring polynomial fac-
tors, no deterministic algorithm has been shown to date to
enjoy a tighter strong bound for MDP planning than the brute
force procedure outlined above, except on 2-actions MDPs.1

In this paper, we propose a framework to bridge the special
case of k = 2 to the general case (k ≥ 3). Consequently,
we are able to derive exponentially tighter strong bounds for
the general case. We restrict our focus to deterministic al-
gorithms, and derive bounds that apply to every run on ev-
ery MDP instance with n states and k actions (that is, worst
case bounds). In contrast, randomised algorithms can typ-
ically yield better expected running times for every n-state,
k-action MDP.

We begin by highlighting our contribution against a back-
drop of related work (in Section 2). The cornerstone of our
approach is the problem of solving Unique Sink Orientations
(USOs) [Szabó and Welzl, 2001], which generalises the prob-
lem of MDP planning. As we shall see, 2-action MDPs give
rise to Acyclic USOs (abbreviated AUSOs). In Section 3,

1It is possible to derive weak bounds that are polynomial in n
and k [Littman et al., 1995].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1788

we review existing algorithms for solving (A)USOs. In Sec-
tion 4, we introduce Recursive (A)USOs, which generalise
(A)USOs and facilitate improved bounds for general MDPs.
We conclude with a discussion in Section 5.

2 Related Work and Contribution
The tightest strong bounds currently known for MDP plan-
ning are summarised in Table 1. The tightest bound for
k = 2 is of the form poly(n) · 1.6059n. This bound is shown
for the Fibonacci Seesaw algorithm, proposed by Szabó and
Welzl [2001] for solving Unique Sink Orientations (USOs).
A USO is a hypercube with directed edges, such that each
face of the hypercube has exactly one sink. For an n-
dimensional USO, the Fibonacci Seesaw algorithm evaluates
at most 1.6059n of the 2n vertices in order to solve the USO:
that is, find its (global) sink. Policies for 2-action MDPs can
be interpreted as vertices of an Acyclic USO (AUSO), whose
sink corresponds to an optimal policy. Details of this rela-
tionship are provided in Section 3.

Policy Iteration (PI) is a contrasting—and arguably more
popular—approach to MDP planning. A PI algorithm starts
with some initial policy, and repeatedly updates it to a dom-
inating one until an optimal policy is reached. The update
is easy to effect: policy evaluation is a polynomial opera-
tion that can identify improving actions in improvable states;
switching to any improving action in one or more improvable
states necessarily yields a dominating policy. Although the
most common variant of PI is Howard’s PI [Howard, 1960]
(under which every improvable state is switched), the tightest
strong worst-case bound proven to date for 2-action MDPs
belongs to Batch-Switching PI (BSPI) [Kalyanakrishnan et
al., 2016a]. Under BSPI, improvable states are switched in
fixed-size batches. The best known bound on the number of
iterations, achieved with a batch size of 7, is 1.6479n.

The main technical gap between the cases of k = 2 and
k ≥ 3 is that in the former, an improvable state will have
exactly one improving action: there is no choice of actions
to which to switch. For k ≥ 3, Mansour and Singh [1999]
show that regardless of how actions are picked in improv-
able states, Howard’s PI takes at most O(kn/n) iterations. In
spite of a constant-factor improvement subsequently shown
by Hollanders et al. [2014], this upper bound remains only
a linear improvement over the trivial bound of kn iterations.
Thus, poly(n, k) · kn is currently the tightest strong worst-
case running time bound for the PI family. Interestingly, it is
also the tightest across all planning algorithms.

As shown in Table 1, the tightest bound on the expected
number of iterations of PI, for k ≥ 3, has only a logarith-
mic dependence on k in the base of the exponent. The key

Table 1: Summary of tightest known strong upper bounds for MDP
planning. Polynomial factors of n and k are omitted; improvements
reported in this paper are shown with arrows.

k Algorithms Worst-case Expected

2
All 1.6059n exp(2

√
n)

PI 1.6479n 1.6479n

≥ 3
All kn → k0.6834n exp(O(

√
n log(n)))

PI kn → k0.7207n (2 + ln(k − 1))n

to obtaining this improvement is the use of randomisation in
picking improving actions [Kalyanakrishnan et al., 2016b].
If we look beyond PI, we find even subexponential bounds
on the expected running time of MDP planning. Bounds of
the form poly(n, k) · exp(O(

√
n log(n))) [Matoušek et al.,

1996] follow directly from posing MDP planning as a linear
program with n variables and nk constraints [Littman et al.,
1995]. The special structure that results when k = 2 admits
an even tighter bound of poly(n) ·exp(2

√
n) [Gärtner, 2002].

We must make clear that our focus here is on the depen-
dence of the upper bound on n when k is fixed. Alterna-
tively, if we fix n, the linear programming route can yield
strong worst-case bounds that are linear in k: for example,
2O(2n) · k [Megiddo, 1984] and nO(n) · k [Chazelle and Ma-
tousek, 1996]. It must also be noted that for deterministic
MDPs, strong worst-case bounds of the form poly(n, k) are
indeed possible [Madani et al., 2010; Post and Ye, 2013].

We are unaware of any super-polynomial lower bounds for
MDP planning (note that every algorithm must take at least
Ω(n2k) time to read in the input MDP. A lower bound of
Ω(n) iterations has been shown for Howard’s PI on 2-action
MDPs [Hansen and Zwick, 2010]. Exponential lower bounds
have been shown for other variants of PI [Melekopoglou and
Condon, 1994], and for Howard’s PI when the number of
actions depends linearly on the number of states [Fearnley,
2010; Hollanders et al., 2012]. We do not know of any ex-
plicit lower bounds on the complexity of PI for fixed k ≥ 3.

The scope of this paper is restricted to improving the
poly(n, k)·kn strong worst-case upper bound shown by Man-
sour and Singh [1999] and Hollanders et al. [2014]. We
present exponential improvements over this bound, which
we achieve by generalising (A)USOs, the Fibonacci See-
saw algorithm, and the BSPI algorithm all to work with
k ≥ 3. Thereby we obtain a running time bound of
poly(n, k) ·k0.7207n for a PI algorithm, and a tighter bound of
poly(n, k)·k0.6834n for a non-PI algorithm. In both cases, our
strategy is to solve a k-action problem by solving and com-
bining the solutions of multiple (k/2)-sized problems. We
present this recursive strategy in Section 4, but first we review
existing approaches for planning in MDPs and (A)USOs.

3 MDPs and (A)USOs
This section provides a brief review of MDPs, USOs, and
AUSOs; relationships between them; and corresponding
algorithms—which serve as building blocks for our contri-
butions in the next section. A detailed exposition on MDPs is
available from Puterman [1994], and one on USOs and AU-
SOs from Szabó and Welzl [2001].

3.1 Definitions and Properties
MDP. An MDPM = (S,A,R, T, γ) comprises a set of states
S and a set of actions A, with |S| = n and |A| = k. Taking
action a from state s yields a bounded, real-valued reward of
R(s, a), and with probability T (s, a, s′), sets the next state
to be s′ ∈ S. The discount factor γ ∈ [0, 1) encodes the
importance of future rewards. For a (deterministic, station-
ary, and Markovian) policy π : S → A, the value function
V π : S → R gives the expected long-term reward accrued by

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1789

following π (starting from each given state). For s ∈ S,

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′).

Let Π be the set of all policies corresponding to MDPM . We
are guaranteed [Bellman, 1957] that Π contains a policy π?

such that for s ∈ S, π ∈ Π, V π
?

(s) ≥ V π(s). The MDP
planning problem is precisely that of finding an optimal pol-
icy for a given MDP M = (S,A,R, T, γ).

When we set out to design MDP planning algorithms, we
shall find use for one other function, Qπ : S × A → R,
which is the action value function of π. For s ∈ S, a ∈ A,
Qπ(s, a) = R(s, a) + γ

∑
s′∈S T (s, a, s′)V π(s′). Qπ(s, a)

is the expected long-term reward accrued by starting at state
s, executing action a once, and thereafter following π.

The recursive definition of V π(·) indicates that it can
be obtained by solving a system of n linear equations in n
unknowns. Qπ(·, ·) can thereafter be obtained by a linear
operation for each state-action pair. We shall refer to the
computation of V π(·) and Qπ(·, ·) for a given policy π as
policy evaluation. This step needs no more thanO(n3 +n2k)
time with infinite-precision arithmetic. In Section 3.3, we
describe how policy evaluation can be used to ultimately find
an optimal policy.

USO. An n-dimensional hypercube C is a graph with 2n ver-
tices. Each vertex is labeled by an n-length binary string. Let
v(i) refer to the ith bit in the label of vertex v. In the hyper-
cube, an edge exists between vertices u and v if and only if
u⊕ v = 2r for some 0 ≤ r < n, where⊕ is the bitwise XOR
operation. We say in this case that u and v differ in the rth
dimension. The corresponding edge, which lies along the rth
dimension in the hypercube, is said to have dimension r. Fig-
ure 1(a) shows a 3-dimensional hypercube; the edge 110-111
has dimension 0, while the edge 001-101 has dimension 2.

A d-dimensional face of the hypercube C is a subgraph
induced by C with 2d vertices, which themselves form a d-
dimensional hypercube. Any such “d-face” consists of ver-
tices whose labels all have the same bits in some fixed n− d
dimensions, and vary over the the remaining d dimensions. In
other words, a d-face can be characterised by a set of n − d
ordered pairs (p, b), wherein p ∈ {0, 1, . . . , n−1} represents
a dimension, and b ∈ {0, 1} a corresponding bit. Two d-faces
characterised by the sets of ordered pairs F and G are called
antipodal in C if for every (p, b) ∈ F , we have (p,¬b) ∈ G.
In the hypercube in Figure 1(a), the 0-face containing 100
is antipodal to the one containing 011; the 2-face containing
000, 100, 110, and 010 is antipodal to the one containing 001,
101, 111, and 011.

An orientation ψ specifies a direction for each edge of a
hypercube C. The pair (C,ψ) is called a Unique Sink Ori-
entation (USO) if every face of C has a unique sink with re-
spect to the orientation ψ. A sink is a vertex with no outgoing
edges. Among the four oriented hypercubes in Figure 1, the
one in (a) is not a USO since both 001 and 111 are sinks, and
nor is the one in (b), in which the face containing 000, 010,
011, and 001 has no sink. The oriented hypercubes in (c) and
(d) are both USOs.

An outmap sψ of a USO (C,ψ) is a function from the set
of vertices to the powerset of {0, 1, . . . , n− 1}. It is induced
by ψ and maps each vertex of C to the set of the dimensions
of the outgoing edges from that vertex. For example, in Fig-
ure 1(c), sψ(011) = {0, 2}, and sψ(111) = ∅. It is a prop-
erty of USOs that their outmaps are bijective; in other words,
no two vertices have the set of dimensions of their outgoing
edges exactly the same. This result follows immediately from
the following lemma, which we shall prove.

Lemma 1. Let ψ be an orientation of a hypercube C andR a
subset of the set of edge dimensions {0, 1, . . . , n−1}. Let ψR
denote the orientation that gives each edge with dimension in
R the opposite direction to ψ, and each edge with dimension
not in R the same direction as ψ. If (C,ψ) is a USO, then
(C,ψR) is also a USO.

Proof. It suffices to show that if (C,ψ) is a USO, then so is
(C,ψ{a}), for a ∈ {0, 1, . . . , n− 1} (since the dimensions in
R can be flipped in sequence, one at a time). Consider an ar-
bitrary d-face F in C. (1) If F does not contain an edge with
dimension a, clearly ψ{a} induces the same graph on F as
ψ, implying that F continues to have a unique sink. (2) If F
contains an edge with dimension a, consider F1 and F2, two
antipodal (d−1)-faces of F that are connected only by edges
with dimension a. Let u1 be the unique sink of F1, and u2 be
the unique sink of F2—both under ψ and ψa. Clearly one of
them—without loss of generality, assume u1— must be the
unique sink of F under ψ, implying u1 has an incoming edge
with dimension a, and u2 has an outgoing edge with dimen-
sion a. Reversing the direction of all edges with dimension a
would therefore make u2 the unique sink of F .

Lemma 2. The outmap sψ of a unique sink orientation
(C,ψ) is bijective.

Proof. Let u and v be distinct vertices in C. If sψ(u) =
sψ(v) = R, then u and v would both be sinks in the oriented
hypercube (C,ψR), which contradicts Lemma 1. Also, the
size of the vertex set of C (2n) equals the number of possible
sets of outgoing edges (2n); hence sψ must be a bijection.

000 100

001 101

010 110

011 111

(a) Not a USO (2 sinks).

000 100

001 101

010 110

011 111

1

(b) Not a USO (0-sink face).

000 100

001 101

010 110

011 111

1

(c) USO with directed cycle.

000 100

001 101

010 110

011 111

1

(d) AUSO.

Figure 1: Hypercubes with oriented edges. Explanations are provided in the text.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1790

AUSO. A USO (C,ψ) in which the graph induced by C and
ψ does not contain any directed cycles is called an Acyclic
USO (AUSO). The USO in Figure 1(c) is not an AUSO, since
it contains the directed cycle 001-011-010-110-100-101-001.
Figure 1(d) shows an AUSO.

3.2 2-action MDPs Induce AUSOs
We show that every 2-action MDP naturally gives rise to a
corresponding AUSO, such that the sink of the AUSO im-
mediately yields an optimal policy for the MDP. We be-
gin by considering the Policy Improvement Theorem, which
is a well-known result on MDPs [Howard, 1960]. Below
we present a slight modification of the version given by
Kalyanakrishnan et al. [2016a]; the proof is available in stan-
dard textbooks [Bertsekas, 2012].
Definition 3 (�, �). For functions X : S → R, Y : S → R,
(1) we define X � Y if ∀s ∈ S : X(s) ≥ Y (s), and (2) we
define X � Y if X � Y and ∃s ∈ S : X(s) > Y (s). For
policies π1, π2 ∈ Π, (1) we define π1 � π2 if V π1 � V π2 ,
and (2) we define π1 � π2 if V π1 � V π2 .

Theorem 4. Consider policies π, π′ ∈ Π.
(1) If ∀s ∈ S : Qπ(s, π′(s)) ≥ Qπ(s, π(s)), then π′ � π.
(2) If π′ � π and if ∃s ∈ S : Qπ(s, π′(s)) > Qπ(s, π(s)),
then π′ � π.

To go forward with our construction, we assume that a
tie-breaking rule over policies is available in the form of a
fixed total order� on the set of policies Π.

Construction. Consider an MDP M = (S,A,R, T, γ) with
S = {s1, s2, . . . , sn} and A = {0, 1}. We may represent
policies for this 2-action MDP as n-bit strings, with the ith
bit specifying the action for si, i ∈ {1, 2, . . . , n}. These
bit strings are vertices in an n-dimensional hypercube C.
Consider two adjacent vertices in the hypercube, u and v,
which differ in exactly one dimension, i. Under ψ, we de-
fine the direction of the edge between u and v as follows:
If (1) Qu(si, u(i)) < Qu(si, v(i)) or (2) Qu(si, u(i)) =
Qu(si, v(i)) and v � u, then the edge direction is from u
to v (i ∈ sψ(u)); otherwise the edge direction is from v to u
(i ∈ sψ(v)).

Since u and v differ in exactly one dimension, an applica-
tion of Theorem 4 shows that (1)Qu(si, u(i)) < Qu(si, v(i))
is equivalent to Qv(si, u(i)) < Qv(si, v(i)), and (2)
Qu(si, u(i)) = Qu(si, v(i)) is equivalent to Qv(si, u(i)) =
Qv(si, v(i)). Hence, the edge direction between u and v
can be obtained by performing policy evaluation on either of
these vertices. The outmap of a vertex will correspond to the
set of improvable states of that policy. In fact, in order to use
AUSO solution techniques for planning in M (coming up in
Section 3.3), there is no need to explicitly construct (C,ψ).
Rather, we will only have to compute the outmaps of—which
amounts to performing policy evaluation on—a small subset
of vertices in (C,ψ). Before proceeding to the planning algo-
rithms, we establish the correctness of our construction.
Theorem 5. (C,ψ), constructed from M , is an AUSO.

Proof. For d ∈ {0, 1, . . . , n}, consider an arbitrary d-face
F in C, in which the vertices (policies) have some n − d

bits fixed. Without loss of generality, assume that actions at
s1, s2, . . . , sn−d are fixed: thus, policies in F are of the form
xy, where x is a fixed (n − d)-bit string, and y is some d-bit
string. We establish that F is an AUSO by showing that it
cannot have more than one sink, and it cannot have a cycle.
With no cycle, note that it must have at least one sink.

(1) Let policy π1 = xy1 be a sink in F with y1 ∈ {0, 1}d.
From our construction and from Theorem 4, we get that for
every policy π in F , π1 � π or (V π1 = V π and π1 � π).
Now, if there is also a policy π2 = xy2 that is a sink, with
y2 ∈ {0, 1}d and y1 6= y2, then we get “π2 � π1 or (V π1 =
V π2 and π2 � π1)” and “π1 � π2 or (V π1 = V π2 and
π1 � π2)”. Clearly, both statements cannot be true. (2) If
F contains a cycle, it would mean that there exist vertices
π1 6= π2 in the cycle such that (π1 � π2 and π2 � π1) or
(π1 � π2 and π2 � π1). This is also not possible.

It is also clear that the unique sink of (C,ψ) is an optimal
policy for M .

3.3 Algorithms for AUSOs and USOs
Policy Iteration. PI [Howard, 1960] is usually discussed in
the context of MDP planning, but it is not hard to see that it
can be generalised to AUSOs. At every iteration, a PI algo-
rithm for an AUSO (C,ψ) only keeps track of a single vertex
and its outmap. If u is the current vertex, PI computes its
outmap sψ(u). If sψ(u) = ∅, then clearly u is the unique
sink of C. If not, consider the |sψ(u)|-dimensional face F
of C containing u and vertices that differ from u only in the
dimensions present in sψ(u). Since F is an AUSO, and u is
an “anti-sink” (all edges outgoing) in F , by Lemma 1, there
must exist a directed path from u to every other vertex in F .
Thus, PI can change its current vertex from u to any other
vertex v in F . The exact rule to choose v, when given u and
sψ(u), is what distinguishes one PI algorithm from another.
Regardless, Since there is always a directed path from the
current vertex to the next, and since (C,ψ) is acyclic, PI is
guaranteed to eventually reach the sink of C.

Existing analyses of the complexity of PI on MDPs [Man-
sour and Singh, 1999; Kalyanakrishnan et al., 2016a] carry
over quite easily to AUSOs. Although the most common
approach is to pick v to be the antipode of u in F [Howard,
1960], the best upper bounds were shown recently for
BSPI [Kalyanakrishnan et al., 2016a], in which u and v vary
in at most b dimensions, where b is a parameter to BSPI.
For b = 7, BSPI is shown to take at most 1.6479n vertex
evaluations to find a sink in an n-dimensional AUSO.

Fibonacci Seesaw. Unlike PI, which traverses a contiguous
sequence of improving faces, the Fibonacci Seesaw (FS) al-
gorithm [Szabó and Welzl, 2001] evaluates vertices from an-
tipodal faces. In fact, FS can find the unique sink of a USO
(C,ψ), whereas PI is only meant to work on AUSOs.

FS maintains the following invariant for i, incremented
from 0 to n − 1: there are two antipodal i-faces F and G,
with their sinks u and v, respectively, already evaluated. This
invariant can be obtained for i = 0 by 2 vertex evaluations. If
we have reached i = n − 1, then we are done, since either u
or v must be the sink of the whole cube.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1791

In order to proceed from i to i + 1, the algorithm chooses
some dimension b ∈ sψ(u) 4 sψ(v) (sψ(u) symmetric dif-
ference sψ(v)), which exists because sψ is bijective. Without
loss of generality, assume that b ∈ sψ(v). We can then ex-
tend F along b to get an (i + 1)-face F ′ of which u remains
the sink, since b 6∈ sψ(u). The (i + 1)-face G′ antipodal to
F ′ clearly has G as a face. To find the sink of G′, we only
need find the sink of the i-face antipodal to G in G′. We do
so recursively. Observe that if t(d) is the number of vertex
evaluations performed to find the sink of a d-face, we can
extend the invariant from i to i + 1 with t(i) vertex evalu-
ations. The overall recurrence becomes: t(0) = 1, and for
d ≥ 1, t(d) ≤ 2 + t(0) + t(1) + · · · + t(d − 2). The re-
currence is upper bounded by the one for Fibonacci numbers,
and solves to t(n) = O(1.6181n). A slight change to the FS
algorithm, by which a special procedure is used to solve 4-
dimensional hypercubes in 7 evaluations, improves the bound
to O(1.6059n) [Szabó and Welzl, 2001].

4 Recursive (A)USOs for k ≥ 3

In the previous section, we reviewed existing literature
showing that 2-action MDPs can be solved by applying
methods to solve AUSOs and USOs. Although 2-action
MDPs encapsulate the very essence of sequential decision
making, several real-world problems inherently present
an agent with more than 2 choices of action. The focus
of this paper is on deriving improved strong worst-case
bounds for the general case (k ≥ 3). In order to do so, we
introduce two new constructs: Recursive USOs (RUSOs) and
Recursive AUSOs (RAUSOs). As shown in Figure 2 , the
RAUSO problem generalises both k-action MDP planning
(for general k) and the AUSO problem. The RUSO problem
generalises all the others we have discussed.

Recursive USO. A Recursive USO (RUSO) of level 1 (a
1-RUSO) is a USO. For l ≥ 2, an RUSO (C,ψ) of level l
(an l-RUSO) is a graph over an n-dimensional hypercube C,
wherein each vertex of C is an (l − 1)-RUSO. Each edge
of the hypercube is oriented according to ψ, and follows the
constraint that every face of C has exactly one sink.

Recursive AUSO. A Recursive AUSO (RAUSO) of level 1 (a
1-RAUSO) is an AUSO. For l ≥ 2, an RAUSO (C,ψ) of level
l (an l-RAUSO) is a graph over an n-dimensional hypercube
C, wherein each vertex of C is an (l−1)-RAUSO. Each edge
of the hypercube is oriented according to ψ, and follows the
constraints that every face of C has exactly one sink, and ψ
does not induce any directed cycles.

2-action
MDP

AUSO

USO

k-
ac
tio
n
M
D
P

RAUSO RUSO

Figure 2: Containment relationship between problem classes dis-
cussed. RAUSO and RUSO are introduced in this paper.

In general, we do not expect the outmaps of vertices in an
R(A)USO to be available explicitly. Rather, to compute the
outmap of a vertex in an l-R(A)USO, it is necessary to solve
the corresponding (l− 1)-R(A)USO. This is so in the case of
MDPs, which we see next.

4.1 k-action MDPs Induce RAUSOs
Consider an MDP M with n states s1, s2, . . . , sn, and k ≥ 2
actions. We find it convenient to assume that k is a power of
2: that is, k = 2l from some l ≥ 1. We may therefore take
actions in M to be l-bit strings (which we place inside angle
brackets): hence, A = {〈{0, 1}l〉}. Relaxing the assump-
tion that k is a power of 2 does not significantly change our
bounds, as we discuss at the end of this section.

We build a complete binary tree with the k actions of M as
the leaves. The depth of the tree is l: the leaves are at level 0,
and the root node at level l. For j ∈ {1, 2, . . . , l}, the jth level
contains 2l−j internal nodes, each containing an (l − j)-bit
string that prefixes those of its two children. Figure 3 shows
such an “action tree” for k = 8 (that is, l = 3).

For j ∈ {0, 1, . . . , l}, a level-j composite policy is an
n-length string of the form L1L2 . . . Ln, where for i ∈
{1, 2, . . . , n}, Li is the label of a node in the jth level of
the l-action tree. Thus, for n = 3, 〈0〉〈0〉〈1〉 is an exam-
ple of a level-2 composite policy, and 〈010〉〈011〉〈110〉 is an
example of a level-0 composite policy. We refer to compos-
ite policies L1L2 . . . Ln and L′1L

′
2 . . . L

′
n as being ancestors,

descendants, parents, or children of each other if the corre-
sponding relation holds for every pair of nodes labeled Li and
L′i, for i ∈ {1, 2, . . . , n}. We also refer to level-0 composite
policies as policies, since they are equivalent.

In essence, a composite policy p restricts the set of actions
available from each state. It follows that there must be a dom-
inant policy among the level-0 descendants of p. To see why,
consider a new MDP M ′ that has the same set of states and
discount factor as our original MDP M , but which only has
the corresponding level-0 descendants of p as actions at each
state. The reward and transition functions for these actions
in M ′ are the same as those in M . By Theorem 4, M ′ must
have an optimal policy. In other words, p must have a level-0
descendant π such that for every level-0 descendant π′ of p,
π � π′ and (V π = V π

′
=⇒ π � π′). We refer to π as the

optimiser of p. To find an optimal policy for M , we exploit
the fact that the optimiser of a composite policy can be ob-
tained by comparing the optimisers of its children. Although
each composite policy of level 1 through l has 2n children,
we can use the structure underlying them and evaluate only a
small subset of children, each evaluated recursively. Indeed

〈〉

〈1〉

〈11〉

〈111〉〈110〉

〈10〉

〈101〉〈100〉

〈0〉

〈01〉

〈011〉〈010〉

〈00〉

〈001〉〈000〉
Figure 3: 3-level action tree (explained in text).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1792

the children naturally become the vertices of an RAUSO, as
we describe next.

Given M , we construct an l-RAUSO (C,ψ), wherein each
vertex of C corresponds to a level-(l − 1) composite pol-
icy. Edges exist between level-(l − 1) composite policies
that differ in exactly one dimension. Let p1 and p2 be neigh-
bours that differ only in the ith dimension (corresponding
to state si), and let optimiser(p1) = π1. Now, consider
the (l-bit) actions prefixed by the string in the ith dimension
of p2. Among such actions a, let amax be one that max-
imises Qπ1(si, a). If Qπ1(si, amax) > Qπ1(si, π1(si)), or
if (Qπ1(si, amax) = Qπ1(si, π1(si)) and a fixed tie-breaking
rule picks p2 over p1), then ψ orients the edge from p1 to p2.
Otherwise ψ orients the edge from p2 to p1. As before, we
are guaranteed to arrive at the same orientation if consider
optimiser(p2) to begin with.

Observe that to determine the outmap of p1, we need to
compute π1 = optimiser(p1). We may do so recursively,
since each vertex p of C is itself a similarly-constructed
(l−1)-RAUSO, whose vertices are children of p. 1-RAUSOs
are AUSOs, and have no children.

Lemma 6. (C,ψ), constructed from M , is an RAUSO.

Proof. If the edge between p1 and p2 is directed from p1
to p2, it follows from our construction and Theorem 4
that optimiser(p2) � optimiser(p1) or (V optimiser(p2) =
V optimiser(p1) and p2 wins a tie over p1). If we apply the proof
of Theorem 5 to the optimisers of the vertices at each level,
we obtain that (C,ψ) is an RAUSO.

4.2 Algorithms for RAUSOs and RUSOs
Fibonacci Seesaw. By definition, the vertices at each level
of an RUSO induce a USO, and so we may continue to apply
the FS algorithm to RUSOs. The only change to account for
is that to evaluate a vertex in an l-RUSO, we have to solve the
corresponding (l− 1)-RUSO first. We may do so recursively.

Policy Iteration. The PI algorithm for AUSOs can also be
naturally extended to the setting of Recursive AUSOs. After
evaluating a vertex v at level j of the RAUSO, a PI algorithm,
as before, will only evaluate a vertex in the face formed by
extending v along all its outgoing dimensions. Actual policy
evaluations (solving for V (·) and Q(·, ·)) are only performed
to evaluate the vertices of 1-RAUSOs. For j-RAUSOs, j ≥ 2,
vertex-evaluation proceeds by picking a (j − 1)-RAUSO to
evaluate (recursively) next.

Interestingly, this recursive algorithm can be made to con-
form with the definition of PI for MDPs: that is, if the algo-
rithm proceeds from evaluating policy π to policy π′ (through
a chain of book-keeping involving RAUSOs of level 1 and
higher), it can be ensured that (1) π and π′ differ only on
states in the improvable set of π, and (2) any different actions
taken by π′ are improving actions. Let Simprovable be the set of
improvable states for π, and let Sswitch ⊆ Simprovable be the set
of states that a particular PI algorithm would pick to improve.
For example, Howard’s PI would set Sswitch = Simprovable;
BSPI would ensure |Sswitch| is at most the batch size. It can
be verified that our recursive algorithm implies the following

switching rule: Over all s ∈ Sswitch, find the minimum dis-
tance in the l-level action tree between π(s) and an improv-
ing action. Switch all (and only) the states in Sswitch attaining
this minimum; in each case switch to the closest improving
action (breaking ties using a fixed tie-breaking rule).

4.3 Complexity
Let t(n, l) denote the number of vertex evaluations performed
to solve an l-R(A)USO with n vertices at each level. For
l ≥ 2, both the FS and PI algorithms specified in this sec-
tion give rise to the recurrence t(n, l) = t(n, 1)t(n, l − 1),
which evaluates to t(n, l) = t(n, 1)l. Thus, if we use FS to
solve an n-state, k-action MDP (k = 2l), the number of pol-
icy evaluations is upper-bounded by (O(1.6059n))log2(k) <
poly(n, k)·k0.6834n. If we pick BSPI [Kalyanakrishnan et al.,
2016a] as an underlying PI algorithm (to decide which states
to switch) and apply our rule for picking actions, the number
of iterations is at most (1.6479n)log2(k) < k0.7207n.

If k is not a power of 2, we can implement our action tree as
an incomplete binary tree (some nodes would have only one
child). This could potentially yield a faster running time than
the easier approach of “rounding up” the underlying MDP to
have k? > k actions, where k? is a power of 2. Our bounds
would then depend on k? in place of k—but still improve
exponentially upon existing bounds for k ≥ 3.

5 Conclusion
We present the first exponential improvements over the trivial
strong worst-case upper bound on the running time of plan-
ning in n-state, k-action MDPs (under the infinite-precision
arithmetic computational model). Our analysis makes use of
existing results for n-state, 2-action MDPs, which also apply
to AUSOs and USOs.

Although it is straightforward to “flatten” an n-state, k-
action MDP into an n(k − 1)-state, 2-action MDP, such a
reduction does not yield better complexity bounds. In some
settings—for example, constraint satisfaction problems—
such transformations can indeed speed up the computa-
tion [Scheder, 2011]. For MDPs, the primary tool we devise
is a method to recursively halve the set of actions at every
state such that eventually, known methods can be applied. We
generalise the Fibonacci Seesaw algorithm [Szabó and Welzl,
2001] to obtain a running-time bound of poly(n, k) ·k0.6834n,
and the BSPI algorithm [Kalyanakrishnan et al., 2016a] to
obtain a PI algorithm that needs at most k0.7207n iterations.

At present, we are not aware of applications of RUSOs and
RAUSOs—which are objects we introduce in this paper—
outside of MDP planning. It would be worth considering
their relevance to other applications of USOs and AUSOs,
of which there are several [Jaggi, 2006; Rüst, 2007]. Pre-
liminary experiments have yet to demonstrate any significant
practical benefits for the algorithms we have presented in this
paper, suggesting that our improved running-time bounds are
still extremely loose for typical MDPs.

Acknowledgments
Supratik Chakraborty, Sundar Vishwanathan, and anonymous
reviewers provided the authors several useful comments.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1793

References
[Bellman, 1957] Richard Bellman. Dynamic Programming.

Princeton University Press, 1st edition, 1957.
[Bertsekas, 2012] Dimitri P. Bertsekas. Dynamic Program-

ming and Optimal Control, volume 2. Athena Scientific,
4th edition, 2012.

[Chazelle and Matousek, 1996] Bernard Chazelle and Jirı́
Matousek. On linear-time deterministic algorithms for op-
timization problems in fixed dimension. Journal of Algo-
rithms, 21(3):579–597, 1996.

[Fearnley, 2010] John Fearnley. Exponential lower bounds
for policy iteration. In Proceedings of the Thirty-seventh
International Colloquium on Automata, Languages and
Programming (ICALP 2010), pages 551–562. Springer,
2010.

[Gärtner, 2002] Bernd Gärtner. The random-facet simplex
algorithm on combinatorial cubes. Random Structures and
Algorithms, 20(3):353–381, 2002.

[Hansen and Zwick, 2010] Thomas Dueholm Hansen and
Uri Zwick. Lower bounds for Howard’s algorithm for find-
ing minimum mean-cost cycles. In Proceedings of the
Twenty-second International Symposium on Algorithms
and Computation (ISAAC 2011), pages 425–426. Springer,
2010.

[Hollanders et al., 2012] Romain Hollanders, Balázs
Gerencsér, and Jean-Charles Delvenne. The complexity
of policy iteration is exponential for discounted Markov
decision processes. In Proceedings of the Fifty-first IEEE
Conference on Decision and Control (CDC 2012), pages
5997–6002. IEEE, 2012.

[Hollanders et al., 2014] Romain Hollanders, Balázs
Gerencsér, Jean-Charles Delvenne, and Raphaël M.
Jungers. Improved bound on the worst case
complexity of policy iteration, 2014. URL:
http://arxiv.org/pdf/1410.7583v1.pdf.

[Howard, 1960] Ronald A. Howard. Dynamic programming
and Markov processes. MIT Press, 1960.

[Jaggi, 2006] Martin Jaggi. Linear and quadratic
programming by unique sink orientations, 2006.
Diploma thesis in Mathematics, ETH Zürich. URL:
http://www.m8j.net/data/List/Files-106/DA.pdf.

[Kalyanakrishnan et al., 2016a] Shivaram Kalyanakrishnan,
Utkarsh Mall, and Ritish Goyal. Batch-switching policy
iteration. In Proceedings of the Twenty-fifth International
Joint Conference on Artificial Intelligence (IJCAI 2016),
pages 3147–3153. AAAI Press, 2016.

[Kalyanakrishnan et al., 2016b] Shivaram Kalyanakrishnan,
Neeldhara Misra, and Aditya Gopalan. Randomised pro-
cedures for initialising and switching actions in policy it-
eration. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI 2016), pages 3145–3151.
AAAI Press, 2016.

[Littman et al., 1995] Michael L. Littman, Thomas L. Dean,
and Leslie Pack Kaelbling. On the complexity of solv-
ing Markov decision problems. In Proceedings of the

Eleventh Annual Conference on Uncertainty in Artificial
Intelligence (UAI 1995), pages 394–402. Morgan Kauf-
mann, 1995.

[Madani et al., 2010] Omid Madani, Mikkel Thorup, and Uri
Zwick. Discounted deterministic Markov decision pro-
cesses and discounted all-pairs shortest paths. ACM Trans-
actions on Algorithms, 6(2):33:1–33:25, 2010.

[Mansour and Singh, 1999] Yishay Mansour and Satinder
Singh. On the complexity of policy iteration. In Pro-
ceedings of the Fifteenth Conference on Uncertainty in Ar-
tificial Intelligence (UAI 1999), pages 401–408. Morgan
Kaufmann, 1999.

[Matoušek et al., 1996] Jiřı́ Matoušek, Micha Sharir, and
Emo Welzl. A subexponential bound for linear program-
ming. Algorithmica, 16(4/5):498–516, 1996.

[Megiddo, 1984] Nimrod Megiddo. Linear programming in
linear time when the dimension is fixed. Journal of the
ACM, 31(1):114–127, 1984.

[Melekopoglou and Condon, 1994] Mary Melekopoglou
and Anne Condon. On the complexity of the policy
improvement algorithm for Markov decision processes.
INFORMS Journal on Computing, 6(2):188–192, 1994.

[Post and Ye, 2013] Ian Post and Yinyu Ye. The simplex
method is strongly polynomial for deterministic Markov
decision processes. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2013), pages 1465–1473. Morgan Kaufmann,
2013.

[Puterman, 1994] Martin L. Puterman. Markov Decision
Processes. Wiley, 1994.

[Rüst, 2007] Leonard Yves Rüst. The P -Matrix Com-
plementarity Problem: Generalizations and specializa-
tions, 2007. Dissertation for the degree of Doctor of
Sciences, Swiss Federal Institute of Technology. URL:
https://www.inf.ethz.ch/personal/emo/DoctThesisFiles/
ruest07.pdf.

[Scheder, 2011] Dominik Alban Scheder. Algorithms and
Extremal Properties of SAT and CSP. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2011. URL:
http://basics.sjtu.edu.cn/ dominik/publications/
Dissertation-Dominik-Scheder.pdf.

[Szabó and Welzl, 2001] Tibor Szabó and Emo Welzl.
Unique sink orientations of cubes. In Proceedings of the
Forty-second Annual Symposium on Foundations of Com-
puter Science (FOCS 2001), pages 547–555. IEEE, 2001.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1794

