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Abstract

Existing multi-view learning methods based on k-
ernel function either require the user to select and
tune a single predefined kernel or have to compute
and store many Gram matrices to perform multiple
kernel learning. Apart from the huge consumption
of manpower, computation and memory resources,
most of these models seek point estimation of their
parameters, and are prone to overfitting to smal-
I training data. This paper presents an adaptive
kernel nonlinear max-margin multi-view learning
model under the Bayesian framework. Specifical-
ly, we regularize the posterior of an efficient multi-
view latent variable model by explicitly mapping
the latent representations extracted from multiple
data views to a random Fourier feature space where
max-margin classification constraints are imposed.
Assuming these random features are drawn from
Dirichlet process Gaussian mixtures, we can adap-
tively learn shift-invariant kernels from data ac-
cording to Bochners theorem. For inference, we
employ the data augmentation idea for hinge loss,
and design an efficient gradient-based MCMC sam-
pler in the augmented space. Having no need to
compute the Gram matrix, our algorithm scales lin-
early with the size of training set. Extensive exper-
iments on real-world datasets demonstrate that our
method has superior performance.

1 Introduction

Nowadays data typically can be collected from various in-
formation channels, e.g., a piece of news is consisted of
text, audio, video clip and hyperlink. How to effectively
and efficiently fuse the information from different channel-
s for specific learning tasks is a problem (known as multi-
view learning) attracting more and more attention. For su-
pervised learning, e.g., news classification, we have not only
these multi-channel features but also the corresponding cat-
egory labels. Making full use of the label information usu-
ally is critical for the construction of predictive multi-view
models since it can help to learn more discriminative fea-
tures for classification. A popular choice is to exploit the
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maximum margin principle to guarantee the learned mod-
el to have a good generalization ability [Xu er al., 2014;
He ef al., 2016]. Though improved performance is report-
ed on many problems, these methods have made linearity as-
sumption on the data, which may be inappropriate for multi-
view data revealing nonlinearities.

Kernel method [Hofmann et al., 2007] is a principled way
for introducing nonlinearity into linear models, and a kernel
machine can approximate any function or decision boundary
arbitrarily well by tuning its kernel parameter. Along this
line, many single kernel multi-view learning methods have
been proposed [Farquhar et al., 2005; Szedmak and Shawe-
Taylor, 2007; Fang and Zhang, 2012; Sun and Chao, 2013;
Quang et al., 2013; Xu et al., 2014], which typically require
the user to select and tune a predefined kernel for every view.
Choosing an appropriate kernel for real-world situations is
usually not easy for users without enough domain knowledge.
The performance of these models may be greatly affected
by the choice of kernel. An alternative solution to resolve
this problem is provided by multiple kernel learning (MKL),
which can predefine different kernels for each data view and
then integrate the kernels by algorithms such as semi-definite
programming (SDP) [Lanckriet er al., 2004], semi-infinite
linear programming (SILP) [Sonnenburg et al., 2006], and
simple MKL [Rakotomamonjy e al., 2008]. However, MK-
L models inherently have to compute and store many Gram
matrices to get good performance while computing a Gram
matrix for a data set with NV instances and D features need-
s O(N2D) operations and storing too many Gram matrices
often leads to out of memory on commonly used computer-
s. Besides, all the aforementioned kernelized models seek
single point estimation of their parameters, thus are prone to
overfitting to small training data. Under the Bayesian frame-
work, BEMKL [Gonen, 2012] is a state-of-the-art variation-
al method that estimates the entire posterior distribution of
model weights. Unfortunately, BEMKL has to perform time-
consuming matrix inversions to compute the posterior covari-
ances of sample and kernel weights. Moreover, BEMKL’s
performance may be limited by its mean-field assumption
on the approximate posterior and the absence of max-margin
principle.

To address the aforementioned problems, we propose an
adaptive kernel maximum margin multi-view learning (M3L)
model with low computational complexity. Specifically, we
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firstly propose an efficient multi-view latent variable mod-
el (LVM) based on the traditional Bayesian Canonical Cor-
relation Analysis (BCCA) [Wang, 2007], which learns the
shared latent representations for all views. To adaptively
learn the kernel, we introduce the random Fourier features
which constructs an approximate primal space to estimate k-
ernel evaluations K (z, z’) as the dot product of finite vectors
o(z)T¢(z") [Rahimi and Recht, 2007]. Assuming these ran-
dom features are drawn from Dirichlet process (DP) Gaus-
sian mixtures, we can adaptively learn shift-invariant kernel-
s from data according to Bochners theorem. With such a
stochastic random frequency distribution, it is more gener-
al than the traditional kernel method approach with a fixed
kernel. Secondly, to make full use of the label informa-
tion, we impose max-margin classification constraints on the
explicit expressions o(z) in random Fourier feature space.
Next, we regularize the posterior of the efficient multi-view
LVM by explicitly mapping the latent representations to a
random Fourier feature space where max-margin classifica-
tion constraints are imposed. Our model is based on the data
augmentation idea for max-margin learning in the Bayesian
framework, which allows us automatically infer parameters
of adaptive kernel and the penalty parameter of max-margin
learning model. For inference, we devise a hybrid Markov
chain Monte Carlo (MCMC) sampler. To infer random fre-
quencies, we use an effective distributed DP mixture models
(DPMM) [Ge et al., 2015]. Moreover, some key parameter-
s don’t have corresponding conjugate priors. So we adopt
the gradient-based MCMC sampler Hamiltonian Monte Car-
lo (HMC) [Neal, 2011] for faster convergence. The computa-
tional complexity of our algorithm is linear w.r.t. the number
of instances V. Extensive experiments on real-world datasets
demonstrate our method has a superior performance, com-
pared with a number of competitors.

2 Model

BCCA [Wang, 2007] assumes the following generative pro-
cess to learn the shared latent representations from multiple
views {x,;}zN:’UI, where NN, is the number of views:

h ~ N(0,1)
X; ~ N(Wlh, ‘I’J,

where N(-) denotes the normal distribution, h € R™ is the
shared latent variable, W,; € RP*™ is the linear transforma-
tion and ¥; € RP:*Di denotes covariance matrix. A com-
monly used prior is the Wishart distribution for ¥ 1

2.1 An Efficient Multi-view LVM

However, BCCA has to perform time-consuming inversion-
s of the high-dimension covariance matrix ¥; which could
result in a severe computational problem. To solve the prob-
lem, we propose an efficient model by introducing additional
latent variables. We assume the following generative process:

h, u; N(O, I)
X; o~ N(Wih—FV,’ui,Ti—lI),
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where u; € R¥: is the additional latent variable. Gamma pri-
or can be used for 7; and popular automatic relevance deter-
mination (ARD) prior can be imposed on projection matrices
W,;, V; € RPxEKi e,

r, ~ H;nzl L(rijlar, by)
Wi~ [[ N(wi[0,75'T)
Vi ~ T2 N(vi 0, n7'T)
7~ T(rlar,br),
where ¢ = 1,---,N,, I'(-) denotes Gamma distribution,

w;..; represents the j-th column of the transformation ma-
trix W; and v; .; represents the j-th column of V;. This
model can be shown to be equivalent to imposing a low-rank
assumption ¥; = VZ-V;r + 7';11 for the covariances, which
allows decreasing the computational complexity.

We define that the data matrix of the i-th view is 2(1 S
RPN consisting of N observations {x?})_,, X =
(X3, H = {h"}Y_, and U; = {u?})_,. For sim-
plicity, let Q = (r;, V;, W;,n,7;, H U;) be the parameters
of the multi-view LVM and po(2) be the prior of 2. We
can verify that the Bayesian posterior distribution p(2|X) =

po(Q)p(X|2)/p(X) can be equivalently obtained by solving
the following optimization problem:

Jmin, KL(g(2)[po(2)) — Eg(oylogp(X )],

where KL(g||p) is the Kullback-Leibler divergence, and P is
the space of probability distributions. When the observations

are given, p(X) is a constant.

2.2 Adaptive Kernel ML

From the description above, we can see that the multi-view
LVM is an unsupervised model which learns the shared la-
tent variables from the observations without using any label
information. In general, we prefer that the shared latent repre-
sentation can not only explain the observed data well but also
help to learn a predictive model, which predicts the responses
of new observations as accurate as possible.

Moreover, this multi-view LVM is a linear multi-view rep-
resentation learning algorithm, but multi-view data usually
reveal nonlinearities in many scenarios of real-world. As
is well known, kernel methods are attractive because they
can approximate any function or decision boundary arbitrar-
ily well. So in this section we propose an adaptive ker-
nel max-margin multi-view learning (M3L) model. With the
method named random features for the approximation of k-
ernels [Rahimi and Recht, 2007], we can get explicit expres-
sion of the latent variable h in random feature space. Then
we can classify these explicit expression linearly by intro-
ducing the max-margin principle which has good generaliza-
tion performance. To incorporate the nonlinear max-margin
method to the unsupervised multi-view LVM, we adop-
t the posterior regularization strategy [Jaakkola et al., 1999;
Zhu et al., 2012]. Suppose we have a 1 x N label vector
y with its element y* € {+1,—1}, n = 1,--- | N. Then
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we define the following pseudo-likelihood function of latent
representation h” for the n-th observation {x?}\", :

{(y"|p(h"), B) = exp{~2C - max(0,1 — y"BT4(h"))},

Qp(hn) = [Cos(wlThn)v e 7cos(w$1h”),

1
vM
Sin(w;rhn% e 7Sin(w}‘/1hn)]Ta

where C is the regularization parameter, ¢ (h™) is the explicit
expression of the latent variable h™ in random Fourier feature
space and 3(h") = (¢(h™)",1)T. w; € R™ denotes random
frequency vector and 3T 3(h") is a discrimination function
parameterized by 3 € R2M+1,

Bochners theorem states that a continuous shift-invariant
kernel K(h,h) = k(h — h) is a positive definite function
if and only if k(¢) is the Fourier transform of a non-negative
measure p(w) [Rudin, 2011]. Further, we note that if £(0) =
1, p(w) will be a normalized density. So we can get

k(h—h) = / p(w) exp(iw™ (h — B))dw
= Ey~plexp(iw™h) exp(iwh)*]
| M
~ Z exp(iijh) exp(iw;rﬁ)*.
j=1

If the kernel k is real-valued, we can discard the imaginary
part:

k(h —h) ~ ¢(h)"o(h)

p(h) = jM

[cos(wlTh), . ,cos(w%lh),

sin(wh),---,sin(wyi/h))T.

A robust and flexible choice of p(w) is a Gaussian mixture
model. Mixture models based on DPs treat the number of rep-
resented mixture components as a latent variable, and infer it
automatically from observed data. DP Gaussian mixture pri-
or is widely used for density estimation [Oliva er al., 2016].
Assuming these random features are drawn from DP Gaus-
sian mixtures, we can adaptively learn shift-invariant kernels
from data according to Bochners theorem. We impose DP
Gaussian mixture prior for the variables w;,j = 1,--- , M.
Suppose the DP has base distribution G and concentration
parameter o, then we have

k-1
Ck ~ Go, Vi ~ Beta(l,a), wi =1y H(l — ;)
i=1

w] ~ N(Czj )7

where k = 1,--- ,00 and {;; = (px, i) contains the mean
and covariance parameters of the k-th Gaussian component.
Popular choice would be Normal-Inverse-Wishart prior G
for the mixture components:

z; ~ Cat(w),

_ 1
S~ W W0, 1), pk ~ N (o, ;Zk)’
0
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where W™1(-) denotes Inverse-Wishart distribution. Next,
we impose prior on 3 as the following form

p(Blv) ~ N(BIO, v Tanr41),

where a,, and b, are hyper-parameters and v plays a similar
role as the penalty parameter in SVM.

For SlmpllClty, let © = (/8’ U, Vi, Wk, <k?7 Ziy Wiy Kk, Ek)
be the variables of the nonlinear max-margin prediction mod-
el. Now, we can formulate our final modal as

in  KL(q(Q Q — B, [logp(X|0
aoun (9(22,0)[[po(2, ©)) — Ey(q)[logp(X|$2)]

- Eq(ﬂ,@) [lOg(g(y‘H, 9)]7
where po(2, ©) is the prior, po(2,0) = po(Q)pe(©) and
po(O) is the prior of ©. By solving the optimization above,
we get the desired post-data posterior distribution [Ghosh and
Ramamoorthi, 2003]
Po(2, ©)p(X[Q)¢(y|H, ©)

0,0) = -
«.9) =X.y)

b

where Z(X, y) is the normalization constant.

3 Post-Data Posterior Sampling with HMC

As we can see, the post-data posterior above is intractable
to compute. Firstly, the pseudo-likelihood function £(-) in-
volves a max operater which mixes the posterior inference
difficult and inefficient. We introduce the data augmentation
idea [Polson and Scott, 2011] to solve this problem. Second-
ly, the form of @(h™) mixes local conjugacy. So we adopt
the gradient-based MCMC sampler for faster convergence.
Thirdly, we introduce the ditributed DPMM to improve the
efficiency. In the following, we devise a hybrid MCMC sam-
pling algorithm that generates a sample from the post-data
posterior distribution of each variable in turn, conditional on
the current values of the other variables. It can be shown that
the sequence of samples constitutes a Markov chain and the
stationary distribution of that Markov chain is just the joint
posterior.

3.1 Updating variables 3, \", w; and h"

In this part, we develop a MCMC sampler for 3, A", w; and
h" by introducing augmented variables.

Data augmentation

The pseudo-likelihood function £(-) involves a max operater
which mixes the posterior inference difficult and inefficient.
So we re-express the pseudo-likelihood function into the in-
tegration of a function with augmented variable based on the

data augmentation idea:
A" +C(1—y"BTg(h™)))? }
2)7

00 oy =
om0 ot s

Then we can get the non-normalized joint distribution of y
and A conditional on H and ©:

N “1nn I
Uy, AH,0)=]] P {7 A *?/(2%5/ BT}

n=1

d\"™.
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Sampling 3 :
The conditional distribution of 3 is

N
Blv) [T e 1em™), 8)
WIBIP S A+ AP
2 -2 2\n

¢(Blv,H,w,y,A) ~p

x exp(—

);

n=1

where A = C(1 — y"B3T@(h")). This conditional dis-
tribution is a Gaussian distribution with covariance ¥g =

{vIapr41 + Zﬁle w}_l and mean pug =
N " 2 mn,x n

3g Zn:l(C)\)\jC )y @(h ))

Sampling \" :

The conditional distribution over the augmented variable \"
is a generalized inverse Gaussian distribution:

g(\"|h", w,y", ,3)

ocexp(——{k"-l—c[l— y"BTe(h™)]}?)

~ gzg(A"\§, 1,C%[1 —y"BTe(h™)]?).

Sampling w;, h":
Unfortunately, we find the conditional distribution over w;

N
g(w;[H, X, B,y) ~ plwjlp.,. B2) [] € |3(0™), ),
n=1

where $(h") = (p(h")",1)T = {[cos(w[h"), -,
cos(wyrh™), sin(wi h™), -+ sin(wy h™)], 1} s too com-
plex and the prior is non- con]ugated So it is hard to get
the analytical form of the above distribution. To generate a
sample from ¢(w;|H, X, B,y) with its non-normalized den-
sity, we appeal to the HMC method [Neal, 2011]. Sampling
from a distribution with HMC requires translating the densi-
ty function for this distribution to a potential energy function
and introducing 'momentum’ variables to go with the original
variables of interest (’position’ variables). We need to consti-
tute a Markov chain. Each iteration has two steps. In the first
step, we sample the momentum which needs the gradient of
the potential energy function. In the second step, we do a
Metropolis update with a proposal found by using Hamiltoni-
an dynamics.

Similar to w;, we also find the conditional posterior distri-
bution over h"”

Ny

p(h™]0,1) Hp

(" |30, B),

doesn’t have the analytical form. So we can sample h™ with
the HMC sampler.

3.2 Updating the variables in distributed DPMM

Unlike a Gibbs sampler using the marginal representation
of the DP mixtures, slice sampling methods [Walker, 2007,

Q(hn|wa)‘7ﬁ7}’a |Wi7hn’u?77-i)
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Kalli ef al., 2011; Ge et al., 2015] employ the random mea-
sure G directly. It consists of the imputation of G and sub-
sequent Gibbs sampling of the component assignments from
their posteriors. To be able to represent the infinite number
of components in Gy, we have to introduce some auxiliary
(slice) variables t;, j = 1,---, M. Through introducing an
auxiliary variable ¢;, the joint density of w; and the latent
variable ¢; becomes

= @ Unif(t;]0, @ )p(w;Ck)

k=1

o0
= Z]l(fj < @p)p(w;[Cr),
k=1
where 1(-) is the indicator function. We can easily verify that
when ¢; is integrated over, the joint density is equivalent to

p(wj, tjlw, )

p(w;|wo, ¢). Thus the interesting fact is that given the latent

variable ¢, the number of mixtures needed to be represented
is finite.

Through introducing the slice variable, the conditional pos-
terior distribution of w; becomes independent so it is pos-
sible to derive a parallel sampler for the DP mixture model
under the Map-Reduce framework. Our parallel sampler in
distributed DPMM is similar as that in [Ge et al., 2015], thus
is omitted here.

3.3 Updating the other variables

In this part, the other variables all have the conjugate prior.
So we get the analytic conditional posterior distributions of
them.

Sampling u? :
The conditional posterior of u} is
q(u?‘Tiv hna X?) Wl) ~ p(u?|0a I)p(X;L|WZ7 hnv U?, Vi7 Ti)

1
oc exp{— ([af||* — 7l ]! — Wih" — Viu'[[%)},
a Gaussian distribution with covariance u» = (I +
TiViTVi)il and mean Hur = 2“7 [VZT(X:l — thn)Tl]

Sampling W,, V, :
The conditional posterior distribution of W is proportional
to the prior times the likelihood:

q(wi,j|ri g, 7, H, Uy, X4, Vi)

~ p(wi 4]0, 7 T)p(X: Wy, H, Uy, Vi, 73)

1 N
o eXP{_g(Tz‘jHWi,-j\P + ) mlxp
n=1
,m. This is a Gaussian distribution with
covariance Xy, ; = (i +7|[h;.|[*) "' T and mean gy, , =

N m
Zwi,»j{ Z [X? - Zw’bkhkn
n=1 K
Similar to W, conditional posterior of V; is a Gaussian
distribution with covariance X,, , = (7 + Ti||ui,~j||2)_1

N
S AL b

- W;h" — V;u?|*)},

where j = 1, -

- Viui,jn]'rihjn}-

m
— > VikUikn —
k#j

and mean py,

Vit jn]Tihjn }.
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Sampling r;, 7 :
For each r;;,j = 1,--- ,m, its conditional distribution is

q(riz) ~ p(rijlar, by)p(wi )0, 7' T)
D.
=145 ~ 1
oy eXP{—T“ij(br+Z§|\Wi,-g‘\l2)}7
d=1
a Gamma distribution with the shape and rate parameter
D;
Qr;; = Qr + %, brij =b, + Z %||W%]||2
d=1

Similar to sampling r;, the ‘conditional distribution of TS
is a Gamma distribution with the shape and rate parameter

N
Gr, = ar + NDia bT{, =b; + Z HX? - W;h" — Vlu?‘|2
n=1

2 2

Computational Complexity

In our post-data posterior sampling, the dominant compu-
tation is spent on sampling latent shared variables H. In
each round of parameter sampling, our algorithm consumes

Ny
O(NL " D;,(m + K;)) operations where L is the number

=1
of steps for the leapfrog method in HMC. So the computa-
tional complexity of our algorithm M3LAK is linear w.r.t. the
number of instances V.

4 Experiments

In this section, we evaluate our proposed model (M?LAK) on
various classification tasks.

4.1 Data Description

The Flickr dataset contains 3,411 images of 13 animals [Chen
et al., 2012]. For each image, two types of features are ex-
tracted, including 634-dim real-valued features and 500-dim
bag of word SIFT features. Trecvid contains 1,078 manually
labeled video shots that belongs to five categories [Chen et
al., 2012]. And each shot is represented by a 1,894-dim bina-
ry vector of text features and a 165-dim vector of HSV color
histogram. The web-page data set has two views, including
the content features of the web pages and the link features ex-
ploited from the link structures. This data set consists of web
pages from computer science department in three universities,
i.e., Cornell, Washington, Wisconsin.

We transform these multi-class data sets into binary ones
by following the way in [Zhuang et al., 2012]. For exam-
ple, the web-page classification with five categories (‘course’,
‘faculty’, ‘student’, ‘project’, ‘staff’), we select category ‘s-
tudent’ as a group and the other four categories as another
group, since the number of examples in category ‘student’ is
similar with the one belonging to the other four categories.
The other data sets are similarly constructed. The details of
these data sets are shown in Table 1.

4.2 Baselines
We compare our model with five competitors:

e BM2SMVL [He et al., 2016]: a linear Bayesian max-
margin subspace multi-view learning method.
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Table 1: Detail description of datasets.

Datasets Trecvid Flickr Cornell Washington Wisconsin

Size 1078 3411 195 217 262
D, 1894 634 1703 1703 1703
D, 165 500 195 217 262

e MVMED [Sun and Chao, 2013]: a multi-view maxi-
mum entropy discrimination model.

e VMRML [Quang et al., 2013]: a vector-valued manifold
regularization multi-view learning method.

e MMH [Chen et al., 2012]: a predictive latent subspace
Markov network multi-view learning model.

e BEMKL [Gonen, 2012]: a state-of-the-art Bayesian
multiple kernel learning method which we use for multi-
view learning. For each view, we construct Gaussian k-
ernels with 21 different widths {2719, 279 .. 210} on

all features using its public implementation .

4.3 Experimental Setting

In M3LAK, we perform 5-fold cross-validation on training
set to decide the regularization parameter C' from the integer
set {5,6,7,8,9} for each data set. The rest parameters are
fixed as follows for all data sets, i.e., m =20, M = 100, n =
le+3,a =1, a, = le-1,a, = v =1le-2,b, = b, = le-5. For
fair comparison, the subspace dimension m in BM2SMVL
and MMH is also fixed to 20 for all data sets. For BM2SMVL,
the regularization parameter ‘C” is chosen from the integer
set {1, 2, 3} by 5-fold cross-validation on training set accord-
ing to its original paper. For MVMED, we choose ‘c’ from
2[=5:5] for each data set as suggested in its original paper. For
VMRML, the parameters are set as the default values in its
paper. For RBF kernel’s parameter of MVMED and VMRM-
L, we carefully tune them on each data set separately. For
MMH, we tune its parameters as suggested in its original pa-
pers. On each data set, we conduct 10-fold cross validation
for all the algorithms, where nine folds of the data are used
for training while the rest for testing. The averaged accuracies
over these 10 runs are reported in Table 2.

4.4 Experimental Results
We have the following insightful observations:

- M3LAK consistently outperforms BM2SMVL. The rea-
son may be that BM2SMVL is a linear multi-view
method with limited modeling capabilities.

- On most data sets, MSLAK performs better than MMH.
This may be because that unlike MMH which are under
the maximum entropy discrimination framework, and
can not infer the penalty parameter of max-margin mod-
els in a Bayesian style, our method is based on the data
augmentation idea for max-margin learning, which al-
lows us to automatically infer the weight parameters and
the penalty parameter.

- M3LAK has better performance than the single kernel
multi-view learning methods VMRML and MVMED on

'http://users.ics.aalto.fi/gonen/bemkl/
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Table 2: Comparison of test accuracies (mean =+ std) on all datasets. Bold face indicates highest accuracy.

Trecvid-a Trecvid-b Flickr-a Flickr-b Cornell Washington ~ Wisconsin

MMH 939 +£.066 .944 +.034 820+ .085 .823 £.055 .862£.063 .909 £+ .042 .906 + .043
MVMED 913 £.030 .920 £.068 .854 +.088 .858 +.065 .861 £.080 .852+.077 .872 4+ .047
VMRML 921 +£.028 .932 £.063 .800 £.068 .834 +.044 .882+.069 .874+£ .069 .883 £ .073
BM2SMVL 901 £.019 .9124.059 .827 +.070 .856+.048 .8824.072 .896 +.055 .921 +.072
BEMKL  .944 £+ .033 .9324+.060 .857 +.087 .871+£.046 .861 £.060 .874 +.052 .902 4+ .072
M3LAK  .954 +.033 .940 +.054 .8554+.056 .8714.034 .903 +.065 .913 +.058 .936 + .050

all data sets. The reason may be that M3LAK infers
a posterior under the Bayesian framework instead of a
point estimate as in VMRML. With Baysian model av-
eraging over the posterior, we can make more robust pre-
dictions than VMRML. And MVMED is also under the
maximum entropy discrimination framework, and can
not infer the penalty parameter of max-margin models
in a Bayesian style.

- M3LAK performs better than BEMKL on most data set-
s. BEMKL’s performance may be limited by its mean-
field assumption on the approximate posterior and the
absence of max-margin principle while M3LAK intro-
duces the popular max-margin principle which has a
great generalization ability. Although BEMKL perform-
s better than M?LAK on some data sets, BEMKL has to
perform matrix inversion to compute the posterior co-
variance of kernel weights in each round of iteration
which requires O(N?3) operations. Besides, BEMKL
needs to store many Gram matrix to get good perfor-
mances. However, storing too many Gram matrix leads
to out of memory on commonly used computers.

4.5 Parameter Study and Convergence

We study the performance change of the three subspace
learning methods (BM2SMVL, MMH and M3LAK). Perfor-
mances change when the subspace dimension m varies on
two datasets (Cornell and Wisconsin). The averaged result-
s are shown in Figure 1. As we can see, different methods
prefer different values of m. On some datasets, when m be-
comes too large, the performances of these three methods be-
come poor. When m ranges from 5 to 30, M®LAK performs
better than other subspace learning methods in general.

0.91 0.95
0.89
0.93
> 0.87 >
g g 0.91
5085 50
8 S
© 0.83 © (.89
3 0.81 —=—BMSMVLY B —8— BMPSMVL
= MMH Fos7 MMH
0.79 —A— MPLAK A \PLAK
0.77 0.85
5 10 15 20 25 30 5 10 15 20 25 30
Subspace dimension m Subspace dimension m

(a) Cornell (b) Wisconsin

Figure 1: Effect of subspace dimension m.
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Figure 2: (a) Effect of regularization parameter C' in M>LAK; (b)
Convergency of M?LAK.

Also, we set m as 20 and study the influence of regulariza-
tion parameter C'. From the results in Figure 2 (a) , we can
find that different data sets may prefer different values of C'.
C balances the nonlinear classifier with adaptive kernel and
the multi-view latent variable model, so M?LAK cannot get
the best performance when C' is too large or small.

Figure 2 (b) shows the convergency of M?LAK on two da-
ta sets. We find that MPLAK has a fast convergence rate,
which we contribute to the efficient gradient-based HMC
sampler [Neal, 2011].

5 Conclusion

In this paper, we present an adaptive kernel nonlinear max-
margin multi-view learning framework. It regularizes the
posterior of an efficient multi-view LVM by explicitly map-
ping the latent representations extracted from multiple data
views to a random fourier feature space where max-margin
classification constraints are imposed. Having no need to
compute the Gram matrix, the computational complexity of
our algorithm is linear w.r.t. N. Extensive experiments on
real-world datasets demonstrate our method has a superior
performance, compared with a number of competitors.
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