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Abstract
Multi-instance multi-label learning (MIML) has
achieved success in various applications, espe-
cially those involving complicated learning objects.
Along with the enhancing of expressive power, the
cost of annotating a MIML example also increases
significantly. In this paper, we propose a novel ac-
tive learning approach to reduce the labeling cost of
MIML. The approach actively query the most valu-
able information by exploiting diversity and un-
certainty in both the input and output spaces. It
designs a novel query strategy for MIML objects
specifically and acquires more precise information
from the oracle without additional cost. Based
on the queried information, the MIML model is
then effectively trained by simultaneously optimiz-
ing the relevance rank among instances and labels.
Experiments on benchmark datasets demonstrate
that the proposed approach achieves superior per-
formance on various criteria.

1 Introduction
In traditional supervised learning, an object is represented
by one instance, and associated with one class label. How-
ever, in many real applications, such a learning framework is
less effective to model the complicated objects. For example,
a scene image may be simultaneously relevant to mountain,
lake, trees, etc. If we simply extract one instance to repre-
sent it, some useful information may get lost. An alterna-
tive approach is to segment the image into multiple regions
with relative clear semantics, and extract one instance from
each region. Or in text categorization tasks, an article may be
annotated with multiple labels. To fully exploit the content
with multiple topics, it would be more effective if we rep-
resent each paragraph with one instance rather than extract
only one instance from the whole article. To deal with such
complicated objects, multi-instance multi-label learning was
proposed in [Zhou and Zhang, 2006].

In multi-instance multi-label learning, every example is
represented with a bag of multiple instances, and annotated
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with multiple class labels to express its semantics. MIML has
been successfully applied to various tasks, including image
classification [Zhou and Zhang, 2006; Zhang and Zhou, 2008;
Feng and Xu, 2010], text categorization [Zhang and Zhou,
2008], gene function prediction [Li et al., 2012], relationship
extraction [Surdeanu et al., 2012] and video understanding
[Xu et al., 2011], etc.

It is well known that in supervised learning, sufficient la-
beled training examples are needed to get an effective model.
However, in real cases, it is usually difficult and costly to
manually label data examples. It thus becomes a very im-
portant task to train a strong model with as few labeled data
as possible. Active learning is a main approach to overcome
this challenge. It actively selects the most important instances
and query their labels from the oracle, and expects to reduce
the number of labeled examples required.

MIML provides a better framework for learning with com-
plicated objects, yet its input and output spaces increase dra-
matically, make it rather difficult to train an effective model,
which further implies that more training data are needed. On
the other hand, because there are a large number of candidate
labels in MIML, it becomes much more costly to annotated an
example comparing to single-label learning. So active learn-
ing for MIML is highly desired to reduce the labeling cost.

Existing studies on active learning mainly focus on the
single-instance single-label setting [Nguyen and Smeulders,
2004; Balcan et al., 2007; Huang et al., 2014b; Lin et al.,
2016]. Recently, there are a few efforts on designing ac-
tive query strategies for multi-instance learning [Salmani and
Sridharan, 2014] or multi-label learning [Li and Guo, 2013;
Huang et al., 2015]. However, these methods do not simul-
taneously exploit the information embedded in input and out-
put space, and cannot directly applied to MIML setting. The
method in [Retz and Schwenker, 2016] simply transforms
MIML problem to single-instance representation and then di-
rectly employs traditional active learning method for label
querying.

In this paper, we propose a multi-instance multi-label ac-
tive learning approach, which can acquire the most helpful in-
formation at low cost with novel strategies for both selection
and querying. Specifically, at each iteration of active learn-
ing, we firstly select the most valuable bag-label pair based
on the diversity and uncertainty, and then pertinently query
supervised information from the oracle. If the selected bag
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and label are relevant, then the oracle is required to also indi-
cate the key instance among the bag that is most relevant to
the label. In this way, the model can get more precise super-
vision. Note that the oracle need to identify the key instance
when judging whether the bag and label are relevant or not;
and thus this process does not bring additional cost. To utilize
the queried information, we then proposed a MIML algorithm
to optimize the relative rank of both instances and labels. For
a bag, on one hand, the relevant labels will be ranked before
irrelevant ones, and on the other hand, the key instance of a
label will be ranked before other instances. Incorporating the
active query mechanism with the joint rank optimization, we
can query and fully utilize the most valuable supervised in-
formation to improve the learning performance. Experiments
on benchmark datasets validated the effectiveness of the pro-
posed approach.

The rest of this paper is organized as follows. Section 2
reviews related work. In Section 3, the proposed approach is
introduced. Section 4 presents the experiments, followed by
the conclusion in Section 5.

2 Related Work
Multi-instance multi-label learning has attracted much re-
search attention due to its success in various applications
[Zhou and Zhang, 2006; Zhou et al., 2012]. The MIMLfast
algorithm proposed in [Huang et al., 2014a] optimizes the
relevance ordering of labels for each training bag, and shows
promising results on both effectiveness and efficiency. The
model training part of this paper is similar to this method,
however, our method can exploit the key instance informa-
tion, and simultaneously optimizes the rank for both instances
and labels, which is beyond the capacity of MIMLfast.

Active learning selectively queries the most valuable infor-
mation from the oracle and aims to train an effective model
with least queries. The key task in active learning is to design
a proper strategy such that the queried information is most
helpful for improving the learning model. There have been
many active learning methods proposed under traditional set-
ting [Settles, 2009]. Some of them prefer to query labels for
the most informative instances [Balcan et al., 2007], while
informativeness can be estimated with different criteria, such
as uncertainty, expected error reduction, etc. Some other
methods prefer to query labels for representative instances
[Nguyen and Smeulders, 2004], where representativeness can
be estimated based on clustering structure or density. Re-
cently there are some studies that try to consider both in-
formativeness and representativeness for query selection, and
achieved significant performance improvement [Huang et al.,
2014b].

While most active learning researches focus on traditional
setting, there are a few works to extend the ideas to multi-
instance [Settles et al., 2007; Zhang et al., 2010; Salmani
and Sridharan, 2014] or multi-label learning [Li et al., 2004;
Hung and Lin, 2011; Tang et al., 2012; Li and Guo, 2013;
Wu et al., 2014]. The method proposed in [Huang and Zhou,
2013] exploits both uncertainty and diversity to select the
most valuable instance and label. This idea inspires our crite-
rion for bag-label selection in this paper. However, all these

studies are focusing on either multi-instance or multi-label
learning, and cannot be directly applied to MIML setting.
The method in [Retz and Schwenker, 2016] is specifically de-
signed based on MIMLSVM. It firstly degenerates the bags to
single-instance representation and then directly employ tradi-
tional active learning method for label querying, which does
not truly exploit the characteristics of MIML tasks.

3 The Method
In active learning, we usually have a small set of initial la-
beled data Dl and a large set of unlabeled examples Du.
The algorithm iteratively query the label of one or several
selected example in Du, and add them into Dl to update
the model. This process is repeated until the performance
is satisfied or the labeling cost reaches a predefined bud-
get. We denote by (Xi, Yi) a labeled MIML example, where
Xi = {xi1,xi2, · · · ,ximi} is the i-th bag that consists of
mi instances, and each instance xij is a d-dimensional fea-
ture vector. Yi = [yi1, yi2, · · · , yiK ]> is the label vector for
Xi, yik = 1 if the bag Xi is relevant to the k-th label, and
yik = −1 otherwise. We denote by U(X) the set of labels
that have not been queried for the bag X . A bag X ∈ Du if
and only if |U(X)| > 0.

In multi-label learning, it has been validated that query one
label rather than all labels of one instance at each time is more
effective [Huang et al., 2015]. Following this query type, one
can easily adapt it to MIML setting by selecting a bag-label
pair and querying whether they are relevant at each iteration
of active learning. However, such a query type may lead to
waste of labeling cost for MIML tasks. For example, when
we query the oracle whether an image is relevant to the la-
bel ’dog’, the oracle will of course identify the region corre-
sponding to dog in the image before feedback. That means
without further cost, we can ask the oracle to feedback more
precise information in addition to bag-label relevance, i.e., in-
dicate the key instance that trigger the queried label. Based
on this observation, we propose a novel query type for MIML
active learning.

We will introduce the active learning algorithm with two
steps. In the first step, we design a criterion to select the most
valuable bag-label pair; and in the second step, the oracle de-
cides the relevance of the pair and give pertinent feedback.
Inspired by the multi-label active learning method proposed
in [Huang and Zhou, 2013], we consider both diversity and
uncertainty to select the most valuable bag-label pair. In de-
tail, we define a measure as follows to estimate the diversity
and uncertainty of a bag Xi:

g(Xi) =

∣∣∣∑K
k=1 I[ŷik > 0]− 1

Nl

∑Nl

j=1

∑K
k=1 I[yjk > 0]

∣∣∣
max{ξ,K − card(U(Xi))}

,

(1)
where ŷik is the prediction on the k-th label for bag Xi, Nl is
the number of fully labeled bags, ξ ∈ (0, 1) is a constant to
avoid the zero divisor, card(·) calculates the set size and I[·] is
the indicator function which returns 1 if the argument is true
and 0 otherwise. The numerator measures the inconsistency
between the number of predicted positive labels onXi and the
average number of positive labels on the labeled set. A large
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inconsistency implies that the prediction on this bag may be
less reliable, or in other words, the model is less uncertain
on this bag. The denominator counts how many labels have
been queried for the bag. Obviously, bags with smaller value
of denominator are preferred because we expect the queries
cover diverse bags rather than densely located on a few bags.
In summary, we will select the bag X∗ with maximum value
of g(X∗).

After deciding the selected bag X∗, we then employ the
measure in Eq. 2 to estimate the informativeness of a label y
with regard to X∗:

h(X∗, y) = |fy(X∗)− fy0(X∗)| , (2)
where fy is the prediction function for label y, and y0 is a
dummy label to separate relevant and irrelevant labels in a
ranked label list. So h(X∗, y) is estimating how close the pre-
diction on y is to the decision boundary. It is usually assumed
that a prediction close to the decision boundary is more uncer-
tain. So we select the most uncertain label y∗ with smallest
value of h(X∗, y∗).

Next, for the selected bag-label pair (X∗, y∗), the oracle
decides whether they are relevant. If the answer is NO, then
the oracle just returns to the algorithm that y∗ is a negative
label of bag X∗. And if they are relevant, then the oracle
also tells which instance triggers the label y∗. We call this
instance as key instance, and denote it by x∗. In other words,
among the instances in bag X∗, the key instance x∗ is most
relevant to label y∗.

With such a query type, the learning system can acquire
more precise supervised information. Unfortunately, there is
no existing MIML algorithm can directly utilize such supervi-
sion. Next, we will propose a new MIML algorithm to exploit
the information at both bag and instance level. In [Huang et
al., 2014a], the MIML classification problem is transformed
into a label ranking problem by minimizing a rank loss de-
fined on labels. Inspired by this method, we extend the rank
loss to exploit the relevance order in both the input and output
space. For a bag, on one hand, we minimize the rank loss on
labels to rank all relevant labels before irrelevant ones; and
on the other hand, we minimize the rank loss on instances
to rank the key instance before others with regard to the cor-
responding label. Formally, as in [Huang et al., 2014a], we
define the prediction function of the k-th label on instance x
as:

fk(x) = w>k W0x, (3)
where W0 is a b × d matrix that maps the original d-
dimensional feature vector to a shared space, and wk is the
linear prediction function for label yk. Based on the classi-
cal definition of multi-instance learning that a bag is positive
if it contains at least one positive instance, we can easily get
the prediction on a bag by picking the maximum prediction
among its instances as follows:

fk(X) = max
x∈X

f(x). (4)

As in [Huang et al., 2014a], the rank loss in the label space
with regard to bag X and its relevant label y can be defined
as:

ε(X, y) =

R(X,y)∑
i=1

1

i
, (5)

where R(X, y) counts how many irrelevant labels are ranked
before y based on the prediction values, i.e.,

R(X, y) =
∑
ȳ∈Ȳ

I[fȳ(X) > fy(X)− 1]. (6)

Note here Ȳ is the set of all irrelevant labels of X , and we
penalize R(X, y) with a margin 1.

Similarly, we can define the rank loss in the instance space
as:

δ(X,x∗, y) =

P (X,x∗,y)∑
i=1

1

i
, (7)

where P (X,x∗, y) counts the number of instances that are
ranked before the key instance x∗ based on the predictions
on y, i.e.,

P (X,x∗, y) =
∑
x∈X

I[fy(x) > fy(x∗)− 1], (8)

To train an effective model, our target is to minimize
ε(X, y) and δ(X,x∗, y) on the whole training data, such that
all labels and instances can be correctly ranked according to
their relevance order. We employ stochastic gradient descent
(SGD) to minimize the loss functions. Specifically, assum-
ing the model variables at the t-th iteration of SGD are W t

0 ,
wt

k(k = 1 · · ·K), and the current bag is X , while y and ȳ is
one relevant and one irrelevant label ofX , respectively. If the
current model ranks ȳ before y, then it will induce a loss on
the triplet (X, y, ȳ):

L(X, y, ȳ) = ε(X, y) |1 + fȳ(X)− fy(X)|+ , (9)

where |q|+ = max{q, 0}. Similarly, if the current model
does not rank x∗ as the most relevant instance, we randomly
sample one instance x′ before x∗, and it will induce the loss:

L′(x∗,x′, y) = δ(X,x∗, y) |1 + fy(x′)− fy(x∗)|+ , (10)

Then, to minimize Eqs. 9 and 10, we update the model
variables as follows:

W t+1
0 =W t

0 − γt
R(X∗,y∗)∑

i=1

1

i

(
wt

ȳx
∗> −wt

yx
∗>)

− γt
P (X∗,x∗,y)∑

i=1

1

i

(
wt

yx
′> −wt

yx
∗>) , (11)

wt+1
y =wt

y + γt

R(X∗,y∗)∑
i=1

1

i
W t

0x
∗

− γ
P (X∗,x∗,y)∑

i=1

1

i
W t

0(x′ − x∗), (12)

wt+1
ȳ =wt

ȳ − γt
R(X∗,y∗)∑

i=1

1

i
W t

0x
∗. (13)

In the above formulations, γt is the learning rate. Note that
after updating W0, wy and wȳ , each column of them is nor-
malized to ensure that their `2 norms will be upper bounded
by a constant C.
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Algorithm 1 The MIML-AL Algorithm
1: Input:
2: Dl: a small set of initially labeled examples;
3: Du: the pool of unlabeled data for active selection;
4: Initialize:
5: Train a initial MIML model f on Dl;
6: Repeat:
7: Make predictions with f for bags in Du;
8: Calculate g(X) for all bags X ∈ Du;
9: Select the bag X∗ = argmax g(X);

10: Calculate h(X∗, y) for all labels y ∈ U(X∗);
11: Select the label y∗ = argminh(X∗, y);
12: Query whether X∗ is relevant to y∗;
13: Feedback with the key instance x∗ if relevant;
14: Update the model f according to Eqs. 11 to 13;
15: Remove y∗ from U(X∗);
16: Move X∗ from Du to Dl if |U(X∗)| = 0;
17: Until stop criterion reached.

The pseudo-code of the proposed approach is summarized
in Algorithm 1. At first, a MIML model is trained on the
initially labeled set Dl, then the model is used to make pre-
dictions for all bags in Du. Based on the predictions, the
criterion g(X) is calculated according to Eq. 1, and the bag
X∗ with maximum value of g is selected. Then the criterion
h(X∗, y) is calculated for each y ∈ U(X∗) according to Eq.
2, and the label y∗ with minimal value of h is selected. After
that, the relevance of X∗ and y∗ is queried. If they are rele-
vant, the key instance is also indicated by the oracle, and the
model is updated according to Eqs. 11 to 13. At last, y∗ will
be marked as a queried label of X∗, and X∗ will be moved
from Du to Dl if it is already fully labeled. These steps are
repeated until certain stop criterion reached, for example, the
performance is good enough or the labeling cost reaches a
predefined budget.

4 Experiments
To examine the effectiveness of the proposed method, the key
instance information should be available to simulate the or-
acle. Among the public available MIML datasets, there are
four datasets, i.e., MSRC [Winn et al., 2005], Letter Frost,
Letter Carroll and Bird Song [Briggs et al., 2012] where the
labels of instances are available. We thus perform the ex-
periments on these datasets. There are in all 26 candidate
labels for Letter Frost and Letter Carroll, while 23 labels
for MSRC and 13 labels for Bird Song. On average, each
bag has 2.5/3.6/3.9/2.1 relevant labels on the four datasets,
respectively.

For each dataset, we randomly sample 20% of bags as the
test data, and the rest as the unlabeled pool for active selec-
tion. And at the beginning, 5% of the unlabeled data will be
randomly selected and initially labeled. This small labeled
set is used to train the initial MIML model. After each query,
we update the model and examine the performance on the test
set. We repeat the random data split for 30 times and report
the average results.

In the experiments, the following methods are compared:

• MIML-AL: the proposed approach;

• MIML-ABRI: which is a degenerated version of our
method. The difference is that the oracle randomly feed-
back an instance as the key instance when the queried
bag and label are relevant.

• MIML-RBAI: which is another degenerated version of
our method. The difference is that this method randomly
selects the bag and label for querying, and the key in-
stance will be given if the bag is relevant to the label.

• MIML-AUDI: which adapts the method in [Huang and
Zhou, 2013], which is a state-of-the-art multi-label ac-
tive learning method, to select bag-label pairs.

• MIML-TMLA: which is the method proposed in [Retz
and Schwenker, 2016], which applies multi-label active
learning strategy after transform the MIML examples to
single-instance representations.

We compare with MIML-ABRI to examine the effectiveness
of utilizing the precise supervised information; and compare
with MIML-RBAI to examine the effectiveness of the bag-
label selection strategy. Note that after querying, the MIML
model is trained with the same method, although some of
them does not have the precise information. For MIML-AL,
we fix the parameters b = 200, C = 10 for all datasets.

We evaluate the performance on six measures: hamming
loss, one error, average precision, micro-precision, micro-
recall and micro-F1, which are commonly used criteria in
MIML [Zhou et al., 2012]. For hamming loss and one er-
ror, a smaller value indicates a better performance, while for
the other four criteria, the larger the better.

Figures 1 to 4 plot the performance curves as the number of
queries increases on MSRC, Letter Frost, Letter Carroll and
Bird Song respectively. The red line represents the proposed
approach. It is shown that the proposed method MIML-AL is
superior to other methods on different measure.

We observe that the performances of MIML-RBAI and
MIML-TMLA are relatively poor. For MIML-RBAI, the ran-
dom selection of bag-label pairs may lead less informative
queries. For MIML-TMLA, the result is probably caused by
the query type it used. As disclosed in [Huang et al., 2015],
it is usually more effective to query one label for an example
rather than query all the labels at a time. Because the labels
are usually correlated with each other and thus some redun-
dant information may queried by MIML-TMLA.

When comparing MIML-AL with MIML-ABRI, the pro-
posed method is always better on all measures and all
datasets. This fully validates that the MIML model can be
improved by utilizing the key instance information to opti-
mize instance rank. MIML-AL also beats MIML-RBAI for
most cases, which validates that the bag-label selection strat-
egy based on diversity and uncertainty is effective. At last,
the superiority of MIML-AL over MIML-AUDI tells that the
key instance bring some helpful and precise information with-
out additional cost. These observations demonstrates that our
method does query more helpful information from the oracle
and fully utilize them to improve the learning performance.

On Letter Frost and Letter Corroll datasets, we notice that
at the beginning stage of active learning, MIML-RBAI and
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Figure 1: Performance comparison on MSRC

Number of queries
0 500 1000 1500 2000 2500

H
am

m
in

g 
Lo

ss

0.12

0.14

0.16

0.18

0.2
MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(a) Hamming Loss
Number of queries

0 500 1000 1500 2000 2500

O
ne

 E
rr

or

0.3

0.4

0.5

0.6

0.7 MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(b) One Error
Number of queries

0 500 1000 1500 2000 2500

A
ve

ra
ge

 P
re

ci
si

on

0.35

0.4

0.45

0.5

0.55

MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(c) Average Precision

Number of queries
0 500 1000 1500 2000 2500

M
ic

ro
-P

re
ci

si
on

0.3

0.4

0.5

0.6

MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(d) Micro-Precision
Number of queries

0 500 1000 1500 2000 2500

M
ic

ro
-R

ec
al

l

0.18

0.2

0.22

0.24

0.26

MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(e) Micro-Recall
Number of queries

0 500 1000 1500 2000 2500

M
ic

ro
-F

1

0.2

0.25

0.3

0.35

MIML-AL
MIML-ABRI
MIML-RBAI
MIML-AUDI
MIML-TMLA

(f) Micro-F1

Figure 2: Performance comparison on Letter Frost

MIL-TMLA achieve better performance on Micro-Recall,
while their performance on other measures are worse. One
possible reason is that at the beginning stage, the model is
less reliable, and these two approaches may predict too much
positive labels. This can be also implied from their poor per-
formance on hamming loss and one error.

5 Conclusion
To reduce the labeling cost of MIML tasks, we propose an ac-
tive learning approach with novel contributions on bag-label
pair selection, query type as well as model training. Specif-
ically, to select the most valuable bag-label pairs, diversity
and uncertainty in both the input and output spaces are si-
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Figure 3: Performance comparison on Letter Carroll
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Figure 4: Performance comparison on Bird Song

multaneously considered; to query more precise information,
the key instance is identified without additional cost when the
bag and label is relevant; and to train the MIML model effec-
tively, the queried information is fully exploited to optimize
the relevance rank between both instances and labels. Experi-

ments on benchmark datasets show that the proposed method
achieves superior performance on various criteria. In the fu-
ture, we plan to test our method on more datasets and design
other strategies for bag-label selection.
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