
Instability Prediction in Power Systems using Recurrent Neural Networks

Ankita Gupta, Gurunath Gurrala, Pidaparthy S Sastry
Indian Institute of Science, Bangalore

{ankitagupta, gurunath, sastry}@ee.iisc.ernet.in

Abstract

Recurrent Neural Networks (RNNs) can model
temporal dependencies in time series well. In
this paper we present an interesting application of
stacked Gated Recurrent Unit (GRU) based RNN
for early prediction of imminent instability in a
power system based on normal measurements of
power system variables over time. In a power sys-
tem, disturbances like a fault can result in transient
instability which may lead to blackouts. Early pre-
diction of any such contingency can aid the opera-
tor to take timely preventive control actions. In re-
cent times some machine learning techniques such
as SVMs have been proposed to predict such in-
stability. However, these approaches assume avail-
ability of accurate fault information like its occur-
rence and clearance instants which is impractical.
In this paper we propose an Online Monitoring Sys-
tem (OMS), which is a GRU based RNN, that con-
tinuously keeps predicting the current status based
on past measurements. Through extensive simula-
tions using a standard 118-bus system, the effec-
tiveness of the proposed system is demonstrated.
We also show how we can use PCA and predictions
from the RNN to identify the most critical genera-
tor that leads to transient instability.

1 Introduction
Early classification of time series data is crucial in many time-
sensitive applications in medicine, environment, business etc.
(See [Griffin and Moorman, 2001] for an interesting example
of this in medical domain).

Recurrent Neural Networks (RNNs) are, in general, good
at capturing temporal dependencies in data and hence are ef-
fective in many time-series analysis applications [Hüsken and
Stagge, 2003]. A recently proposed architecture of RNN uses
the so called Gated Recurrent Units (GRUs) which are good
at capturing long range temporal dependencies [Cho et al.,
2014]. In this paper we explore application of GRU based
RNN for an interesting early prediction application, namely,
that of predicting the transient instability of a power system
following a disturbance.

An operating power system is subjected to various distur-
bances like switching on and off of circuit elements, or occur-
rence & clearing of faults such as a line shorting to ground.
The ability of a power system to regain its stable operating
condition and maintain synchronism1 when subjected to such
a disturbance is referred to as the transient stability. Based
on the severity of these disturbances and prior system oper-
ating conditions, the power system may loose synchronism
which can lead to possible cascading effects causing system
collapse. Hence, monitoring the stability status of a power
system in real time is a task of primary importance. In such a
scenario, early recognition of the potentially dangerous con-
ditions is very crucial for allowing sufficient time to take
emergency control actions.

Various techniques based on time domain simulations,
transient-energy-functions and equal area criteria have been
traditionally used to assess the transient stability of power
system [Kundur et al., 1994; Pai, 2012; Xue et al., 1992].

However, these methods demand very accurate informa-
tion about network configuration and are computationally in-
tensive with high time complexity.

Since the advent of Phasor Measurement Units (PMUs),
over the last decade, near-real-time data of system variables
is now available in many modern power systems. This led to
many machine learning (ML) techniques being explored for
complex power system stability and control problems. (See,
for example, [Jensen et al., 2001; Kamwa et al., 2009]).

An SVM based classifier is proposed for post-fault tran-
sient instability prediction in [Rajapakse et al., 2010]. Sim-
ilarity values of measured voltages with pre-identified volt-
age variation trajectory templates are the inputs to SVM. In
[Gomez et al., 2011], the SVM classifier directly uses sam-
pled values of the measured voltage magnitudes at the gen-
erator buses to predict the transient stability status. In [Ji et
al., 2016], global trajectory cluster feature subset is extracted
using RELIEF algorithm. These features are used as SVM in-
puts. SVM-Based Ensemble classifier is proposed in [Zhou et
al., 2016] for transient stability prediction. These SVM based
methods are seen to be more effective in assessing transient
stability compared to all earlier ML techniques used for this

1Synchronism refers to the operation of all generators in an inter-
connected power system at a common voltage level, frequency and
phase sequence. Loss of synchronism occurs when relative motion
between generator rotors is fluctuating widely.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1795

problem.
However, all these approaches assume availability, at the

common control center, of accurate information of the fault
such as instance of fault clearance. This is because, the clas-
sifier needs, as input, the values of system variables starting
from the instant when the fault is cleared. Acquiring such
fault-related information involves extensive instrumentation
throughout the power system network (e.g. PMUs and pro-
tection relays). Even then, information such as the instance of
fault clearance would have some random errors due to relay-
tripping-time and communication delay. As we show here,
the performance of the SVM is poor when tested on data
measurements delayed even by a few samples with respect
to fault clearance. Thus, there is a need for a more robust
system whose performance is independent of accurate fault
information, specifically, the instance of fault clearance.

The stacked GRU based RNN that we propose in this pa-
per is a continuous Online Monitoring System (OMS) for as-
sessment of transient stability of a power system. At each
instant, based on the measurements over a few previous in-
stants, the RNN outputs a classification of the current sys-
tem state which, in turn, is used to predict transient instabil-
ity. The system does not need any information regarding the
faults (or any other disturbance in the system). The RNN
is trained on system trajectories and essentially it learns the
characteristics of the normal and abnormal variations in mea-
sured system variables. We use detailed simulation of a stan-
dard 118-bus system [Dehghanian et al., 2015] to generate
system voltage trajectories under normal operation as well as
under different faults and these are used to train the RNN.
Through extensive simulations we show that the trained RNN
is very effective in early prediction of transient instability.
We also show that it is fairly robust to measurement noise
and other similar inaccuracies. In addition, we also present a
method, based on PCA and some output of the RNN, to pre-
dict the critical generator in cases where there is instability.
This is useful for the operator to plan an isolation operation
to mitigate the effect of instability following a fault.

The remainder of this paper is organized as follows. In
section 2 we describe the OMS and explain how the training
set is generated and how the prediction on instability is ob-
tained. In section 3 we describe the architecture of the GRU-
based RNN that is used as OMS here. In section 4 we discuss
simulation results and show the effectiveness of the proposed
OMS and then conclude the paper in section 5.

2 The Proposed Online Monitoring System
The objective of the online monitoring system (OMS) is early
prediction of transient instability of the power system follow-
ing a disturbance such as a fault. Since disturbances occur
at random times and we do not assume any knowledge about
the faults, the OMS has to continuously keep analyzing the
power system variables over a few cycles. (For a power sys-
tem operating at 50 Hz, each cycle is of 20ms duration).

At any given instant, the OMS observes all the variables
over a sliding window of, say, s cycles. The OMS is a Re-
current Neural Network (RNN) whose inputs are the voltages
etc. of all the generators in the system. (See Sec. 2.1 for more

details). The final objective is to predict instability. However,
instead of making the output of RNN binary, we formulate
it as a 5-class classification problem. That is, we train the
RNN so that, on observing the variables in a time window, it
predicts a system state to which this window belongs.

We explain in the next subsection these five states/classes
that we define and the way in which we create the needed
training data. The output of the RNN is finally used to gener-
ate a prediction about instability. Making the RNN into such
a 5-class classifier enables it to learn the natural variations in
the power system variables during different phases of a distur-
bance and to distinguish between such variations in the cases
where the system regains a stable state and the cases where
the system becomes unstable.

2.1 Preparation of Training Data
For training (as well as testing) our neural network, we need
data in the form of temporal profiles of the power system vari-
ables in different scenarios. For this we use a simulation of
the IEEE 118-Bus system.

This system has been widely used as a benchmark system
for testing stability enhancement applications. This system
comprises 118 buses, 19 generating units, 91 loads, and 177
transmissions lines.

Data is generated through offline dynamic simulations us-
ing MATLAB [Gurrala et al., 2017]. In the simulations, we
impose three-phase-to-ground faults on each bus as well as on
each transmission line at three locations (at 25%, 50%, and
75% of the length). Clearing time for all the contingencies
is randomly picked from 4-8 cycles. The above contingen-
cies were repeated at three different loading levels (base load
plus 5%, 7%, and 10%). The simulator records the variations
over time of generator voltages (as complex quantities) over
a large time window spanning both pre and post contingency
period. A sampling frequency of 50 Hz is used to obtain syn-
chronously sampled measurements. Each simulation is car-
ried out for a time duration of 1000 cycles (or 20s).

The inputs to the RNN are magnitudes and phase angles
of voltages at generator buses and the derivative of phase an-
gles. The phase angles give information about rotor angles
and their derivatives give information about frequency.

Using the simulator we generate a number of temporal pro-
files of these dynamic variables of the generators. We now ex-
plain how we label each profile as stable/unstable and how we
prepare overlapping windows of data for training the RNN.

Transient Stability Index
Suppose that a transient disturbance occurs at time instance
tF and is cleared at tC . The system variables are observed un-
til a later time tM > tC . Then, theoretically, the stability sta-
tus of the system, post-contingency, is obtained using Tran-
sient Instability Index, (η), defined as [Gomez et al., 2011].

η =
3600 − |∆δ|max
3600 + |∆δ|max

(1)

where |∆δ|max is the absolute value of the maximum angle of
separation between any two generators during the post-fault
period, {t : tF < t < tM}. System is considered as stable if η
> 0 ; otherwise, the system is transiently unstable. We label

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1796

Table 1: Possible System States

No Disturbance Class 0
Fault Occurrence Class 1

Fault Duration Class 2
Fault Clearance Class 3

Alert Class 4

the system profiles obtained through our simulator as stable
or unstable based on the η value as defined above.

Remark: Based on η, the stability status can be judged,
provided the post-fault system is observed for a long time.

The objective is to predict this sufficiently in advance.
Thus, while η is useful to label each profile, it cannot be used
in practice for prediction of impending instability.

Let (Xi, Yi), i = 1, · · · , N , be the dataset where Xi are
generated by the simulator and (Yi) is 0/1 depending on sign
of η. Each Xi is a time series of length 1000 where each
element is a 57-dimensional vector (consisting of the magni-
tude, phase angle and derivative of phase angle of voltages of
19 generators).

We consider windows of size s, with stride of 1 cycle, over
entire time horizon. A window is specified as w = [tS , tE],
where tS and tE are the start and end times of the window and
s = tE-tS+1. Each profile, Xi, is converted into a sequence
of overlapping windows.

We wish to label each window based on what is happening
in the system during that window. Accordingly, we propose
five classes as described in Table 1. If the window covers the
instant of fault occurrence, it would be labelled as Class 1.
All the windows in the stable pre-fault operation part would
be labelled as Class 0. If a window sees all samples after
fault occurrence but before fault clearance, it would be la-
belled as Class 2. If (in the current profile) the system is
stable after fault clearance, we categorize all windows after
fault clearance as Class 0 again; otherwise, all windows after
fault clearance would be labelled as Alert or Class 4.

In the simulation we know the instant of fault onset, fault
clearance etc. and this information would be used for la-
belling the windows in the training data. Let tF and tC denote
the onset and clearance times of a fault in a profile. Then, a
window w = [tS , tE], is labelled as yw as given below:

yw =



0 if (tE 6 tF) or (tS ≥ tC and η > 0)

1 if (tS 6 tF 6 tE)

2 if (tF 6 tS 6 tE 6 tC)

3 if (tF 6 tS 6 tC 6 tE)

4 if (tS ≥ tC and η < 0)

(2)

Data in the form of windows with these labels is used to train
the RNN. It is easy to see that we would have many more
windows of class 0 than other classes. To avoid such class im-
balance in training set, we used subsampling where needed.

Fig. 1 shows some typical profiles for stable and unstable
cases. The instants tC + 1 and tC + 6 are marked in the fig-
ures, where tC is the instant of fault clearance. We normally
need to predict within about 4-7 samples from tC . While the
instability is easy to see if we wait long enough, predicting
within the interval shown is what is challenging.

Figure 1: Variations of measured quantities for stable and unstable
cases

The final output of OMS
The OMS is required to identify the cases that are going to be
eventually unstable. We could predict instability as soon as
our RNN classifies a window as Class 4. We have a softmax
layer at the output of RNN and hence, normally, we would
predict Class-4 if its probability is the highest. In a system
that predicts instability, reducing false alarms is very impor-
tant. Hence, we predict instability at the first instant where
the probability of Class-4 (as given by the softmax layer of
RNN) is above 0.99. Till the time the OMS predicts insta-
bility, we take it that it is predicting the system to be stable.
While the threshold is arbitrary, we keep it high because even
at this level our missed detection rate is zero.

2.2 Assessing OMS Performance
Since the final output of OMS is a stability/instability pre-
diction, we assess it using false alarm and missed detection
rates. In this application, we want zero missed detections and
want to reduce false alarm rate as much as possible. This is
one assessment of OMS performance that we present in our
experiments section.

In this application, we also want to measure how early the
OMS is able to predict. We can measure this by looking at the
instance of instability prediction by OMS on the ith profile,
T iA, relative to the time instant where we anyway know the
system to be unstable and this can be T iη , the instant at which
the transient stability index, η, becomes negative. We define
the average latency of prediction, Υ, by

Υ =
1

M

M∑
i=1

(T iη − T iA) (3)

where M is total number of profiles in test set. In our experi-
ments section we indicate this assessment of OMS also.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1797

The average latency of prediction is, in general, important
in any application where the goal is early prediction. How-
ever, in many applications, it may not always be easy to ob-
jectively identify an instant, such as T iη here, relative to which
the early prediction can be assessed.

2.3 Identification of Critical Generator
The main utility of early prediction of transient instability is
that the operator can take corrective action such as isolation
of the generator that is likely to loose synchronism from rest.
Hence, it is desirable to also identify the critical generator.

For this we consider the data between the first instant, say,
tF , when OMS predicts class-1 (which is onset of a fault)
and the instant, say, tA, when OMS predicts instability. We
consider measurements over all these instants for each of the
generators. Since the critical generator(s) is one that is going
out of synchronism with the rest, we should be looking for
some ‘outliers’ based on the data. We do that as follows.

For each generator, we have a data vector of dimension
3(tA − tF). Using PCA on the training data we obtain the
first two principal directions. Now on any profile where we
make an instability prediction, for each generator its data vec-
tor (of dimension 3(tA − tF)) is projected onto <2 using the
first two principal components. If there are G generators, this
gives us G number of 2-dimensional vectors. A two dimen-
sional gaussian density is fitted to the projected data with its
parameters estimated by Sample Mean and Minimum Covari-
ance Determinant (MCD) [Rousseeuw and Driessen, 1999].
MCD is a robust estimator of covariance matrix, which is not
affected much by outliers. The generator (vector) with min-
imum likelihood under the estimated density is identified as
the outlier and hence as the critical generator.

3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are well-suited for an-
alyzing time series data due to their recurrent connections.
Consider a single hidden layer network with xt, ht and yt
denoting the input, hidden and output layer neuron outputs.
Then a general recurrent network can be specified as

ht = σ(Whhht−1 +Whxxt) (4)

yt = Softmax(WSht) (5)
where, Whh, Whx and WS are the weight matrices across
different connections and σ(·) denotes the sigmoid function.
The output is obtained through a softmax because we are con-
sidering a classification scenario.

3.1 Stacked GRU Based RNN
Although theoretically RNNs can model arbitrarily long
memories (that is, dependence on inputs from remote past),
in practice this is difficult due to the problems associated
with backpropagation through time (BPTT) over many time
steps [Pascanu et al., 2013]. Some of the specialized RNNs
proposed are Long Short Term Memories (LSTMs) [Hochre-
iter and Schmidhuber, 1997] and Gated Recurrent Units
(GRUs) [Cho et al., 2014]. They are designed to have more
persistent memory, hence making it simpler for RNNs to cap-
ture long-term dependencies. We preferred the GRUs ow-
ing to lesser number of trainable parameters as compared to

Table 2: Model Parameters for RNN based OMS

Parameters Description
Batch Size 32

Number of Hidden Layers 2
Hidden Dimensionality 128

Optimizer Adam [Kingma and Ba, 2014]
Learning Rate Adaptive (Default Adam)

LSTMs (2 gates versus 3 gates). As earlier, let xt be the input
and ht be the output of a hidden layer. A GRU based cell
computes ht through the following steps.

zt = σ(W (z)xt + U (z)ht−1) (6)

rt = σ(W (r)xt + U (r)ht−1) (7)

h̃t = tanh(rt ◦ Uht−1 +Wxt) (8)

ht = (1− zt) ◦ h̃t + zt ◦ ht−1 (9)

The new memory h̃t is a summarization of new input xt and
past hidden state ht−1. The reset signal rt decides how rele-
vant is ht−1 to the computation of new memory. The ht is a
convex combination of h̃t and ht−1 with the relative weights
decided by the update gate zt. Trainable parameters are the
weight matrices U (z), W (z), U (r), W (r), U , and W . These
are learnt using BPTT algorithm. (The symbol ◦ denotes
element-wise multiplication and σ(x) = 1

1+e−x).

3.2 RNN Architecture for OMS
We use a 2 layer stacked-GRU based RNN architecture im-
plemented in TensorFlow 0.8 with GPU (CUDA 7.5) support.
As mentioned earlier, the input is a window of size s. We train
the network with Adam Optimizer [Kingma and Ba, 2014].
We employ Cross Entropy loss and a Softmax output layer.
Other details of the architecture are mentioned in Table 2.

4 Experimental Results
4.1 The Experimental Set-up
As described in Section 2.1, we generate a large number of
temporal profiles of the power system variables for the IEEE-
118 Bus System. Each profile comprises of voltage magni-
tudes, voltage phase angles and derivative of phase angles for
all the 19 generators for 1000 time instants.

A total of 6046 profiles are generated using the simulator
out of which 592 are unstable based on η. We then randomly
split this data into training and test sets with one-tenth of the
data kept as test set. As the RNN takes overlapping windows
as inputs, we cut each profile in the training set into overlap-
ping windows and label them according to Eq.(2). We con-
sider a window size of 5 samples. Some windows are used
to train the RNN and the rest are used for validation. For
each test profile, the overlapping windows are fed to RNN
and its output noted. If at any time the probability with which
Class-4 is predicted (which is the output of that node in the
softmax layer) is greater than 0.99, the corresponding profile
is predicted unstable by OMS. If for the entire duration of a

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1798

profile, the probability of Class-4 does not go above 0.99 then
that profile is predicted stable by the OMS.

We perform the random split of data into training and test
sets ten times and all results shown are averages over these tri-
als. Every time we generate a test set, we randomly choose 60
unstable cases and 540 stable cases to form the test set. The
remaining cases form the training set. In our results we report
the false alarm (FA) rate, missed detection (MD) rate and also
the average latency of prediction (cf. Eq.(3)). We also show
effectiveness of our system under scenarios where measure-
ments are corrupted with noise and where system topology
changes due to some transmission lines being down.

4.2 Performance of the SVM Classifier That Needs
Fault Information

Many ML approaches have been used for transient stability
prediction. A good comparative analysis among all of them
is given in [Zhou et al., 2016], where it is shown that the
SVM based method proposed by [Gomez et al., 2011] and
ensemble of SVMs performs the best. Here we present results
obtained with SVM method on our data. As mentioned in
section 1, all these methods assume that we know instance of
fault clearance, tC .

The inputs to the SVM are the generator voltages over 4-
5 cycles immediately after tC . However, in a practical sce-
nario, we may not know tC exactly because, for example,
the protective relay may report it with an error of up to two
samples. Hence, we analyze the SVM performance under the
cases of (a) when exact tC is known. (b) when tC is known
with 1 sample delay. (c) when tC is known with a random er-
ror of upto 2 samples. The industry-grade PMUs often have
some measurement noise. Hence we also analyze SVM per-
formance under 1% and 2% noise in measurements. We con-
sider the cases of noise in both training and test data as well
as noise in test data only (with noise-free training data).

Table 3 shows the performance of SVM for all these cases.
As can be seen from the table, the performance of the SVM
degrades very significantly when there is error in tC and/or
when there is noise in measurements. Thus the existing ML
approaches based on training the system only on a few cycles
of data immediately following clearance of fault, are brittle
and are not very attractive for more realistic scenarios.

We note here that our OMS does not need any information
about tC and hence there are no existing methods with which
we can compare it directly. We present performance results of
OMS in the next few subsections which show that it is much
better than the SVM even though we do not need tC . It is also
observed in our simulations that in all cases the OMS predicts
instability in about 4-7 cycles from tC .

4.3 OMS Performance
We test the performance of the OMS under zero noise as well
as under ±1% to ±3% uniform noise. We add the noise to
both the training as well as test data.2 These results are shown

2According to “C37.118.1-2011 IEEE Standard for Synchropha-
sors for Power Systems” tolerable measurement noise is 1% of Total
Vector Error and thus the noise levels considered here are relatively
high. See https://standards.ieee.org/findstds/standard/C37.118.1-
2011.html

Table 3: Performance of the existing SVM classifier

Noise Level Case FA Rate
(%)

MD Rate
(%)

None
Exact 0.15 1.67

+1 Delay 0.52 11.5
±2 Error 5.80 18.83

±1 %
Exact 0.43 9.00

+1 Delay 0.69 24.83
±2 Error 4.31 35.83

±2 %
Exact 0.63 17.83

+1 Delay 0.96 42.17
±2 Error 1.72 47.83

±1 % (only Test)
Exact 0.88 7.41

+1 Delay 2.80 18.70
±2 Error 5.27 29.30

±2 % (only Test)
Exact 4.78 9.16

+1 Delay 12.83 22.00
±2 Error 12.64 25.33

Table 4: OMS performance under Type I Noise

Noise
Level

FA Rate
(%)

MD Rate
(%)

Υ
(cycles)

None 1.61 0.16 35.52
±1% Uniform 1.89 0.00 38.44
±2% Uniform 2.79 0.00 38.97
±3% Uniform 3.09 0.00 40.06

in Table 4. As can be seen from the table, even at 3% noise,
our missed detection rate remains zero though our false alarm
rate slightly increases. (We have a very small missed detec-
tion rate under no noise. This is because of only one out of
60 unstable cases missed in only one of the ten random repe-
titions of training and test splits).

We term the above noise which is added in every measure-
ment at every instant as Type I noise. We also consider what
we call type II noise where at any given time instant each gen-
erator has probability 0.1 of its measured values being noisy
and when they are, the noise is uniform with rate varying be-
tween ±1% and ±3%. The missed detection rate remains at
zero in all cases of type II noise also showing our method is
very reliable under measurement noise unlike the SVM based
method. Figure 2 shows false alarm rates for the two types of
noise when we use different noise rates in train and test data.
As can be seen from the figure, our method is very robust to
noise in measurements.

4.4 Robustness to Topology Changes
The OMS is also tested under some changes to network topol-
ogy in the form of certain transsmission lines being discon-
nected from base topology of IEEE-118 Bus system. For the
illustration here we consider the case where transission lines
interconnecting following Bus pairs being put out of service :
Bus 119 to Bus 120, Bus 23 to Bus 25, Bus 30 to Bus 135, Bus

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1799

Figure 2: Robustness of OMS: False Alarm Rate under Type I and
Type II noise

Table 5: OMS performance under Topology Changes

Noise
Level

FA Rate
(%)

MD Rate
(%)

Υ
(cycles)

None 1.94 0.00 22.50
±1% 2.52 0.00 23.03
±2% 3.00 0.00 21.36
±3% 3.02 0.00 23.53

35 to Bus 37, Bus 60 to Bus 61 and Bus 95 to Bus 96. Such
changes in the network are common in the day-to-day opera-
tion of power systems. Lines are often put out of service to ac-
commodate maintenance or operational requirements. These
topology changes can alter the pre-fault power flow and the
evolving voltage profiles of the network.

We train the RNN with data generated using the original
topology and test it with data generated using the altered
topology. We also add different levels of Type I noise. The re-
sults, as given in Table 5, show that the proposed RNN based
OMS is quite robust to network topology changes.

4.5 Identification of Critical Generator
As described in Section 2.3, for identification of critical gen-
erator we project the data (over relevant time interval) onto
<2 using the first two principal components. These 2D-

Figure 3: Projected Measurements in <2 showing outliers

Figure 4: Projected Measurements in <2 for False Alarms

Figure 5: Projected measurements when multiple generators are crit-
ical

vectors corresponding to all generators for two unstable pro-
files is shown in Fig. 3. It is easily seen that the critical gen-
erator is an outlier. Our technique of robustly fitting a Gaus-
sian density and looking for a point with least likelihood, is
able to identify a critical generator in about 85% of unstable
cases even under measurement noise. While our algebraic
technique can identify only one critical generator, the visual-
ization in <2 is a good aid for the operator to quickly see all
the critical generators as illustrated in Fig. 5.

We also found that this visualization can help reduce the
effect of our false alarms. When OMS predicts instability
wrongly, there would not actually be a critical generator and
hence in the projected data there may be no outliers. We show
the visualization in a false alarm case in Fig. 4. Thus, this
PCA-based visualization can help the operator to properly re-
spond to the alarms generated by OMS.

5 Conclusions
In this paper we presented a GRU based RNN for predict-
ing transient instability in a power system. All the existing
ML approaches for this assume precise knowledge of fault
occurence and clearance in the system. Our proposed RNN
continuously monitors system variables in a sliding window
and it does not need any fault information. Its performance
is very good as seen from our experimental results. Further,
the proposed RNN is very robust to measurement noise and
topology changes. We also presented a PCA based visual-
ization method for isolating the critical generator in case of
instability. The OMS presented in this paper assumes that
measurements from all generators are available at a central
location synchronously. Extending this into a distributed sys-
tem is an interesting problem for future work.

Acknowledgments
This work is supported by the FIST program grant of DST,
Government of India and also by Robert Bosch Centre for
Cyber-Physical Systems, IISc.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1800

References
[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,

Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using RNN encoder-decoder for statistical
machine translation. 2014.

[Dehghanian et al., 2015] Payman Dehghanian, Yaping
Wang, Gurunath Gurrala, Erick Moreno-Centeno, and
Mladen Kezunovic. Flexible implementation of power
system corrective topology control. Electric Power
Systems Research, 128:79–89, 2015.

[Gomez et al., 2011] Francisco R Gomez, Athula D Ra-
japakse, Udaya D Annakkage, and Ioni T Fernando.
Support vector machine-based algorithm for post-fault
transient stability status prediction using synchronized
measurements. IEEE Transactions on Power Systems,
26(3):1474–1483, 2011.

[Griffin and Moorman, 2001] M Pamela Griffin and J Ran-
dall Moorman. Toward the early diagnosis of neonatal
sepsis and sepsis-like illness using novel heart rate anal-
ysis. Pediatrics, 107(1):97–104, 2001.

[Gurrala et al., 2017] Gurunath Gurrala, Disha Dinesha,
Aleksandar Dimitrovski, Srdjan Simunovic, Sreekanth
Pannala, and Michael Starke. Large multi-machine power
system simulations using multi-stage adomian decompo-
sition. IEEE Transactions on Power Systems, 2017.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Hüsken and Stagge, 2003] Michael Hüsken and Peter
Stagge. Recurrent neural networks for time series
classification. Neurocomputing, 50:223–235, 2003.

[Jensen et al., 2001] Craig A Jensen, Mohamed A El-
Sharkawi, and Robert J Marks. Power system security
assessment using neural networks: feature selection using
fisher discrimination. IEEE Transactions on Power Sys-
tems, 16(4):757–763, 2001.

[Ji et al., 2016] Luyu Ji, Junyong Wu, Yanzhen Zhou, and
Liangliang Hao. Using trajectory clusters to define the
most relevant features for transient stability prediction
based on machine learning method. Energies, 9(11):898,
2016.

[Kamwa et al., 2009] I Kamwa, SR Samantaray, and Geza
Joos. Development of rule-based classifiers for rapid sta-
bility assessment of wide-area post-disturbance records.
IEEE Transactions on Power Systems, 24(1):258–270,
2009.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations, 2014.

[Kundur et al., 1994] Prabha Kundur, Neal J Balu, and
Mark G Lauby. Power system stability and control, vol-
ume 7. McGraw-hill New York, 1994.

[Pai, 2012] Anantha Pai. Energy function analysis for power
system stability. Springer Science & Business Media,
2012.

[Pascanu et al., 2013] Razvan Pascanu, Tomas Mikolov, and
Yoshua Bengio. On the difficulty of training recurrent neu-
ral networks. ICML (3), 28:1310–1318, 2013.

[Rajapakse et al., 2010] Athula D Rajapakse, Francisco
Gomez, Kasun Nanayakkara, Peter A Crossley, and
Vladimir V Terzija. Rotor angle instability prediction us-
ing post-disturbance voltage trajectories. IEEE Transac-
tions on Power Systems, 25(2):947–956, 2010.

[Rousseeuw and Driessen, 1999] Peter J Rousseeuw and Ka-
trien Van Driessen. A fast algorithm for the mini-
mum covariance determinant estimator. Technometrics,
41(3):212–223, 1999.

[Xue et al., 1992] Yusheng Xue, Louis Wehenkel, Regine
Belhomme, Patricia Rousseaux, Mania Pavella, Edwige
Euxibie, Bertrand Heilbronn, and J-F Lesigne. Extended
equal area criterion revisited (EHV power systems). IEEE
Transactions on Power Systems, 7(3):1012–1022, 1992.

[Zhou et al., 2016] Yanzhen Zhou, Junyong Wu, Zhihong
Yu, Luyu Ji, and Liangliang Hao. A hierarchical method
for transient stability prediction of power systems using
the confidence of a svm-based ensemble classifier. Ener-
gies, 9(10):778, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1801

