
Cost-Effective Active Learning from Diverse Labelers∗

Sheng-Jun Huang1,3, Jia-Lve Chen2,3, Xin Mu2,3 and Zhi-Hua Zhou2,3

1College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics
2National Key Laboratory for Novel Software Technology, Nanjing University

3Collaborative Innovation Center of Novel Software Technology and Industrialization
huangsj@nuaa.edu.cn {chenjl, mux, zhouzh}@lamda.nju.edu.cn

Abstract
In traditional active learning, there is only one la-
beler that always returns the ground truth of queried
labels. However, in many applications, multiple
labelers are available to offer diverse qualities of
labeling with different costs. In this paper, we
perform active selection on both instances and la-
belers, aiming to improve the classification model
most with the lowest cost. While the cost of a la-
beler is proportional to its overall labeling quality,
we also observe that different labelers usually have
diverse expertise, and thus it is likely that label-
ers with a low overall quality can provide accurate
labels on some specific instances. Based on this
fact, we propose a novel active selection criterion to
evaluate the cost-effectiveness of instance-labeler
pairs, which ensures that the selected instance is
helpful for improving the classification model, and
meanwhile the selected labeler can provide an ac-
curate label for the instance with a relative low cost.
Experiments on both UCI and real crowdsourcing
data sets demonstrate the superiority of our pro-
posed approach on selecting cost-effective queries.

1 Introduction
In real-world applications, label acquisition for the abundant
of unlabeled data is usually expensive because it requires the
participation of human experts. As a result, training an accu-
rate model with as few labeled data as possible has attracted a
lot of research interests. One leading approach to this goal is
active learning, which reduces the labeling cost by querying
only the most valuable instances for their class assignments
[Settles, 2009].

In traditional active learning, the algorithm iteratively
queries the labels of selected instances from an oracle, which
always returns the ground truth. Under this setting with a
unique labeler, the labeling cost is measured by the number
of queries, and the goal is to train an accurate model with
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fewest queries. Active learning under this simplified setting
has been extensively studied, however, it is not in conformity
with the reality. In many real tasks, we usually have multiple
labelers offering different qualities of labeling, and need to
decide which of them should be queried for the label of the
selected instance. The overall quality of labelers can be eval-
uated based on their previous performance. A labeler who
made fewer mistakes receives a higher quality score, and ac-
cordingly requires a higher cost for each query. For example,
in the task of breast cancer diagnosis from medical images,
doctors cannot guarantee 100% accuracy for their classifi-
cations, and in general, experienced experts are more likely
to make accurate diagnosis than junior doctors. Also, in the
crowdsourcing annotation services, such as Amazon’s Me-
chanical Turk, thousands of labelers are available on the In-
ternet to provide noisy annotations, and those labelers who
are more reliable tend to receive higher payment.

In recent years, learning with multiple labelers has at-
tracted more and more research interests. Most studies fo-
cus on obtaining an accurate label from multiple noisy la-
belers [Donmez et al., 2010; Sheng et al., 2008; Whitehill
et al., 2009; Yan et al., 2014; Raykar et al., 2010; Ipeirotis
et al., 2014; Lin et al., 2014], ignoring the active selection
of instances and labelers. Several approaches are proposed
for active learning with multiple labelers [Zheng et al., 2010;
Zhao et al., 2011; Zhang et al., 2015]. However, they usu-
ally neglect the diverse expertise of different labelers, and
globally select the same labeler for all instances. Recently,
there are a few attempts to exploit the expertise of labelers
for better annotation [Yan et al., 2011; Fang et al., 2014;
Dekel et al., 2012; Yan et al., 2012; Ambati et al., 2010;
Donmez et al., 2009]. However, they simply assume an iden-
tical cost for all labelers, and may get an expensive solution.

One significant difference between our work and existing
active learning approaches is that we emphasize the diversity
of labelers on both their expertise and query cost. In real
tasks, labelers can be different in age, gender, interests and so
on, and thus they may have very diverse expertise. As a re-
sult, different labelers are good at labeling different instances,
which further indicates that a labeler with very low overall
quality can still make accurate labeling on some specific in-
stances. For example, in image annotation tasks, a child la-
beler may make many mistakes on identifying the location
of landscape photos, but can easily assign accurate labels to
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cartoon images; or in evaluation of products, male customers
must be more confident on rating a shaver than a skirt. While
the overall quality of labeling directly decides the cost of a
labeler, it is not necessarily related to the accuracy of the la-
bel on a specific instance. And based on this fact, for a given
instance, we can hopefully find a right labeler which provides
accurate yet cheap annotations.

In this paper, we propose a novel criterion for active selec-
tion on both instances and labelers. The criterion evaluates
the cost-effectiveness of instance-labeler pairs, and ensures
that on one hand, the selected instance is helpful on improv-
ing the classification model, and on the other hand, the se-
lected labeler can assign an accurate label for the instance
with a low cost. Extensive experimental results validated the
superiority of our proposed approach.

The rest of this paper is organized as follows: we first re-
view some related work in Section 2, and then introduce the
proposed approach in Section 3. Section 4 presents the exper-
iments, followed by the conclusion in Section 5.

2 Related Work
Active learning has been well studied during the past years.
Many algorithms are proposed to design different criteria for
query selection such that the queried examples are most help-
ful for improving the classification model. Based on the query
criteria used, active learning methods can be roughly catego-
rized into three groups: the methods querying most informa-
tive instances (e.g., uncertainty sampling [Balcan et al., 2007;
Guo and Schuurmans, 2008] and expected error reduction
based sampling [Roy and Mccallum, 2001]); the methods
querying most representative instances (e.g., clustering based
sampling [Dasgupta and Hsu, 2008; Chattopadhyay et al.,
2012] and density based sampling [Zhu et al., 2010]); and the
methods simultaneously consider informativeness and repre-
sentativeness [Huang et al., 2014; Wang and Ye, 2013].

The standard active learning assumes that there is only one
oracle which never makes mistake on its labeling. In real-
world tasks, however, multiple noisy labelers are available.
Many methods have been proposed to learn from the multiple
noisy labelers. Some of them try to model the reliability of
labelers, and then select the best ones for labeling all the in-
stances [Donmez et al., 2010]. Some other approaches try to
find a best combination of noisy labels given by all labelers
[Sheng et al., 2008; Whitehill et al., 2009]. These methods,
however, do not consider the active selection of instances.
The study in [Giacinto and Roli, 2000] is partially related
to dynamic classifier selection in ensemble methods, which
dynamically selects one classifier for each test instance.

There are some studies on active learning with multiple
noisy labelers. Zhao et. al. [2011] combine uncertainty and
inconsistency measures to actively select the most important
instances for relabeling. Although this approach assumes the
existence of multiple noisy labelers, it only designs the crite-
rion for instance selection, and does not select labelers. The
approach in [Zheng et al., 2010] obtains the label from a sub-
set of labelers via majority voting. The labelers are glob-
ally selected for all instances, which may result in unnec-
essary high cost because it neglects the expertise of differ-

ent labelers. There are a few studies trying to select labelers
with matching expertise on the specific instance to be labeled
[Dekel et al., 2012; Yan et al., 2012; Donmez et al., 2009;
Ipeirotis et al., 2014]. For example, Yan et. al. [2011] pro-
pose a probabilistic model to measure the accuracy of each
labeler, and select the most confident labeler for each queried
instance. Fang et. al. [2014] propose to transfer knowl-
edge from auxiliary domains for estimating labelers exper-
tise. Ambati et. al. [2010] apply the active selection of both
instances and labelers to the task of machine translation. A
common shortcoming of these algorithms is that they do not
consider the difference on the costs of multiple labelers, and
thus may get an accurate yet expensive solution. The methods
proposed in [Donmez and Carbonell, 2008] and [Zhang and
Chaudhuri, 2015] consider a simple case where two labelers
exist: one perfect labeler which always returns the ground
truth, and one fallible labeler which make mistakes with a
probability. Although they assume different costs for the two
labelers, the oversimple setting limits its application.

3 The Proposed Algorithm

We study the task of active learning from multiple labelers
with diverse expertise and different costs. At each iteration of
active learning, we select a cost-effective instance-labeler pair
with following properties: 1) the selected instance is useful
on improving the classification model; 2) the selected labeler
can assign an accurate class label for the instance; and 3) the
cost of the selected labeler is low.

We start with a simple example to illustrate our basic idea.
Figure 1 shows an extreme case of three labelers with differ-
ent expertise. The data examples are partitioned into three
groups: A, B and C, with decreasing sizes. Labeler 1 is good
at labeling examples in group A, but fails on groups B and
C. Labeler 2 works well on groups A and B, while labeler 3
favors groups B and C. Obviously, labeler 2 achieves the best
accuracy of labeling on the whole data set, and deserves the
highest query cost. In contrast, labeler 3’s overall labeling
quality is the worst, and accordingly receives the lowest cost.
While the overall quality of labeling decides the cost of each
query from a labeler, it does not necessarily implies the ac-
curacy on a specific instance. For the instances in group B,
both labeler 2 and labeler 3 can assign correct labels, and then
labeler 3 with lower cost is preferred, though its overall qual-
ity is lower. This observation suggests that globally selecting
one labeler for all instances may result in unnecessary high
cost, and one better choice is to adaptively select the most
cost-effective labeler for each instance.

Assume that we have a small labeled set L = {(xi, yi)}nl
i=1

with nl examples, where yi is the ground truth label of the
i-th instance xi, and a large pool of unlabeled data U =
{xj}nl+nu

j=nl+1 with nu instances, typically nl � nu. There
is a set of candidate labelers A = {a1, · · · , am} with all m
labelers offering different qualities of labeling with different
prices. We denote by ŷij the label given by ai for xj .

At each iteration of active learning, the algorithm selects
an instance-labeler pair (x∗, a∗), and queries the label of x∗
from a∗, where the selection of both the instance and labeler
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A B C Data: 
 

Labeler 1: 
Labeler 2: 
Labeler 3: 

Figure 1: Multiple labelers with diverse expertise. The tex-
tured boxes indicate on which parts of data each labeler can
give accurate labels.

is based on a evaluation function Q:

(x∗, a∗) = argmax
x∈U, a∈A

Q(x, a).

Then the task is to design the evaluation function Q(x, a)
to measure the cost-effectiveness of the pair (x, a). To make
it clear how the designed criterion satisfies the previously
listed properties, we first separately introduce the usefulness
of an instance, the accuracy of the labeling and the cost of the
query, and then propose the evaluation function by combining
them together.

3.1 Usefulness of the Instance
Evaluating the usefulness of an instance on improving the
generalization ability of the classification model is the key
task of traditional active learning, and has been well stud-
ied. Among the existing criteria for evaluating the usefulness
of instances, we choose to employ the uncertainty, which is
most widely used. If the current classification model is uncer-
tain about its prediction on an instance, then the instance may
be more helpful on improving the model because it contains
more information that the model does not know yet.

In the binary classification problem, the instance with prob-
ability p(y = 1|x) closest to 0.5 is preferred. Thus the uncer-
tainty of x can be measured as:

r(x) = |p(y = 1|x)− 0.5|. (1)

In this paper, we employ logistic regression for the classifica-
tion model, and thus have

p(y = 1|x) = 1

1 + exp(−f(x))
,

where f(x) = w>x + b is the prediction of the logistic re-
gression model on x.

To be more general for multi-class setting, the uncertainty
r(x) can be rewritten as:

r(x) = 1−max
y∈Y

p(y|x), (2)

where p(y|x) is the probability of that x belongs to class y,
and Y is the set of all possible classes.

3.2 Accuracy of the Labeling
As discussed before, the accuracy of a labeler on a specific
instance cannot be estimated by its overall labeling quality.
Because each labeler has its own expertise, it is reasonable to

assume that a labeler will have similar performance on simi-
lar instances. We thus try to exploit the label assignments of
the labelers on the initial labeled set with ground truth. Intu-
itively, given an instance x, if a labeler assigns correct labels
for most of the neighbors of x in the initial labeled set, then
its labeling on x is expected to be reliable. Formally ,we esti-
mate the labeling accuracy of the annotator ai on instance xj

by:

qi(xj) =
1

t

∑
xk∈N(xj ,t)

S(xj ,xk)I[yk == ŷik], (3)

where N(xj , t) returns a set consists of t nearest neighbors
of xj in the initial labeled set, S(xj ,xk) measures the sim-
ilarity between xj and xk, and I[·] is the indicator function
which returns 1 if the argument is true and 0 otherwise. In
our experiments, we simply select the neighbors based on
Euclidean distance. Obviously, among the t neighbors, the
instances which are more similar to xj contribute more to the
estimation of qi(xj).

3.3 Cost of the Query
Typically, if a labeler provides high quality of labeling, it re-
quires a high price for answering each query. So the cost of
each query from a labeler may be decided by the accuracy of
its previous labeling. We denote by ci the cost of querying
one label from labeler ai, and define it as

ci = g(
1

nl

nl∑
j=1

I[yj == ŷij ]), (4)

where 1
nl

∑nl

j=1 I[yj == ŷij ] calculates the overall accuracy
of labeler ai on L, and g(·) is the function describing the
relation between the cost and accuracy. For simplicity, one
can implement it as any increasing function, e.g. g(z) = z.

3.4 Cost-Effectiveness
Based on the previous definitions, we then try to propose the
evaluation function Q for active selection. To select a cost-
effective instance-labeler pair (xj , ai), we want the useful-
ness r(xj) to be large, the accuracy qi(xj) to be high, and at
the same time the cost ci to be low. A straightforward crite-
rion for estimating the cost-effectiveness of the pair (xj , ai)
can be defined as Eq. 5.

Q(xj , ai) =
qi(xj) · r(xj)

ci
. (5)

And the most cost-effective instance-labeler pair is selected
as:

(x∗, a∗) = argmax
xj∈U,ai∈A

Q(xj , ai). (6)

At last, let us revisit the three properties of the selection
we discussed at the beginning of this section. Obviously, an
instance-labeler pair violating either of the three properties
will receive a small score of Eq. 5, and thus the proposed
active selection is cost-effective.

It is worth noting that though the simple implementation of
the proposed approach achieves good results to demonstrate
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Algorithm 1 The CEAL Algorithm
Input:
L : a small set of labeled data
U : the pool of unlabeled data for active selection
Ŷ : the labels given by all labelers on L

Initialize:
Calculate the the cost for all the labelers as Eq. 4

repeat
for each instance xj ∈ U and each labeler ai

Calculate the uncertainty for xj according to Eq. 2
Predict the accuracy of ai on xj according to Eq. 3
Calculate the cost-effectiveness for (xj , ai) as Eq. 5

end for
Select the pair (x∗, a∗) as Eq. 6
Query the label of x∗ from a∗, denoted by ŷ∗

L = L ∪ (x∗, ŷ∗); U = U \ x∗
Train the classification model on L, and evaluate the
model on the test set

until the cost budget or the required accuracy is reached

our idea, we can have other choices for each of the three com-
ponents in Eq. 5. For example, the usefulness r(xj) can be
designed as in [Huang et al., 2014] to consider both informa-
tiveness and representativeness of the instances; the labeling
accuracy qi(xj) can be estimated by a individual model for
each labeler; and the cost ci can be specified by users accord-
ing to actual situations.

The pseudo-code of the proposed algorithm, termed CEAL
(Cost-Effective Active Learning), is summarized in Algo-
rithm 1. At each iteration of active learning, the algorithm
selects the most cost-effective pair (x∗, a∗), and queries the
label of x∗ from a∗. Then x∗ is removed from the unlabeled
set U , and is added into L along with its queried label ŷ∗ from
a∗. After that, the classification model is retrained on the ex-
panded labeled set L. At last, the updated model is evaluated
on a hold out test set. This active querying and model updat-
ing process is repeated until meets a specific condition, e.g.,
the given cost budget is exhausted or the required classifica-
tion accuracy is reached.

4 Experiments
We compare CEAL with the following baseline approaches:

• ALC: the method proposed in [Yan et al., 2011], which
actively select one instance and query its label from the
most reliable labeler.

• RR: randomly select one instance and query its label
from one randomly selected labeler.

• RA: actively select one instance and query its label from
one randomly selected labeler.

• CR: randomly select one instance and always query the
labeler with lowest cost.

• CA: actively select one instance and always query the
labeler with lowest cost.

• QR: randomly select one instance and always query the
labeler with highest overall quality.

Table 1: The accuracy of each labeler on L for UCI data sets

data accuracy of labelers on L
a1 a2 a3 a4 a5

austra 0.943 0.771 0.743 0.686 0.571
german 0.920 0.860 0.800 0.740 0.640
krvskp 0.881 0.875 0.719 0.694 0.631
letterDvsO 0.808 0.744 0.679 0.641 0.615
letterEvsF 0.896 0.766 0.740 0.714 0.571
letterUvsV 0.937 0.747 0.759 0.734 0.557
letterVvsY 0.923 0.744 0.756 0.731 0.538
spambase 0.917 0.878 0.804 0.696 0.609
splice 0.899 0.711 0.704 0.686 0.509
titato 0.875 0.750 0.729 0.708 0.521
vehicle 0.818 0.773 0.727 0.636 0.545
ringnorm 0.824 0.819 0.781 0.770 0.624

• QA: actively select one instance and always query the
labeler with highest overall quality.

For all the compared approaches, uncertainty sampling is
used for instance selection, where the uncertainty is measured
based on the logistic regression model trained on the labeled
data. We also evaluate the performance on test data by the lo-
gistic regression model implemented with LIBLINEAR [Fan
et al., 2008] with default parameters.

4.1 Study on UCI data sets
We first perform the experimental study on 12 data sets from
the University of California-Irvine (UCI) repository [Bache
and Lichman, 2013]: austra, german, krvskp, spambase,
splice, titato, vehicle and ringnorm. Letter is a multi-class
data set, from which we select four pairs of letters that are
relatively difficult to distinguish, i.e., D vs O, E vs F, U vs V,
V vs Y, and construct a binary class data set for each pair. The
size of the data sets varies from 435 to 7400.

We assume that there are in all 5 labelers offering different
qualities of labeling: a1, a2, a3, a4 and a5. Table 1 presents
the accuracy of labeling on the initial labeled set L given by
each labeler. In increasing order of labeling accuracy, we set
the costs of each query from the labelers as 1 to 5, respec-
tively. For each data set, 5% of the examples are sampled to
initialize the labeled set L, 30% examples are hold out as the
test set for evaluating the classification model at each itera-
tion, and the rest 65% data are taken as the pool of unlabeled
data for active selection. The random partition of test data
and unlabeled data are repeated for 30 times for each data set.
And we report the average results over the 30 runs of experi-
ments.

Figure 2 plots the accuracy curves with the total cost in-
creasing for all the compared approaches. Note that we did
not plot the full curve because the performances of most
methods have converged after a number of queries. Gener-
ally speaking, by paying the same query cost, the methods
actively select instances (which are plotted with solid lines)
usually achieve higher accuracy than the methods randomly
select instances (plotted with dashed lines). This validated the
effectiveness of uncertainty sampling. As expected, querying
all instances from labeler with minimal cost leads to the worst
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Figure 2: Accuracy curves with the total cost increasing on UCI data sets

performance since it receives too many noisy labels. Query-
ing the labeler with highest overall quality may get most in-
stances correctly labeled, but also results in a high cost. Ran-
dom selection of labelers receives a middle performance. We
observe that ALC achieves decent performance on most of the
data sets, and fails on the others. Because ALC selects the
most confident labeler for each instance, but does not con-
sider cost, it is likely to get accurate labels with high cost,
making it less cost-effective. At last, our proposed approach

CEAL consistently achieves higher accuracy than other meth-
ods with the same query cost.

After the comparison on the cost-effectiveness, we further
examine the difference between the compared methods on la-
beler selection. Table 2 presents the average cost of each
query for all the compared methods. Because the counter-
parts that select instances actively or randomly have similar
results, we do not report the results for RR, CR and QR. First,
the cost of CA and QA exactly equals 1 and 5, respectively,
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Table 2: The average cost of each query for all the compared
approaches

Ours RA CA QA ALC
austra 1.554 3.004 1.000 5.000 4.037
german 1.477 3.019 1.000 5.000 3.489
krvskp 1.447 3.000 1.000 5.000 3.448
letterDvsO 1.496 2.986 1.000 5.000 4.030
letterEvsF 1.575 3.012 1.000 5.000 4.429
letterUvsV 1.470 2.987 1.000 5.000 3.522
letterVvsY 1.417 2.992 1.000 5.000 4.114
spambase 1.390 2.997 1.000 5.000 4.158
splice 1.459 3.000 1.000 5.000 3.191
titato 1.463 3.009 1.000 5.000 3.090
vehicle 1.657 2.989 1.000 5.000 2.219
ringnorm 1.295 3.000 1.000 3.000 3.304
average 1.475 3.000 1.000 4.833 3.586

Table 3: The accuracy of queried labels for all approaches
Ours RA CA QA ALC

austra 0.928 0.735 0.557 0.934 0.992
german 0.933 0.791 0.654 0.920 0.999
krvskp 0.933 0.757 0.641 0.895 0.994
letterDvsO 0.909 0.691 0.604 0.792 0.992
letterEvsF 0.950 0.745 0.575 0.898 0.968
letterUvsV 0.976 0.742 0.536 0.933 0.996
letterVvsY 0.963 0.744 0.557 0.907 0.990
spambase 0.940 0.784 0.617 0.905 0.995
splice 0.878 0.715 0.526 0.894 0.883
titato 0.823 0.716 0.523 0.876 0.821
vehicle 0.890 0.687 0.532 0.824 0.860
ringnorm 0.736 0.759 0.620 0.816 0.772
average 0.905 0.739 0.578 0.883 0.939

because they always query the labels from the same labeler.
The cost of our proposed method CEAL is much lower than
ALC and RA by actively selecting the cost-effective labeler.

Similarly, we present in Table 3 the accuracy of queried
labels for all approaches, i.e., the percentage of queried in-
stances that have been correctly labeled. CA selects the la-
beler with lowest cost, and thus has an accuracy close to the
accuracy of a5 in Table 1. Similarly, QA has the accuracy
of the most accurate labeler. It is not surprising to observe
that ALC achieves a high accuracy because it selects to query
the most confident labeler for each instance. The advantage
of ALC to QA validates that adaptively selecting a labeler
for each instance is superior to the global selection for all in-
stances. Our proposed approach CEAL also achieves a high
accuracy, only slightly worse than ALC. Noticing the signif-
icant lower cost of our approach, it is obvious that our ap-
proach CEAL selects the most cost-effective queries.

4.2 Study on CrowdFlower data
CrowdFlower is a data set for sentiment analysis. The crowd-
sourced labelers are asked to judge the sentiment of tweets
discussing the weather. The data set consists of 98979 tweets,
each was labeled by multiple labelers from 5 candidate an-
swers: 0 = negative, 1 = neutral, 2 = positive, 3 =
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Figure 3: Accuracy curve on CrowdFlower.

not related, 4 = cannot tell.
By removing the labelers who have labeled less than 10

tweets, and tweets labeled by less than 3 labelers, we obtain
a data set with 10976 tweets and 41 labelers. For each tweet,
we extract a bag-of-words feature vector with 43395 dimen-
sions. Among the tweets, only 269 tweets are given with the
ground truth. We take 10 of them as the initial labeled set,
and take the rest 259 examples as the test set for evaluating
the classification model. The rest 10707 tweets are randomly
partitioned into 10 folds. At each run of the experiment, we
take one fold as the unlabeled pool of active learning. The
average results over the 10 runs are recorded. In usual case,
we estimate the cost of each labeler on the initial labeled set.
However, there is too few examples with ground-truth. We
instead estimate the cost on the test set, which is less than 5%
of the whole dataset. Note that since we have a relative large
number of labelers, the cost is set to equal the overall accu-
racy for each labeler, i.e., we set g(z) = z in Eq. 4. The cost
of the 41 labelers varies from 0.067 to 0.500.

Figure 3 plots the accuracy curve on CrowdFlower with the
total cost increasing. The result is generally consistent with
that on UCI data sets. One exception is that the performance
of QR and QA get worse, probably because that even the la-
beler with highest quality is not very accurate on this data
set. As we can see, again our CEAL approach achieves high
cost-effectiveness.

5 Conclusion
This paper studies active learning under a novel setting,
where multiple noisy labelers with diverse expertise and dif-
ferent labeling costs are available. We observe that a labeler
with low quality of overall labeling can still assign accurate
labels for some specific instances. Based on this fact, we
propose the CEAL approach to perform cost-effective selec-
tion for both instances and labelers. Experimental results on
both UCI and real data sets demonstrate that the proposed ap-
proach is able to achieve higher accuracy with lower query
cost. While our current study assumes the cost of querying
different instances from the same labeler is identical, we plan
to incorporate instance-dependent query cost into our CEAL
approach in the future.
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