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Abstract
Spectral clustering has been widely used due to its
simplicity for solving graph clustering problem in
recent years. However, it suffers from the high com-
putational cost as data grow in scale, and is limited
by the performance of post-processing. To address
these two problems simultaneously, in this paper,
we propose a novel approach denoted by orthogonal
and nonnegative graph reconstruction (ONGR) that
scales linearly with the data size. For the relaxation
of Normalized Cut, we add nonnegative constraint
to the objective. Due to the nonnegativity, ONGR
offers interpretability that the final cluster labels can
be directly obtained without post-processing. Ex-
tensive experiments on clustering tasks demonstrate
the effectiveness of the proposed method.

1 Introduction
Clustering is an important topic in machine learning and data
mining. As a branch of clustering, graph clustering has been
drawing growing attention which aims to group vertices of
the graph into clusters with the expection that there are more
edges within each cluster and fewer edges between the clusters
[Schaeffer, 2007; Zhang et al., 2014; Wang et al., 2016]. As
the field of graph clustering involves too many aspects, we
mainly focus on spectral clustering which is considered as a
way to solve relaxed versions of graph cut problems including
Normalized Cut (Ncut) and RatioCut. Spectral clustering has
limited applicability to process large scale data, since it uses
eigenvectors of the Laplacian matrix. In general, it takes
O(n3) for eigen-decomposition with n denoting the number
of data points.

Generally, there are two major directions to solve the scal-
ability issue. One is to reduce the computational cost of the
eigen-decomposition problem. [Fowlkes et al., 2004] firstly
adopted the classical Nyström method to extrapolate the com-
plete clustering results using only a small number of samples.
The works in [Li et al., 2011] and [Choromanska et al., 2013]
also attempted to alleviate the computational burden based
on Nyström method with improvements on complexities or
with attached performance guarantees. Spectral sparsification
can be seen in [Spielman and Teng, 2011] with the computa-
tional cost relying on the number of edges in original graph.

From the point of view of hardware platform, [Chen et al.,
2011] sparsified the matrix via retaining k-nearest neighbors,
paralleling both memory use and computation on distributed
computers.

Another direction is to reduce the data size by sampling
some representative points beforehand. [Yan et al., 2009]
developed a general framework that spectral clustering only
needs to run on a small subset. [Shinnou and Sasaki, 2008]
adopted a committees-based way with a slightly different pro-
cess to obtain the representatives. [Cai and Chen, 2014] se-
lected a few landmarks for spectral embedding while [Peng
et al., 2013] chose some in-sample data for sparse subspace
clustering, and the remaining data are represented as a lin-
ear combination of the pre-selected points. [Liu et al., 2013]
devoted to handling graph data, by generating supernodes to
compress the original graph into a sparse bipartite graph.

Most previous works can not achieve good clustering results
since they are limited by the performance of post-processing.
For example, kmeans is a common way to obtain the final clus-
ter labels, while kmeans itself is sensitive to the initialization.
To get rid of this extra step, and at the same time to be able
to handle the scalability issue, we propose a novel approach
called orthogonal and nonnegative graph reconstruction (ON-
GR). It is worthwhile to highlight the main contributions of
the paper as follows:

1. ONGR is proposed from the viewpoint of graph recon-
struction, which is different from both two kinds of exist-
ing methods aiming at handling the scalability issue.

2. ONGR adds nonnegative constraint to the objective, thus
offering interpretability that the final cluster labels can
be directly obtained without post-processing.

3. Due to the orthogonal and nonnegative constraints, ON-
GR reconstructs the graph by a structured one which is
good for clustering tasks.

4. ONGR has close relationship with spectral clustering and
nonnegative matrix factorization. Comprehensive experi-
ments on a variety of datasets show the effectiveness of
the proposed method.

Notations: Suppose we have n data points belonging to k
clusters with the dimensionality denoted by d. Ik ∈ Rk×k is
an identity matrix and 0 is a zero matrix of proper size. The
Frobenius norm is denoted by ‖ · ‖F . Let Gr = (Vs, E) be
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an undirected weighted graph with vertices Vs = {vi}ni=1 and
edgesE. The symmetric similarity matrix of the graph isW =
{wij}ni,j=1 and the degree of vi is defined as di =

∑n
j=1 wij .

The diagonal degree matrix D has {di}ni=1 on the diagonal.
The Laplacian matrix is L = D −W , and the normalized one
is L̃ = D−1/2LD−1/2.

2 Revisit of Spectral Clustering
We first review some concepts in graph cut [Schaeffer, 2007;
Von Luxburg, 2007]. Given a subset A ⊂ Vs, the complement
of which is denoted by Ā, and the size can be measured by the
number of vertices denoted by |A|, or the sum of degrees of
vertices denoted by vol(A) =

∑
i∈A di.

Thus, we can define the cut between A and Ā as
cut(A, Ā) =

∑
i∈A,j∈Ā wij . Further, the definitions of Ratio-

Cut [Hagen and Kahng, 1992] and Ncut [Shi and Malik, 2000]
can be respectively represented as RatioCut(A1, . . . , Ak) =∑k

i=1
cut(Ai,Āi)
|Ai| , NCut(A1, . . . , Ak) =

∑k
i=1

cut(Ai,Āi)
vol(Ai)

,
where k nonempty subsets A1, . . . , Ak satisfy Ai

⋂
Aj =

∅(i, j = 1, . . . , k), and A1

⋃
, . . . ,

⋃
Ak = Vs. Minimizing

these two problems is NP hard and it is natural to solve the
relaxed problems.

Define k cluster indicator vectors fj = (f1j , . . . , fnj)
′ by

fij =

{
1/
√
vol(Aj), if vi ∈ Aj

0, otherwise (1)

where i = 1, . . . , n, j = 1, . . . , k. Let F ∈ Rn×k be
the indicator matrix that consists of the indicator vectors as
columns. It is not difficult to verify FTDF = I , f ′iLfi =
cut(Ai,Āi)

vol(Aj
(i = 1, . . . , k). So the minimization problem of

NCut can be rewritten as

min
A1,...,Ak

Tr(FTLF )

s.t. FTDF = I, F defined as Eq.(1).
(2)

Substituting H = D1/2F to Eq.(2), the relaxation of minimiz-
ing NCut can be obtained by allowing the entries of indicator
matrix to be arbitrary real values, i.e.,

min
H∈Rn×k

Tr
(
HT L̃H

)
s.t. HTH = I, (3)

Eq.(3) is exactly the objective of normalized spectral
clustering[Ng et al., 2002]. Similarly, to approximate Ra-
tioCut, the indicator vectors are defined the same as Eq.(1)
with |Aj | replacing vol(Aj). We have FTF = I , and the
relaxation of minimizing RatioCut can be reformulated as

min
F∈Rn×k

Tr(FTLF ) s.t. FTF = I. (4)

which is the objective of unnormalized spectral clustering.
Note that whenW is a doubly-stochastic matrix (a nonnegative
square matrix satisfies that row sum and column sum all equal
to 1), we have L̃ = I − W = L,H = F . Then Eq.(3)
becomes the same as Eq.(4), which means the equivalence
between RatioCut and Ncut under the condition.

Utilizing a doubly-stochastic similarity matrix is usually
good for clustering tasks [Zass and Shashua, 2006; Wang et al.,

F
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(b)

Figure 1: An illustration of the indicator matrix and the reconstructed
graph under orthogonal and nonnegative constraints in Eq.(6). For
simplicity, we take n = 9, k = 3. Black dots mean the non-zero
entries, and we have reorganized the rows of F to place data points
with the same cluster label continuously.

2010; 2016]. In the subsequent sections, W is by default to be
doubly-stochastic, and we try to reconstruct it by a structured
graph.

3 The Proposed Method
3.1 Formulation
In spectral clustering, the eigenvectors of Laplacian matrix
can be considered as the relaxed indicator vectors, but it lacks
interpretability and thus relies on the post-processing. To get
rid of the extra step, we add additional nonnegative constrain-
t to get discrete indicator vectors. The objective with two
constraints is as follows:

min
FTF=I,F≥0

Tr(FTLF ). (5)

The Ncut problem in Eq.(2) has discrete indicator vectors
whose entries are also nonnegative, while spectral clustering
relaxes the entries to be any real values. Intuitively, compared
to spectral clustering, the objective in Eq.(5) is much closer to
Ncut, thus our model tends to get better performance.

Due to the nonnegativity, the objective in Eq.(5) offers the
interpretability that entries in the indicator matrix directly
correspond to relationship between data points and clusters.
The constraints lead F to be a matrix that there is only one
non-zero entry in each row, and the `2-norm of each column
is 1. We conceptually illustrate the constraints in Figure 1(a).
The cluster labels can then be obtained by finding the column
index of the non-zero entry in each row of F . Eq.(5) is hard
to tackle. Considering the computational cost, we take a cir-
cuitous way by proposing an approximated model. We first
have the following proposition to transform Eq.(5).
Proposition 1. Solving Eq.(5) is equivalent to solve:

min
FTF=I,F≥0

‖W − FFT ‖2F . (6)

Proof. Note that W is symetric and doubly-stochastic.
Tr(WTW ) and Tr

(
FFTFFT

)
are two constant terms.

Eq.(5)⇔ max
FTF=I,F≥0

Tr(FTWF )

⇔ min
FTF=I,F≥0

−Tr(WTFFT + FFTW )

⇔ min
FTF=I,F≥0

Tr[WTW −WT (FFT )− (FFT )W

+ (FFT )(FFT )]⇔ Eq.(6)
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Eq.(6) is important for developing the new model. It can be
considered as a kind of graph reconstructoin with orthogonal
and nonnegative constraints. The original constructed graph
does not have clear structure since there usually exists noise
in the data, while the graph reconstruction is an optimization
process to learn a structured graph. We illustrate the recon-
struction proecss in Figure 1(b). As we can see, the objective
in Eq.(6) tries to reconstruct the similarity matrix by a block
diagonal matrix. Such a clear structure [Nie et al., 2014] con-
tains more accurate information about the clusters thus it is
good for clustering tasks. Our new model is formulated as
follows:

min
FTF=I,G≥0

‖W − FGT ‖2F + λ‖F −G‖2F . (7)

The first term is the reconstruction term and the second one is
the regularization term which forces F and G to be close to
each other. λ is the trade-off parameter that balances the two
terms, and G ∈ Rn×k can be called the label matrix that gives
the final cluster labels. It can be seen that Eq.(7) is equivalent
to Eq.(6) for a large enough value of λ.
F is relaxed to have continuous values, but it differs from

spectral clustering since F in our new model has the restriction
of being close to a nonnegative matrix G. Compared to Eq.(6),
Eq.(7) is easier to solve with less computational cost but still
provides interpretability. In a sense, the interpretability of F is
passed on to G. Entries in the label matrix G can be regarded
as a soft relationship between data points and clusters, and
cluster labels can be obtained by finding the column index of
the largest entry in each row of G.

3.2 Optimization
To solve the non-convex problem in Eq.(7), We divide it into
two subproblems that are optimized iteratively. The whole
procedure is summarized in Algorithm 1 which converges fast,
and in the experimental part we will see that the local optimal
solution is good enough due to the effective initializaiton.

Step 1: Update G with F fixed An usual way to solve
Eq.(7) with F fixed may use Lagrange multiplier method and
the KKT condition. Note that the fixed F still meets the
condition of FTF = I . Instead, we take a simpler way to
obtain the optimal solution. By adding or removing some
constant terms, we can rewrite the problem as follows:

min
G≥0
‖W − FGT ‖2F + λ‖F −G‖2F

⇔ min
G≥0

Tr(GTG− 2GTWF ) + λTr(GTG− 2GTF )

⇔ min
G≥0
‖G− WF + λF

1 + λ
‖2F . (8)

The optimal solution of the label matrix can then be written as

G =

(
WF + λF

1 + λ

)
+

, (9)

where (·)+ is to make each entry of the matrix its absolute
value.

Step 2: Update F with G fixed Suppose the SVD of
(WG + λG) is UΛV T , and Q = V TFTU ∈ Rk×n. Eq.(7)

Algorithm 1 ONGR Algorithm

Input: X = [x1, . . . , xn] ∈ Rd×n, cluster number k, an-
chor number m, nearest anchor number s and trade-off
parameter λ;

Output: Cluster labels Y .
1: Select m anchors using kmeans or random selection;
2: Construct a sparse regression matrix Z by Eq.(12);
3: Initialize F ∈ Rn×k by left singular vectors of Ẑ;
4: repeat
5: Update G by Eq.(9);
6: Update F by Eq.(11);
7: until converges.
8: Find the column index of the largest entry in each row of

the label matrix G.

with G fixed can be rewritten as:

min
FTF=I

‖W − FGT ‖2F + λ‖F −G‖2F

⇔ max
FTF=I

Tr
(
FT (WG+ λG)

)
.

⇔ max
FTF=I

Tr
(
FTUΛV T

)
.

⇔ max
FTF=I

Tr
(
ΛV TFTU

)
.

⇔ max
FTF=I

∑
i

ΛiiQii. (10)

Λii, Qii are the (i, i)-th entry of Λ and Q, respectively. Note
that Λii is singular value and QQT = Ik, thus we have Λii ≥
0 and Qii ≤ 1. Therefore,

∑
i ΛiiQii ≤

∑
i Λii and the

equality holds when {Qii = 1}ki=1, i.e., Q = [Ik, 0]. Recall
that Q = V TFTU , so the optimal solution to Eq.(10) is

F = U [Ik;0]V T . (11)

Graph Construction The traditional KNN-based way to
construct graph is time consuming. A normalized step is also
needed to insure Proposition 1. Here we adopt an efficient
way to compute a doubly-stochastic similarity matrix.

Given data matrix X = [x1, . . . , xn] ∈ Rd×n, and the
subset Xsub = [u1, . . . , um] ∈ Rd×m in which each point
plays a role as an anchor. According to [Liu et al., 2010], we
can design a sparse regression matrix Z ∈ Rn×m as follows:

Zij =
Kh(xi, uj)∑

j′∈〈i〉Kh(xi, uj′)
, (i = 1, . . . , n; j ∈ 〈i〉) (12)

where 〈i〉 is the set containing the indexes of s nearest an-
chors of xi. We choose Kh(·) as the common used Gaus-
sian kernel with self-tuning bandwidth h [Chen et al., 2011].
The doubly-stochastic similarity matrix is then computed by
W = ZΣ−1ZT , where Σ is a diagonal matrix with the entry
Σkk =

∑n
i=1 Zik.

Important tips: We do not need to calculate W explicitly
since it would be both time and memory consuming. We can u-
tilize the low-rank matrix multiplication to speed up. Concrete-
ly, we can compute (WF ) and (WG) by Z

(
Σ−1(ZTF )

)
and

Z
(
Σ−1(ZTG)

)
, respectively.
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Table 1: Summary of Time Complexity of Different Methods

Method Initialization Construction Solving & Labeling

Nyström O(1) O(mnd) O(m2n + mnk + nk2t0)
KNN-SC —- O(n2d) O(n2d + nk2t0)

LSC O(E) O(mnd) O(C + nk2t0)
SSSC O(E) O(A) O(m2d + mk2t0 + B)
ONGR O(E + C) O(mnd) O((mnk + m2k + D)t2)

t0: #iterations in kmeans, tH : #iterations in Homotopy optimizer
A = (m2d2 + m3d)tH , B = md2 + m2n, C = m2n + m3

D = nk2 + k3, E = mndt1

Initialization The indicator matrix F can be randomly ini-
tialized with orthogonal constraint. An alternative way is to
use the k eigenvectors corresponding to the k smallest eigen-
values of L̃, or the k eigenvectors corresponding to the k
largest eigenvalues of W .

Let Ẑ = ZΣ−1/2, we have W = ẐẐT . Supposing the
SVD of Ẑ is Ẑ = U1Λ1V

T
1 , it’s easy to find that the left

singular vectors of Ẑ are the eigenvectors of W . Therefore,
we can initialize F by taking the largest k singular vectors in
U1 as columns.

3.3 Computational Complexity
Suppose the number of anchor points is m. It takes O(mndt1)
to find the anchors and takes O(m2n + m3) to initialize F
by using left singular vectors of Ẑ, where t1 denotes the num-
ber of iterations in kmeans. The construction of Z needs
O(mnd) while the alternating and iterative procedure needs
O
(
(mnk +m2k + nk2 + k3)t2

)
. t2 denotes the number of

iterations, and O(nk2 + k3) is the cost of SVD of M . For
large scale problem, there usually exist m > k and n� k,m.
Thus the total complexity is aboutO(mndt1 +m2n+mnkt2)
that scales linearly with the data size n. See Table 1 for a brief
summary of time complexity of different methods (references
can be seen in the section of comparison algorithms).

Except for KNN-SC that costs too much on constructing the
similarity matrix, all other methods are linear time complexity
while they all depend on the post-processing step. SSSC
is more sensitive to the dimensionality d, which makes it
unsuitable to high dimensional data such as images. The total
complexities of Nyström and LSC areO(mnd+m2n+nk2t0),
O(mndt1 +m2n+ nk2t0), respectively.

3.4 Discussions
Our proposed model has similar formulation with non-negative
matrix factorization (NMF) [Lee and Seung, 2001; Li and
Ding, 2006; Ding et al., 2005]. In this subsection, we compare
ONGR with NMF methods and show the essential differences
between them.

Given a nonnegative matrix X ∈ Rd×n, and a reduced rank
k, the problem of NMF is formulated as follows:

min
F̃≥0,G̃≥0

‖X − F̃ G̃T ‖2F , (13)

where F̃ ∈ Rd×k, G̃ ∈ Rn×k. Due to its nonnegativity, NMF
provides interpretability that the cluster labels can be obtained
by finding the index of the largest entry in each row of G̃.

Compared to our models in Eq.(6) and Eq.(7) that are based
on graph reconstruction, NMF in Eq.(13) is based on data
reconstruction and requires the input data to be nonnegative.
In many cases, the data points lies on a nonlinear manifold. It
is more suitable to reconstruct the graph which describes the
relationship between data points, rather than reconstructing
the data matrix directly.

Recently, a nonnegative symmetric factorization (SymNMF)
[Kuang et al., 2012] of the similarity matrix is proposed as
follows:

min
H̃≥0
‖A− H̃H̃T ‖2F , (14)

where H̃ ∈ Rn×k, and A ∈ Rn×n can be any symmetric
matrix representing similarity values. Again, due to the non-
negativity, the column index of the largest entry in each row
of H̃ indicates the cluster label.

Comparing our model in Eq.(6), the normalized spectral
clustering in Eq.(3) and SymNMF in Eq.(14), it is easy to find
they share the common objective, while the constraints are
totally different. Specifically, our model in Eq.(6) is a com-
bination of the other two by introducing the orthogonal and
nonnegative constraints simultaneously, thus the reconstruct-
ed graph has more clear structure. Our new model in Eq.(7)
naturally inherits the good property for clustering, while it has
low complexity and can be applied to large scale clustering.

There are many other NMF methods, such as Semi-NMF,
Convex-NMF and Tri-factorization. They have different con-
straints or assumptions. These NMF methods are based on
matrix multiplication updating rules and they often take a long
time to converge. To seek a trade-off between convergence
rate and computational cost, SymNMF developes a Newton-
like algorithm that still has complexity of O(n3k) in each
iteration.

4 Experiments
4.1 Datasets and Evaluation Metrics
Datasets A variety of datasets are adopted to evaluate the
proposed method. They can be downloaded from the UCI
Machine Learning Repository 1, the LibSVM Data page 2, and
three webpages 3 4 5. Most of these datasets have more than
10,000 samples.

We obtained the MINIST-extend dataset by translating the
original images in MINIST by one pixel in each direction like
[Liu et al., 2010]. We scaled CoverType to [0, 1] by feature.
The letter symbols in Connect-4 were replaced by digits. For
USPS, COIL-20, COIL-100, MINIST and its extended version,
we firstly scaled them to [0, 1], then we conducted dimension-
ality reduction by PCA with 95% information reserved, except
for MINIST-extend which reserves 90% information. Details
can be seen in Table 2.

1https://archive.ics.uci.edu/ml/datasets.html
2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
3http://alumni.cs.ucsb.edu/ wychen/sc.html
4http://yann.lecun.com/exdb/mnist/index.html
5http://www.cs.columbia.edu/CAVE/software/
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Table 2: Description of Datasets

dataset #samples #Dim. #Classes

USPS 9, 298 35 10
PenDigits 10, 992 16 10
MINIST 70, 000 154 10
COIL-20 1, 440 84 20

COIL-100 7, 200 211 100
Connect-4 67, 557 42 3
Seismic 98, 528 50 3
RCV1 193, 844 47, 236 103

CoverType 581, 012 54 7
MINIST-extend 630, 000 93 10

Evaluation Metrics The clustering quality is measured by
Normalized Mutual Information (NMI) and Accuracy (Acc)
[Cai et al., 2005]. The values of NMI and Acc range from 0 to
1 with higher score corresponding to better performance. Note
that the clustering accuracy is the average performance of label
matching results between ground truth labels and predicted
labels, which is different from the classification accuracy.

4.2 Comparison Algorithms
We provide two versions of ONGR in which ONGR-K uses
kmeans to find anchors and ONGR-R adopts random selection.
The comparison algorithms are (1) Nyström [Fowlkes et al.,
2004]: Spectral clustering that uses Nyström method with
orthogonalization. (2) KNN-SC [Chen et al., 2011]: Spectral
clustering that uses KNN to construct similarity matrix. (3)
LSC [Cai and Chen, 2014]: LSC-K uses kmeans for landmark
selection, and LSC-R randomly selects landmarks. (4) SSSC
[Peng et al., 2013]: Scalable sparse subspace clustering. Due
to the requirement for nonnegativity of data matrix or high
computational cost, NMF methods are not considered as the
comparison methods.

4.3 Experimental Setting
There are three parameters in ONGR, namelym, s and λ. LSC
needs to tune parameters p, r. Nyström has parameter n1, and
KNN-SC has parameter k. The three parameters n2, λ1 and δ
are from SSSC.

For fair comparison, we took the same kmeans centroids
as anchors or landmarks in ONGR-K and LSC-K, and also
took the same random selection points in ONGR-R, LSC-
R, Nyström and SSSC. For m, p, n1, n2, we searched their
value in the range of [100,1200] with step size 100, while
searching s and r in the range of [2,8] with step size 1. For
KNN-SC, we chose k in the range of [5,20] with step size
5. As suggested by the authors of SSSC, we searched λ1

and δ among {10−7, 10−6, 10−5} and {10−3, 10−2, 10−1},
respectively. For our trade-off parameter λ, we searched log λ
in the range of [-6,3] with step size 1.

We ran each algorithm except for ONGR for 20 times under
each parameter setting. Note that given the pre-selected points,
ONGR is the only method that has stable performance. For
the last three datasets in Table 2, we did not test ONGR-K and
LSC-K since kmeans becomes costly for finding anchors or
landmarks. We also did not test KNN-SC due to the unbearable
running time.

Table 3: Running time (s)

Dataset KNN-SC Nyström SSSC LSC-R ONGR-R

USPS 9.65 5.84 89.76 2.19 1.40
PenDigits 28.04 33.03 110.98 21.67 19.29
MINIST 1401.41 40.88 217.68 31.95 39.40

CoverType – 168.55 463.22 235.61 202.46
MINIST-extend – 178.24 1095.78 166.55 147.41
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Figure 2: (a) curves of the objective value of Eq.(7) and the squared
Frobenius norm of (F − G) (b) curves of clustering performance
(c) effect of parameter λ

Convergence judgement: With data growing in scale, it is
a heavy burden for us to compute the objective value of Eq.(7).
Recall that we do not calculate W explicitly. We adopted
another criterion, in which the (i+1)-th iteration is terminated
when just a very small percentage of data points change their
predicted labels comparing to the i-th iteration. Empirically,
we set the threshold to be 0.001.

4.4 Experimental Results
Table 3 records the running time corresponding to the best
performance on five datasets. The results are consistent with
the complexity analysis. Table 4 reports the clustering perfor-
mance along with the standard deviation (std), and we can see
that ONGR achieves the best or second best results no matter
what the metric is. The average results of each algorithm on
all datasets is also reported, showing the superiority of ONGR
more clearly.

From Table 3 and Table 4, it can be concluded that ONGR
achieves stable and much better performance in the shortest
or relatively less time. Specifically, within about 20 and 200
seconds, ONGR-R gains 8.14% and 9.24% increment of accu-
racy over the second best results on PenDigits and CoverType,
respectively. Comparing LSC and ONGR, the two methods
with the common graph construction, we see that ONGR-R
exceeds 5.98% than LSC-R and ONGR-K exceeds 7.41% than
LSC-K with respect to accuracy, which shows the advantage
of removing post-processing.

To verify the convergence of the proposed method, in the
upper part of Figure 2(a), we plotted the objective value of
Eq.(7) on the relatively small dataset COIL-20. The curve of
the squared Frobenius norm of (F −G) demonstrates that F
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Table 4: Clustering Performance (% ±std)

Metric Dataset KNN-SC Nyström SSSC LSC-R LSC-K ONGR-R ONGR-K

Acc

USPS 66.84± 3.05 69.52± 2.13 53.85± 0.69 75.67± 5.05 77.00± 7.20 78.82 80.59
PenDigits 64.15± 0.15 72.33± 2.49 74.92± 0.00 79.16± 3.21 79.97± 6.11 87.30 88.02
MINIST 68.72± 0.03 55.38± 3.13 53.01± 0.35 69.82± 5.23 76.21± 6.20 70.75 78.59
COIL-20 82.22± 0.00 63.50± 3.00 61.38± 1.74 71.19± 4.79 72.89± 6.66 87.08 87.92
COIL-100 59.81± 0.49 46.66± 1.54 43.94± 1.29 51.60± 1.59 57.45± 2.59 54.60 67.13
Connect-4 42.68± 0.15 36.43± 0.05 65.82± 0.00 40.79± 2.80 40.03± 2.82 55.57 52.61
Seismic 67.69± 0.01 67.21± 0.00 66.52± 0.00 67.58± 0.44 67.81± 0.12 68.54 68.42
RCV1 – 16.94± 0.72 14.22± 0.00 16.47± 0.38 – 17.49 –

CoverType – 27.00± 1.06 44.06± 0.00 41.87± 2.01 – 53.30 –
MINIST-extend – 47.25± 2.47 55.74± 0.00 58.72± 5.09 – 59.26 –

mean (64.59± 0.55) 50.22± 1.66 53.35± 0.41 57.29± 3.06 (67.34± 4.53) 63.27 (74.75)

NMI

USPS 80.45± 1.31 65.19± 0.93 55.93± 0.56 77.48± 2.86 80.64± 2.34 78.48 82.76
PenDigits 78.93± 1.27 66.65± 1.09 73.51± 0.00 79.84± 2.26 81.85± 2.74 83.50 84.42
MINIST 76.60± 0.07 48.04± 1.27 53.55± 0.11 66.73± 2.29 77.33± 2.36 69.05 79.50
COIL-20 91.15± 0.00 76.50± 1.39 78.09± 1.15 90.31± 2.89 90.90± 2.37 95.18 96.35
COIL-100 83.80± 0.17 76.15± 0.58 69.11± 0.48 77.29± 0.53 82.96± 0.67 79.27 88.16
Connect-4 0.18± 0.00 0.24± 0.01 0.24± 0.00 0.25± 0.09 0.22± 0.10 0.58 0.32
Seismic 27.60± 0.02 27.52± 0.01 25.12± 0.00 29.85± 0.45 29.93± 0.83 31.90 32.20
RCV1 – 25.81± 0.27 17.85± 0.00 23.65± 0.21 – 24.19 –

CoverType – 13.94± 0.00 20.58± 0.00 19.56± 0.84 – 21.05 –
MINIST-extend – 36.22± 0.88 54.75± 0.00 55.51± 1.61 – 56.39 –

mean (62.67± 0.41) 43.63± 0.64 44.87± 0.23 52.05± 1.40 (63.40± 1.63) 53.96 (66.24)
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Figure 3: A practical illustration of F , G, FGT , and W in Eq.(7). We have reorganized the rows of F and G (rows and columns of W ) to
place samples with the same predicted (ture) cluster label continuously.

and G do get close to each other in each iteration. Thus the
model in Eq.(7) gets closer and closer to the one in Eq.(6),
and the inheritance of good clustering quality from Eq.(6) to
Eq.(7) is guaranteed. As can be seen, ONGR does converge
fast within about 30 iterations.

In Figure 2(b), we plotted the curves of clustering perfor-
mance on MINIST-extend. It can be seen that the performance
is getting better as the iteration number increases, showing the
effectiveness of the optimization process. Note that in order to
completely present the curves, we set the maximum iteration
number to be 80 and did not terminate the iteration.

As λ is the only parameter introduced by the model in
Eq.(7), in Figure 2(c), we examined the effect of λ to clustering
performance on USPS. Parameters m and s were set to be 800
and 4, respectively. Under the condition, we see that ONGR is
pretty robust to λ.

Moreover, in Figure 3, we tested ONGR-R on COIL-20 to
give a practical illustration of graph reconstruction. As we
can see, compared to the constructed graph, the reconstructed
graph has clear structure which contains more accurate infor-
mation about the clusters. However, the zero rows in the label
matrix lead to the missing block in the reconstructed graph,

i.e., zeros rows will destroy the structure. This is a topic that
we will explore to further improve the clustering performance.

5 Conclusion
In this paper, we have proposed a novel approach called ON-
GR for large scale clustering, which is based on the viewpoint
of graph reconstruction. With orthogonal and nonnegative con-
straints, the reconstructed graph naturally has clear structure
about the clusters. Due to the nonnegativity, the interpretabil-
ity is provided and the post-processing is no longer needed.
Given the anchors, ONGR has stable and much better perfor-
mance than other state-of-the-art methods, demonstrated by
extensive experiments.

In the future, we plan to study the sparsity of label matrix to
avoid zero rows. We are also going to propose a robust version
to better deal with outliers. The `1-norm and `2,1-norm may
be considered to achieve robustness and sparsity.
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