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Abstract
Next Point-of-Interest (POI) recommendation has
become an important task for location-based so-
cial networks (LBSNs). However, previous efforts
suffer from the high computational complexity, be-
sides the transition pattern between POIs has not
been well studied. In this paper, we proposed a two-
fold approach for next POI recommendation. First,
the preferred next category is predicted by using a
third-rank tensor optimized by a Listwise Bayesian
Personalized Ranking (LBPR) approach. Specifi-
cally we introduce two functions, namely Plackett-
Luce model and cross entropy, to generate the like-
lihood of a ranking list for posterior computation.
Then POI candidates filtered by the predicated cat-
egory are ranked based on the spatial influence and
category ranking influence. The experiments on
two real-world datasets demonstrate the significant
improvements of our methods over several state-of-
the-art methods.

1 Introduction
Next Point-of-Interest (POI) recommendation has become an
important task for location-based social networks (LBSNs),
which not only help users to explore their favorite places but
also benefit for business to acquire more potential customers.
Many efforts have been devoted to the task [Cheng et al.,
2013; Feng et al., 2015; Liu et al., 2016] in the literature. Yet
achieving accurate personalized next POI recommendation is
challenging as the check-ins data of each user is very sparse.
Existing methods study users’ preference on POIs by employ-
ing various context information, but usually suffer from high
computational complexity as the entire check-in dataset of all
users is extremely large.

However, human daily activities usually present category-
level transition patterns. Intuitively, people tend to make up
their mind on the type of places they are going to first, and
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then determine the specific locations according to their per-
sonal preferences. For example, a shopaholic often visits
malls to purchase various goods, and a foodie usually prefers
to seek good restaurants. In fact, the number of location
categories is far smaller than the number of locations, the
computational complexity can be largely reduced by predict-
ing the preferred categories first. Fig.1(a) plots the transi-
tion probabilities between location categories. We observe
that some categorical transitions are very obvious, for exam-
ple, “Nightlife Spots” are more likely checked in after “Food
places”, which indicates that the next location’s category is
highly related to the current location’s category.

In LBSNs, users are more likely to simply check-in POIs
online rather than provide detailed ratings for these POIs.
The check-in information implicitly reflects user’s preference
on POIs. To address the problems with implicit feedback,
Bayesian Personalized Ranking (BPR) [Rendle et al., 2009]
is well known for its pioneering work. Specifically, BPR stud-
ies the personalized preference from a Bayesian analysis per-
spective, which can be used to predict the pairwise prefer-
ence between the observed explicit feedback and the implicit
feedback. Cheng et al. proposed a state-of-the-art approach
for next POI recommendation which adopted BPR to apply
on a user-location matrix but still suffered from data sparsity
and high computational cost [Cheng et al., 2013]. Whereas
a user-category matrix can be considered as a data structure
with rich information, but with smaller size. As shown in
Fig.1(b), about 95% users visited more than 20 “categories”
for foursquare datasets, that left only few unvisited categories
can be used as negative instances in BPR. Besides, the per-
sonalized order over the visited categories cannot be learned
as the conventional BPR overlooked the ordering among the
observed instances. Moreover, the assumption made in BPR,
that is the preference of each instance pair for a specific user
is independent of the ordering, does not always hold in the
real cases. And the learning process is usually managed in
a way of minimizing errors in ranking instance pairs, rather
than minimizing errors in ranking instance lists.

In this paper, we proposed a two-step approach for next
POI recommendation: Listwise Bayesian Personalized Rank-
ing (LBPR) for next category prediction and category-based
location recommendation. Our proposed LBPR is derived
from the maximum posterior estimator for optimal personal-
ized ranking by taking category lists instead of category pairs
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Figure 1: Categorical behavior illustration. Categories={c1 : Arts &
Entertainment, c2: College & University, c3 : Food, c4 : Outdoors,
c5 : Work, c6 : Nightlife Spot, c7 : Shop, c8 : Travel Spot}

as instances during the learning process. We argue that the
transition frequency list can better capture user’s preference
over the location categories. Once the preferred categories
are obtained from the first-step, the locations are then ranked
as the candidates of the next location by considering both spa-
tial and categorical ranking influence. For LBPR, the key is
to define a listwise loss function to represent the difference
between the ranking list derived from LBPR and the rank-
ing list given as the ground truth. Specifically we introduce
two probability models respectively referred to as 1) permu-
tation probability by maximizing the likelihood function of
each ranking list and 2) top one probability by using cross en-
tropy to minimize the difference between the recommended
list and the ground truth list. The main contributions of this
paper can be summarized as follows:

• We propose a two-fold approach for next POI recom-
mendation to predict user preference at the category-
level first, then derive the ranking list of POI candidates
based on the predicted category preference.

• We propose a novel optimization criterion LBPR with
the maximum posterior estimator derived from Bayesian
analysis of ranking problems and formulate the listwise
loss functions on the basis of two probability models.

• We evaluate the proposed models by the experiments
on two large-scale LBSN datasets and demonstrate that
our proposed approach outperforms other state-of-the-
art POI recommendation approaches by a large margin.

2 Related Work
POI recommendation has become an important research
topic. Many recent studies had tried to improve the rec-
ommendation performance by integrating geographical in-
fluence, social influence, temporal effect and content in-
formation of POIs [Feng et al., 2015; Cho et al., 2011;
Gao et al., 2015; Zhao et al., 2016b; 2016a; Li et al., 2016].
Cheng et al. proposed a tensor-based FPMC-LR model for
next POI recommendation by considering the successive rela-
tion between visitings [Cheng et al., 2013]. Some works had
incorporated categorical information into recommender sys-
tems for performance enhancement. Zhang et al. exploited
geographical, social and categorical correlations among users

and POIs, and applied the bias of a user on a POI category
to weigh the popularity of a POI in the corresponding cate-
gory [Zhang and Chow, 2015]. He et al. modeled the next
POI recommendation under the influence of user’s latent be-
havior patterns, which is determined by the contextual sce-
narios including temporal and categorical information [He et
al., 2016].

Learning to rank is a popular research topic in machine
learning. The existing works of learning to rank can be
roughly classified into three categories: 1) The pointwise
approach, with absolute preference assumptions, transforms
ranking into regression or classification on single objects,
which takes the implicit feedback as the absolute preference
score [Hu et al., 2008; Pan et al., 2008]. 2) The pairwise
approach, with relative preference assumptions, transforms
ranking into classification of object pairs into two categories,
which takes the implicit feedback as the relative preference
rather than absolute one [Rendle et al., 2009]. 3) The listwise
approach tackles the ranking problem directly by optimiz-
ing the defined loss function on a list of items, in the liter-
ature the popular listwise ranking approaches include List-
Net [Cao et al., 2007], ListMLE and etc. [Xia et al., 2008;
Lan et al., 2009] which differ from each other by defining
different listwise loss function.

Different from the existing listwise ranking approaches,
our proposed LBPR optimization criterion for POI category
prediction is derived from a Bayesian analysis perspective by
using the likelihood function and the prior probability for the
model parameter, which takes category lists as the instances
during learning process.

3 Problem Definition
Let U = {u1, u2, ..., uM} be a set of LBSN users, and
L = {l1, l2, ..., lN} be a set of locations, also called POIs,
where each location is geocoded by {longitude, latitude}.
C = {c1, c2, ..., cS} denotes the location categories which is
provided by Foursquare1. The set of categories visited by user
u before time t is denoted by Cu, i.e. Cu = {C1

u, ..., C
t−1
u },

where Ct−1
u ⊂ C is the subset of categories to which the lo-

cation lt−1
u visited by user u at time t − 1 belongs. Our goal

is to estimate the category-level preference first, so as to rec-
ommend top-N locations to user u for her next move based
on the obtained category-level preference.

4 Proposed Model
In this section, we detail the two-fold model: Listwise
Bayesian Personalized Ranking for category prediction and
category-based location recommendation.

4.1 LBPR for Next Category Prediction
The task of category prediction is to predict next categories
via the ranking of probabilities that user u will move from
the current location category i to the next location category
j. Based on the first-order Markov property, the probabilities
are given as:

xu,i,j = p(i ∈ Ctu|j ∈ Ct−1
u ) (1)

1https://developer.foursquare.com/categorytree
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Figure 2: The observed data χ forms a ternary relation between users, current categories and next categories, from which either pairwise
preferences DBPR

χ (left-side) or listwise preferences DLBPR
χ (right-side) among the next categories can be inferred.

Thus, each user is associated with a specific transition ma-
trix which generates a third-rank transition tensor χ ∈
R|U |×|C|×|C| with each χu,i,j representing the observed tran-
sition frequency of user u from category i to category j.

As the transitions of χ are partially observed, here we adopt
the low-rank factorization model— a special case of Canoni-
cal Decomposition which models the pairwise interaction be-
tween all three modes of the tensor (i.e. user U , current cat-
egory I , next category J), to fill up the missing information,
given as:

x̂u,i,j = vU,Ju · vJ,Uj + vJ,Ij · v
I,J
i + vU,Iu · vI,Ui (2)

where vU,Ju and vJ,Uj denote the latent factor vectors for users
and next categories, respectively. Other notions are similarly
defined. The term vU,Iu · vI,Ui can be removed since it is in-
dependent of next category j and does not affect the ranking
result, as shown in [Rendle et al., 2010], which generates a
more compact expression for x̂u,i,j :

x̂u,i,j = vU,Ju · vJ,Uj + vJ,Ij · v
I,J
i . (3)

Next category prediction is to obtain top-N categories and
we care more about the ranking order of the candidate cat-
egories rather than the real values of transition possibilities,
thus we can model it as a ranking list >u,i over categories:

j(1) >u,i ... >u,i j
(k) ⇔ x̂u,i,j(1) > ... > x̂u,i,j(k) (4)

where j(k) denotes the category at position k of the ranking
list and x̂u,i,j(k) denotes the personalized ranking score of
transition from category i to category j(k) for user u.

LBPR Optimization Criterion
As shown in Fig.2, the transition tensor χ contains the histor-
ical check-in data, the numerical number indicates the transi-
tion frequency χu,i,j from category i to category j for user u,
“?” indicates the unobserved transitions. We take (u3, i1) for
example (the red column), the inferred pairwise preferences
of j1 >u3,i1 j2, j1 >u3,i1 j3, j4 >u3,i1 j2, j4 >u3,i1 j3

from BPR is actually the subset of the inferred listwise pref-
erences from LBPR. For (u3, i4) with total observed tran-
sition records (the blue column), no pairwise preferences
can be inferred in BPR, whereas the listwise preference of
j4 >u3,i4 j1 >u3,i4 j2 >u3,i4 j3 can be inferred in LBPR.
The two cases illustrate our motivation of proposing LBPR
for recommendation tasks.

BPR typically creates a training data set DBPR
χ by tak-

ing the positive instance (observed transitions) and the nega-
tive instance (unobserved transitions) as pairs, which formal-
izes the problem of learning to rank as a binary classification
problem [Rendle et al., 2009; 2010]. By contrast, we use a
different approach by using category lists as training data and
optimize for correctly ranking lists instead of ranking pairs to
further explore the orders of observed transitions which has
been overlooked in BPR. If the transition frequency χu,i,j be-
tween category i and category j for user u is higher than the
transition frequency χu,i,j′ between category i and category
j
′

for user u, then we assume that user u at category i prefers
category j over category j

′
: j >u,i j

′
. Then the listwise

instance of training data DLBPR
χ is denoted as:

DLBPR
χ = {listu,i,j |j(1) >u,i ... >u,i j

(k)} (5)

where k denotes the length of the instance list listu,i,j . The
differences between BPR and LBPR are depicted in Fig.2.

The Bayesian formulation of finding the best personalized
ranking is to maximize the following posterior probability:

p(Θ|listu,i,j) ∝ p(listu,i,j |Θ)p(Θ) (6)

where Θ denotes the parameter set of an arbitrary model class
(e.g. tensor factorization). It is assumed that all users act in-
dependently of each other and the ordering of each list of next
categories for a user at a specific current category is indepen-
dent of each other in training data, which leads to the maxi-
mum a posterior (MAP) estimator of the model parameters:

argmax
Θ

∏
listu,i,j∈DLBPRχ

p(listu,i,j |Θ)p(Θ) (7)
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By assuming the model parameters’ prior follows a normal
distribution p(Θ) ∼ N(0, 2

λΘ
I), the maximum posterior es-

timator to derive the optimization criterion for personalized
ranking is given as:

argmax
Θ

∑
listu,i,j∈DLBPRχ

ln p(listu,i,j |Θ)− λΘ

2
||Θ||2 (8)

where p(listu,i,j |Θ) denotes the likelihood of users’ prefer-
ence order for categories, which measures the similarity be-
tween the predicted list and the ground truth list. In this pa-
per, we introduce two particular estimators of p(listu,i,j |Θ),
namely, Plackett-Luce model [Marden, 1996] and cross en-
tropy, incorporated with which are the specialized LBPRs re-
ferred to as LBPR-MLE and LBPR-NET in the sequel.

LBPR-MLE
The adopted Plackett-Luce model [Marden, 1996] for LBPR-
MLE is proposed in [Xia et al., 2008], which defines a pa-
rameterized probability distribution over all the permutations
given the predicted result, that is the likelihood of the ground
truth list. The likelihood function is given as:

p(listu,i,j |Θ) =
k∏

m=1

φ(x̂u,i,j(m))∑k
n=m φ(x̂u,i,j(n))

(9)

where k is the length of listu,i,j . φ(.) is an increasing and
strictly positive function. We define φ(.) as the exponential
function. By incorporating Eq.(9) into Eq.(8), the objective
function of LBPR-MLE is obtained as:

argmax
Θ

∑
listu,i,j∈Dχ

k∑
m=1

{x̂u,i,j(m) −

ln
k∑

n=m

exp(x̂u,i,j(n))} −
λΘ

2
||Θ||2 (10)

LBPR-NET
Inspired by [Cao et al., 2007], we define the likelihood func-
tion with the cross entropy between two parameterized prob-
ability distributions of permutations obtained from the pre-
dicted result and the ground truth, which is defined as:

p(listu,i,j |Θ) = exp{
k∑

m=1

pχ(m) ln px̂(m)} (11)

where pχ(m) and px̂(m) denote the top one probability of
the transition frequency and the personalized ranking score,
respectively:

pχ(m) =
φ(χu,i,j(m))∑k
n=1 φ(χu,i,j(n))

(12)

px̂(m) =
φ(x̂u,i,j(m))∑k
n=1 φ(x̂u,i,j(n))

(13)

where the function φ(.) is same as that in Eq.(9). By incor-
porating Eq.(11) into Eq.(8), the objective function of LBPR-
NET is given as:

argmax
Θ

∑
listu,i,j∈Dχ

k∑
m=1

pχ(m) ln px̂(m)− λΘ

2
||Θ||2 (14)
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Figure 3: Spatial behavior statistics

Parameter Learning
We follow the widely used stochastic gradient decent (SGD)
algorithm to optimize the objective functions (Eq.(10) and
Eq.(14)) to obtain Θ for LBPR-MLE and LBPR-NET respec-
tively. The updating procedure is performed as:

Θ′ = Θ + α(
∂

∂Θ
(ln p(listu,i,j |Θ)− λΘ

2
||Θ||2)) (15)

where α > 0 is the learning rate.

4.2 Category-based Location Recommendation
Given the next category prediction results, there are still tens
of thousands of venues belonging the categories to be se-
lected. In this paper, we proposed a heuristic approach to de-
termine the location list for recommendation by incorporating
the spatial influence and the category ranking influence.

Spatial Influence
Inspired by [Cho et al., 2011], we investigates the rela-
tion (log scale) between the check-in counts and the dis-
tance between two successive checked-in locations for two
Foursquare datasets (LA and NYC). As seen from Fig.3, it is
very obvious that the user preference to visit a location de-
creases as the geographical distance increases, and the re-
lation follows a power law distribution. Thus, we define
sp(dl′ ,l) = a · dk

l′ ,l
to indicate the spatial influence for a lo-

cation l which is dl′ ,lkm away from the current location l
′
,

where a and k can be easily obtained by using a least-square
regression approach to fitting the data distribution2.

Category Ranking Influence
Intuitively, the higher ranking of the obtained preferred cate-
gory has more influence to the location prediction. Thus, we
also incorporate category ranking influence into the person-
alized location recommendation model. Soft-max function
1
Zx̂

exp(
∑
c′∈C

l
′ x̂u,c′ ,c) is adopted to indicate the weight of

the category c according to its ranking position and Zx̂ is the
normalization factor, i.e. Zx̂ =

∑S
s=1 exp(

∑
c′∈C

l
′ x̂u,c′ ,cs),

where Cl ⊂ C is the subset of categories which the location
l belongs to.

Combining the above two types of influences, we propose
a heuristic location recommendation metric, given as:

scoreu,l = (a · dk
l′ ,l

)

∑
c∈Cl

1
Zx̂

exp(
∑
c
′∈C

l
′
x̂
u,c

′
,c

)
(16)

2In our paper, the empirical settings of a and k are 10.5 and -1
respectively.
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Table 1: Dataset Statistics

#User #POI #Check-in #Avg.check-in #Cate
LA 1603 70342 103400 64.50 241
NYC 2579 97013 157404 61.03 241

5 Experiments
In this section, we evaluate the following: (1) how is the cat-
egory prediction approaches optimized by LBPR in compar-
ison with other state-of-the-art recommendation techniques?
(2) how is the location recommendation model in comparison
with other POI recommendation methods? (3) how does the
maximum length of the list affect the prediction accuracy?
We apply our approach on two real-world datasets acquired
from Foursquare, which contains the check-in data within Los
Angeles and New York City, respectively. The statistics of the
two datasets are listed in Table 1.

5.1 Evaluation Metrics
We evaluate the performance of category prediction by defin-
ing precision as:

Precision@N =
1

|U |
∑
u∈U

|SCN,u ∩ Svisited|
|Svisited|

(17)

where SCN,u is the top-N recommended categories list sorted
in descending order of the obtained x̂u,i,j , Svisited denotes
the visited categories of user u, |U | denotes the number of
the users and N is the size of the next category candidate list.

The precision metrics for next POI recommendation and
next new POI recommendation are given as:

Precision@NPOI =
1

|U |
∑
u∈U

|SPOIN,u ∩ SPOIvisited|
|SPOIvisited|

(18)

Precision@Nnew
POI =

1

|U |
∑
u∈U

|SPOIN,u ∩ SnewPOIvisited |
|SnewPOIvisited |

(19)

where SPOIN,u is the top-N recommended POIs list sorted in
descending order of the obtained scoreu,l, SPOIvisited denotes
the visited POIs of user u and SnewPOIvisited denotes the locations
that a user has not visited yet in the training set and will be
visited in the testing set. Note that we split the datasets into
two non-overlapping sets: for each user, the earliest 80% of
check-ins as training set and the remaining 20% check-ins as
testing set.

5.2 Performance Comparison on Next Category
Prediction

We compare our achieved performance on category recom-
mendation with that obtained by the following methods:

• MF: matrix factorization [Koren et al., 2009] is widely
used in the conventional recommender systems, which
factorizes the user-item preference matrix to obtain the
user latent feature matrix and item latent feature matrix.

• PMF: probabilistic matrix factorization is a well-known
method for modeling time evolving relation data [Mnih
and Salakhutdinov, 2007].

• FPMC: it is a state-of-the-art personalized recommen-
dation method optimized by BPR, which embeds users’
preference and their personalized Markov chain to pro-
vide next item recommendation [Rendle et al., 2010].

• PRME: it obtains the predictions by learning the em-
beddings of the categories, in which BPR is used as the
optimization criterion [Feng et al., 2015].

Table 2 tabulates the detailed results. The empirical setting
of the maximum length of the lists from training sets is 5 for
category prediction on both datasets3. We observe that:

• FPMC, PRME, LBPR-MLE and LBPR-NET all outper-
form MF and PMF significantly, which demonstrates the
significant improvements of learning to rank methods
for recommendation problem.

• Both LBPR-MLE and LBPR-NET consistently outper-
forms FPMC and PRME for both datasets, which illus-
trates that models derived from the maximum posterior
estimator of rank lists can better model user preference
orders in recommender systems.

5.3 Performance Comparison on Next POI
Recommendation

The performance comparisons on next POI recommendation
are performed among our proposed two-fold approach and
the following baselines:

• FPMC-LR: it employs FPMC to model the successive
personalized POI recommendation and utilizes the loca-
tion distance constraint [Cheng et al., 2013].

• PRME-G: it extends PRME by incorporating the geo-
graphical influence [Feng et al., 2015].

• LBP: it jointly models the next POI recommendation
under the influence of user’s latent behavior pattern and
adopts a unified tensor-based latent model to capture the
successive check-in behavior [He et al., 2016].

Fig.4 shows the performance comparison on location rec-
ommendation. And we observe that:

• Our proposed two-fold models outperform FPMC-LR,
PRME-G and LBP by a large margin (See Fig.4(a),
4(b)), which implies that the incorporation of category
prediction is effective for POI recommendation. Fur-
thermore, our experiments are ran on a machine with a
dual Core i7-2.67 GHz and 12G memory and the run-
ning time is around 5.5hr while the other approaches
takes more than 30 hours, which demonstrates the ef-
ficiency of our proposed approaches.

• Our proposed models and LBP have shown the im-
proved precision over FPMC-LR and PRME-G for next
new POI recommendation (See Fig.4(c), 4(d)), which

3Note that, we establish a set of list instances with the list length
varying from 2 to K for next category prediction learning when set-
ting maximum length as K.
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Table 2: Performance Comparison on Category Recommendation

Metrics LA NYC
MF PMF FPMC PRME LBPR-M LBPR-N MF PMF FPMC PRME LBPR-M LBPR-N

P@1 0.013 0.018 0.027 0.028 0.045 0.046 0.012 0.018 0.028 0.029 0.046 0.046
P@5 0.055 0.062 0.079 0.076 0.169 0.170 0.056 0.058 0.082 0.073 0.171 0.175

P@10 0.092 0.107 0.146 0.153 0.270 0.272 0.098 0.099 0.155 0.151 0.271 0.276
P@20 0.160 0.177 0.236 0.235 0.411 0.413 0.161 0.175 0.233 0.237 0.406 0.410

(a) LA-next POI (b) NYC-next POI (c) LA-next new POI (d) NYC-next new POI

Figure 4: Performance Comparison on Location Recommendation

(a) LA-NET (b) LA-MLE (c) NYC-NET (d) NYC-MLE

Figure 5: Maximum Length Impact of List

implies that categorical information is useful for mod-
eling user’s specific preference in recommending new
POIs. Moreover, our proposed models perform even bet-
ter than LBP, which manifest the efficacy of explicitly
usage of category to infer the user transition pattern in
category-level. The effectiveness of recommending new
POIs could benefit for advertising agency to launch a set
of “categorical similar” advertisements to potential cus-
tomers to help people explore more POIs.

5.4 List Length Impact
Fig.5 shows the category prediction results under different
settings of the maximum length of the list. We can see that,
for both datasets, the model accuracy increases with the in-
creasing of the maximum length of list. When the maximum
length reaches 6, the returns diminish. Thus 5 is the proper
setting of list length for our datasets.

Note that setting the maximum length of the list as 2 does
not make our model equivalent to the conventional pairwise
BPR. From Table 2 and Fig.5, we can observe that our pro-
posed models for category prediction trained by setting the
maximum length of list as 2 consistently outperforms FPMC
and PRME for both datasets, while FPMC and PRME adopt

conventional BPR. That is because the pairs of the observed
multiple check-ins and the pairs of the observed and unob-
served check-ins are all taken as the training set for LBPR,
whereas BPR only consider the pairs of observed and unob-
served check-ins. Furthermore, LBPR-NET performs slightly
better than LBPR-MLE with much lower time complexity of
O(N · K), whereas the time complexity of LBPR-MLE is
O(N ·K2), N is the number of K-list instance.

6 Conclusion

In this paper, we address the problem of next POI recom-
mendation and propose a two-fold approach to solve the rec-
ommendation task. First, we propose a Listwise Bayesian
Personalized Ranking approach and apply it to optimize a
categorical dimensional tensor for next category prediction.
Then, successive POI recommendation is achieved by con-
sidering the spatial influence and the previously predicated
category preference. Extensive experiments on real LSBN
datasets demonstrate our proposed methods outperform sev-
eral state-of-the-art methods by a large margin.
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