
Enhancing the Unified Features to Locate Buggy Files by
Exploiting the Sequential Nature of Source Code∗

Xuan Huo and Ming Li
National Key Laboratory for Novel Software Technology, Nanjing University

Collaborative Innovation Center of Novel Software Technology and Industrialization
Nanjing 210023, China

{huox, lim}@lamda.nju.edu.cn

Abstract

Bug reports provide an effective way for end-users
to disclose potential bugs hidden in a software
system, while automatically locating the potential
buggy source files according to a bug report re-
mains a great challenge in software maintenance.
Many previous approaches represent bug reports
and source code from lexical and structural in-
formation correlated their relevance by measuring
their similarity, and recently a CNN-based model is
proposed to learn the unified features for bug local-
ization, which overcomes the difficulty in model-
ing natural and programming languages with differ-
ent structural semantics. However, previous studies
fail to capture the sequential nature of source code,
which carries additional semantics beyond the lex-
ical and structural terms and such information is
vital in modeling program functionalities and be-
haviors. In this paper, we propose a novel model
LS-CNN, which enhances the unified features by
exploiting the sequential nature of source code. LS-
CNN combines CNN and LSTM to extract seman-
tic features for automatically identifying potential
buggy source code according to a bug report. Ex-
perimental results on widely-used software projects
indicate that LS-CNN significantly outperforms the
state-of-the-art methods in locating buggy files.

1 Introduction
Software quality assurance is vital to the success of a software
system. As software systems become larger and more com-
plex, it is extremely difficult to identify every software defect
before its formal release due to the inadequate software test-
ing resources and tight development schedule. Thus, software
systems are often plagued with bugs.

To facilitate fast and efficient identification and fixing of
the bugs in a released software system, developers often allow
users to submit bug reports to bug tracking systems, which
are documents written in natural language specifying the sit-
uations in which the software fails to behave as it is expected

∗This research was supported by NSFC (61422304, 61272217).

or follow the technical requirements of the system. Bug re-
ports are generated by the end-users of the software and then
submitted to the software maintenance team. Once a bug re-
port is received and verified, the software maintenance team
would read the textual description of the bug report to locate
the buggy potential source files in the source code, and assign
appropriate developers to fix the bug accordingly. Unfortu-
nately, for large and evolving software, the maintenance team
may receive a large number of bug reports over a period of
time and it is costly to manually locate the buggy potential
source files based on bug reports.

Therefore, to alleviate the burden of software maintenance
team, effective models for identifying potentially buggy
source files for a given bug report automatically are highly
desirable, and it has drawn significant attentions in software
engineering community [Gay et al., 2009; Zhou et al., 2012;
Ye et al., 2014; Huo et al., 2016]. The key for identify-
ing buggy source files is to correlate the abnormal program
behaviors written in natural languages with the source code
written in programming languages that implement the corre-
sponding functionality. Some of the existing methods treat
the source code as natural language by representing both bug
reports and source files based on bag-of-words feature rep-
resentations, and correlate their relevance by measuring sim-
ilarity in the same feature space. For example, [Gay et al.,
2009] represented both source code and bug reports using the
vector space model (VSM) based on which the similarities
between the buggy source files and a bug report are com-
puted for localizing the corresponding buggy files. [Zhou et
al., 2012] proposed a revised vector space model (rVSM),
where similar historical bug reports whose corresponding
buggy files are further exploited to improve the bug local-
ization results obtained by measuring the similarity between
bug reports and source files. Recently, Huo et al. [2016] con-
sidered that the bug reports in natural language and source
code in programming language should be processed in differ-
ent ways. They employed a particular model based on convo-
lutional neural network (CNN) to learn unified features from
both bug reports and source code, which are shown effective
in modeling source code and improving the performance on
locating buggy source files.

Although learning unified features from bug reports
and source code by CNN [Huo et al., 2016] is able to
overcome the difficulty in modeling natural and program-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1909



ming languages with different structural semantics, the
sequential nature of programming language, especially
the long-term dependencies between statements, has not
been well-modeled, which causes the loss of semantic
information in the source code. The sequence of state-
ments in source code specifies how statements interact with
previous ones along the execution path and data stream
transmission, and hence provides additional semantics to
program functionality aside from lexical and structural
terms. An example will make it more concrete: assume
that a private string type variable path is initialized with a
default value DEFAULT PATH, and the following code “if
path==DEAFULT PATH {path=getNewPath();}
File f=File.open(path)” may result in different
behaviors if the previous default value has not been well
considered. Although the CNN model proposed in [Huo et
al., 2016] employs filters sliding over statements along the
execution path is able to reflect the sequential nature in the
adjacent statements, it is also very important to consider the
sequential nature of statements with long-term dependencies
in order to better represent the program functionality and
behaviors.

In this paper, we propose a novel unified framework based
on deep neural network called LS-CNN (Long Short-term
memory based on Convolutional Neural Network) to exploit
the sequential nature of source code to enhance the unified
features for bug localization. Such a method combines the
LSTM and CNN models to enhance the unified features by
exploiting the sequential nature of source code, such that the
functional semantics of the program and correlations between
bug reports and source code for identifying buggy files are
carefully embedded. The key part of LS-CNN is the intra-
language feature extraction network that combines LSTM
and CNN for source code processing, where LSTM is de-
signed to extract semantic features reflecting sequential na-
ture from source code and handle long-term dependency be-
tween statements and CNN is designed to capture the local
and structure information within statements. Experimental
results on widely-used software projects indicate that exploit-
ing sequential features is beneficial for bug localization and
the proposed LS-CNN significantly outperforms the state-of-
the-art bug localization methods.

The contributions of our work are summarized as follows:

• We propose a novel deep model LS-CNN to enhance the
unified features by exploiting the sequential nature of
source code for locating buggy source files.

• We design a particular framework to combine LSTM
and CNN with respect to the program structure and se-
quence, which is able to capture the semantics of the pro-
gram from both structural and sequential perspectives.

The rest of this paper is organized as follows. In Section 2,
we discuss some related work. In Section 3, we present our
proposed model. The experiments are discussed in Section
4, and finally in Section 5, we conclude the paper and issue
some future work.

2 Related Work
To maintain software quality assurance, many bug localiza-
tion approaches have been studied in recent years. Bug local-
ization, which identifies and locates source files potentially
responsible for the bug reported in bug reports, is an ex-
tremely vital but costly task in software maintenance. Most
existing approaches treat the source code as documents and
formalize the bug localization problem as a document re-
trieval problem, which calculate the relevancy between a bug
report and a source file to identify buggy source code [Poshy-
vanyk et al., 2007; Lukins et al., 2008]. For example, Gay
et al. [2009] employed Vector Space Model (VSM) based on
concept localization to represent bug reports and source code
as feature vectors, which are used to measure the similarity
between bug reports and source files. Zhou et al. [2012] also
proposed BugLocator approach using revised Vector Space
Model, which is based on document length and similar bugs
that have been solved before as new features. Recently, more
information and features from bug reports and source code
have been investigated for identifying bugs. Saha et al. [2013]
utilized structured information from source code, such as
class and method to enable more accurate bug localization.
Wang et al. [2014] proposed AmaLgam that combines ver-
sion history, similar report and structure to further improve
bug localization performance.

Recently, deep learning models are very popular and have
achieved enormous success in many natural language pro-
cessing tasks. For example, Johnson and Zhang [2015] uti-
lized convolutional neural network (CNN) to provide an alter-
native mechanism for effective use of word order for text cat-
egorization through direct embedding of small text regions.
To overcome the difficulty in learning long term dynamics of
Recurrent Neural Networks (RNNs) [Mikolov et al., 2010]
for text processing, [Sepp and Juergen, 1977; Graves, 2012;
Donahue et al., 2015] proposed long short-term memory
(LSTM) by incorporating memory cells to learn when to for-
get previous states and when to update current states given
new information. Furthermore, several studies have tried
deep learning models on software engineering research re-
cently [Lam et al., 2015; Mou et al., 2016]. For example,
White et al. [2015] applied deep models for code suggestion
and demonstrated their effectiveness at a real software engi-
neering task compared to state-of-the-art models. To over-
come the structural difference between natural and program-
ming languages, Huo et al. [2016] designed particular convo-
lutional operations for programming language and proposed
a CNN-based model to learn unified features from bug reports
and source code for identifying buggy source code.

3 Our Method
The goal of bug localization is to locate the potentially buggy
source files that produce the program behaviors specified in a
given bug report. Let C = {c1, c2, · · · , cn1

} denote the set of
source files of a software project and R = {r1, r2, · · · , rn2

}
denotes the collection of bug reports received by the software
maintenance team, where n1, n2 denote the number of source
files and bug reports, respectively. The learning task of iden-
tifying buggy source files aims to learn a prediction function

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1910



Intra-language feature 
extraction layers

Bug ID: 466621
Summary: Syntax 
error after generating a 
project with the “RCP 
3.x application with a
view” template.
Description: To
reproduce generate an 
Eclipse 3.x RCP 
application based on 
the “RCP 3.x 
application with a 
view” template. There 
is a missing import in 
View.java.

LSTM

LSTM

LSTM

Input layer Output layerCross-language 
feature fusion layers

Bug report

Source code

CNN for natural language

CNN for program-
ming language

Fully-connected network 
for feature fusion

LSTM for program-
ming language

import org.eclipse.jface. 
viewers.ArrayContentPr
ovider;
... 
import org.eclipse. 

swt.SWT;
public class View 

extends ViewPart{
public String 
getColumnText…

...

Figure 1: The general framework of LS-CNN.

f : R × C 7→ Y . yij ∈ Y = {+1,−1} indicates whether
a source code cj ∈ C is relevant to a bug report ri ∈ R,
which can be obtained by mining software commit logs and
bug report descriptions. We instantiate the learning task by
proposing a novel deep model named LS-CNN (Long Short-
term memory based Convolutional Neural Network), taking
the raw data of bug reports and source code as inputs and
learns a unified feature mapping φ(·, ·) for a given ri and cj
by combining LSTM and CNN, based on which the predic-
tion can be made with a subsequent output layer. We will
introduce the general framework of the LS-CNN model and
explain the way to exploit the sequential nature of source code
in the following subsections.

3.1 The General Framework of LS-CNN
The general framework of LS-CNN is shown in Figure 1.
Specifically, LS-CNN consists of four parts: input layer,
intra-language feature extraction layers, cross-language fea-
ture fusion layers and output layers. During the training pro-
cess, pairs of source code and bug reports and their relevant
labels are fed into the network, and the model is trained itera-
tively to optimize the training loss. For testing process, a new
bug report containing bugs and its candidate source code are
fed into the model, which outputs their relevant scores indi-
cating which code have high relevance to the given bug report
and are located as buggy.

The source code and bug reports are firstly encoded as fea-
ture vectors to feed into the network. We utilize one-hot en-
coding to represent each word as a k-dimensional one-hot
vector, while k indicates the vocabulary size. After the en-
coding process in the input layer, a sentence of n words can
be represented by vectorsX ∈ Rn×k, which are then fed into
subsequent layers. Such encoding directly transforms textual
data to the raw binary representation with no requirement on
domain knowledge for data representation and is shown to be
effective in processing text data [Johnson and Zhang, 2015].

After the preprocessing of the input layer, the encoded data
Xr

i of a bug report ri and Xc
j of a source code cj are then

passed to intra-language feature extraction layers. In these
layers, since bug reports in natural language and source code

in programming language have different structures, we use
different network for feature extraction. The intra-language
network for natural language processing has been widely
studied [Kim, 2014], we follow the standard approach to ex-
tract semantic features hr from bug reports. Besides, we de-
sign a particular network that combines CNN and LSTM to
extract the structural as well as sequential features hc from
source code, which is the key part of our model and will be
introduced in the following subsection.

Then, the intra-language features from bug report and
source code are further fused into a unified feature representa-
tion by the cross-language feature fusion layers, followed by
a linear output layer mapping the unified features to Y which
indicates whether source code cj is related to bug report ri.

3.2 Exploiting the Sequential Nature of Source
Code

In this subsection, we introduce the structure of intra-
language feature extraction network for source code, where
a novel network structure is designed to combine CNN and
LSTM and is able to extract sequential as well as structural
information from source code.

To process source code and bug reports for bug localiza-
tion, Huo et al. [2016] proposed a NP-CNN framework to
learn unified features and designed a particular CNN net-
work for source code processing, which preserves statement
integrity and the structural information between statements
could be captured. However, one important point to extract
semantic features from the source code is that, the statements
in programming language contain sequential nature, which
means the previous statements may affect subsequent state-
ments according to the execution path and statements may
have long-term dependency via data stream transmission. Al-
hough CNN applies filters to slide over statements via ex-
ecution path reflecting the sequential nature of statements
to some extent, the sequential nature of source code, espe-
cially between statements that have long-term dependency
relevance, has not been well considered by CNN. Thus, to
represent the program functionality and behaviors better, a
richer feature representation which captures sequential se-
mantics should be exploited.

One question arises here: can we enhance the unified fea-
ture by considering sequential nature of source code? We
extend CNN for source code processing [Huo et al., 2016] by
combining Long Short-Term Memory (LSTM) [Sutskever et
al., 2014; Zaremba and Sutskever, 2014] to exploit sequential
features for bug localization, which has been demonstrated
effective for maintaining sequential property in text process-
ing. LSTM is a type of Recurrent Neural Network (RNN)
that captures sequential relevance between statements. Note
that, LSTM incorporates memory cells c that allow the net-
work to learn when to forget previous hidden states and when
to update hidden states given new information, which can ex-
ploit the sequential nature from source code and overcome
the difficulty in learning long-term dynamics.

The structure of programming language feature extraction
network is illustrated in Figure 2. The first convolutional
layer aims to extract semantic features within statements to
protect the integrity of programming language, which em-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1911



Public static void main …
int a=10;
boolean flag=true;
System.out.println(a);
……
……

Public

Static

Void

main

Convolutional and pooling layer Long short-term memory layer Pooling layer

LSTM

LSTM

LSTM

Figure 2: The overall structure of intra-language feature extraction network for programming language. The first convolutional and pooling
layer aims to represent the semantics within statements while preserving their statements integrity. The subsequent LSTM layer is used to
model sequential interactions between statements with respect to the program structure.

ploys multiple filters sliding within statement and converts
statements into new feature vectors. Applying m filters on
a statement of n words will generate m feature maps zt ∈
R(n−d+1), where d is the window size of filters. In order to
extract high-level features with different granularity, the fil-
ters in the convolutional layer have different sizes. A max
pooling operation is applied within each statement to extract
the most informative of each feature map. After convolutional
and pooling process, the network generates T feature maps
x ∈ Rm, where T is the number of statements from a source
file. Since the filters in the convolutional layer slide within
statements and will not cross between statements, the most
informative features of statements are extracted and the state-
ments integrity is also well-preserved.

After processed by convolutional and pooling operations,
the feature maps are then fed into the LSTM network. LSTM
is a recurrent neural network (RNN) that takes vectors in a
sequence one by one; i.e., at time t, it takes the t-th vector as
input. In our model, xt ∈ Rm in the input vectors in time step
t, represents the feature maps of t-th statements generated by
CNN. Therefore, the input vectors maintain the inherent se-
quential nature, which can be fed into LSTM that is specified
for sequential inputs. The states of LSTM are updated given
inputs xt,ht−1 and ct−1 as follows:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf )

ct = ft � ct−1 + it � tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 + bo)

ht = ot � tanh(ct)
(1)

where ht denotes the output vector at the time step t, σ de-
notes the sigmoid function and � denotes element-wise mul-
tiplication. LSTM overcomes the difficulty in learning long-
term dynamics by incorporating memory cells c that allow
the network to learn when to forget previous hidden states and

when to update hidden states given new information, which
is able to exploit sequential nature from source code to enrich
the high-level semantic features.

A pooling layer that involves a mean pooling operation
is connected to LSTM, which aims to fuse the outputs ht

from each time step. We generate the semantic feature hc
i

of source code ci by averaging ht from each time step:
hc
i = (

∑T
t=1 πith

c
it)/

∑T
t=1 πit, where πit ∈ {1, 0} is the

indicator variable, πit = 1 if statement t of source code ci
is present in time step t, and πit = 0 otherwise. The intra-
language features hc

i are then fed into the cross-language fea-
ture fusion layer for further fusion.

After processing from intra-language feature extraction
layers, the generated middle-level intra-language features hr

from bug reports and hc from source code are then fed into
cross-language feature fusion layers, where a fully-connected
network is employed for learning a unified features and fol-
lowed by an output layer mapping to the predictions Y . How-
ever, a reported bug may only relevant to one or a few source
code, while a large number of source code are irrelevant and
this imbalance nature should be considered. Similar to [Huo
et al., 2016] which introduced an unequal misclassification
cost to handle imbalance problem, we randomly drop some
negative instances in the cross-language feature fusion layer,
which can decrease the computational cost and counteract the
negative influence of the imbalance nature. Let y(k)i denote
the k-th label of instance xi and ỹ(k)i denote its prediction,
similar to traditional LSTM model, we use cross entropy error
function in the output layer, and the parameters are learned by
minimizing the following loss function using stochastic gra-
dient descent (SGD) method:

L = −
N∑
i=1

K∑
k=1

(y
(k)
i ln ỹ

(k)
i + (1− y(k)i ) ln(1− ỹ(k)i )) (2)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1912



Table 1: Statistics of data sets.

Data Sets # source file # bug reports # total matches

AspectJ 6,994 1,653 2,812
PDE 5,340 4,034 18,116

Platform 6,112 6,330 26,231
JDT 6,842 5,532 31,556

4 Experiments
To evaluate the effectiveness of LS-CNN, we conduct exper-
iments on open source software projects and compare it with
several state-of-the-art models for bug localization.

4.1 Experiment Settings
The datasets used in the experiments are extracted from four
well-known open source software projects. The detailed in-
formation of the data sets are shown in Table 1.

All the projects and ground truth of bug reports and
software code can be extracted from bug tracking sys-
tem (Bugzilla) and version control system (Git) [Fischer
et al., 2003], which have been widely studied in previous
work [Zhou et al., 2012; Saha et al., 2013]. To enrich the
data sets and provide convincing experiments, we use mul-
tiple versions of each project for evaluation. AspectJ1 is an
aspect-oriented extension to the Java programming language
and the data set PDE2 (Plug-in Development Environment) is
a tool to create and deploy features and plug-ins of Eclipse.
Another project is Platform3 that contains a set of frameworks
and common services which make up Eclipse infrastructures.
We also investigate project JDT4 (Java Development Tools),
which is an Eclipse project used for plug-ins support and de-
velopment of any Java applications.

For each data set, 10-fold cross validation is repeated 10
times and we use Top k Rank (k=10) and AUC (Area Un-
der ROC Curve) to measure the effectiveness of the LS-CNN
model, which have been widely applied for evaluation in in-
formation retrieval based bug localization problems [Zhou et
al., 2012; Saha et al., 2013; Kochhar et al., 2016]. Besides,
MAP (Mean Average Precision) are also used for evaluating
the cost-effectiveness of identifying buggy source files, which
is shown in Eq. (3):

MAP =

n2∑
i=1

n1∑
j=1

Prec(j) ∗ t(j)
Ni

Prec(j) =
Q(j)

j

(3)

where n1, n2 indicate the number of candidate source code
and retrieved bug reports, respectively. Ni is the number of
relevant files to report i and t(j) is the indicator vector pre-
senting whether source code in the position j is relevant or

1http://www.eclipse.org/aspectj/index.php
2http://www.eclipse.org/pde/
3http://projects.eclipse.org/projects/eclipse.platform
4http://http://www.eclipse.org/jdt/

not. Prec(j) is the precision at the given cut-off j and Q(j) is
the number of relevant source code in top j positions.

We compare our proposed model LS-CNN with following
baseline methods:

• BugLocator [Zhou et al., 2012]: a state-of-the-art bug
localization method which employs the revised Vector
Space model to measure the similarity between bug re-
ports to locate potential buggy files related to a given bug
report.

• BLUiR [Saha et al., 2013]: a state-of-the-art bug local-
ization model, which utilizes structured code informa-
tion from bug reports and source files to enable more
accurate bug localization.

• AmaLgam [Wang and Lo, 2014]: a state-of-the-art bug
localization model which combines version history, sim-
ilar bug reports and structure information for mining
buggy source code.

• CNN [Kim, 2014]: a straight-forward CNN-based ap-
proach which merges textual bug report and source code
together and feeds them directly to a CNN model.

• NP-CNN [Huo et al., 2016]: a state-of-the-art CNN-
based bug localization model, which employs two dif-
ferent CNNs to learn unified features from source code
and bug reports for locating buggy source files.

• LSTM: a straight-forward LSTM based approach which
merges textual bug reports and textual source code to-
gether and feeds them directly into a LSTM model.

• LSTM+: a variant of LS-CNN, which employs a
straight-forward LSTM model for source code process-
ing and a CNN model is for bug reports processing.

For BugLocator, BLUiR and AmaLgam, we use the same
parameter settings suggested in their work [Zhou et al., 2012;
Saha et al., 2013; Wang and Lo, 2014]. For LS-CNN, we
follow the same experiment settings in [Huo et al., 2016] to
construct CNN model. We employ the most commonly used
ReLU σ(x) = max(0, x) as active function and the filter win-
dows size d is set as 3, 4, 5, with 100 feature maps each in
CNN. The number of neuron dimension in LSTM is set the
same as CNN. In addition, the drop-out method [Hinton et
al., 2012] is also applied in LS-CNN which is used to prevent
co-adaption of hidden units by randomly dropping out values
in fully-connected layers, and the drop-out probability p is set
0.5 in our experiments.

4.2 Experimental Results
For each data set, 10-fold cross validation is repeated 10 times
and the average performance of all compared methods with
respect to Top 10 Rank and MAP are tabulated in Table 2
and Table 3, and the performance with respect to AUC is de-
picted in Figure 3, where the best performance on each data
set is boldfaced. Mann-Whitney U-test is conducted at 95%
confidence level to evaluate the significance. If LS-CNN sig-
nificantly outperforms a compared method, the inferior per-
formance of the compared method would be marked with “◦”,
and “•” if LS-CNN performs significantly worse.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1913



Table 2: Performance Comparisons (Top 10 Rank) of all methods.
The best performance of each data sets is boldfaced. The value that
significantly worth than LS-CNN is marked with ◦.

Method AspectJ PDE Platform JDT Avg.

BugLocator 0.622 ◦ 0.675 ◦ 0.727 ◦ 0.736 ◦ 0.690
BLUiR 0.659 ◦ 0.679 ◦ 0.754 ◦ 0.745 ◦ 0.709

AmaLgam 0.693 ◦ 0.691 ◦ 0.773 ◦ 0.757 ◦ 0.729
CNN 0.773 ◦ 0.752 ◦ 0.821 ◦ 0.859 ◦ 0.801

NP-CNN 0.836 ◦ 0.783 0.872 ◦ 0.882 ◦ 0.843
LSTM 0.792 ◦ 0.761 ◦ 0.869 ◦ 0.868 ◦ 0.823

LSTM+ 0.855 0.780 0.870 ◦ 0.883 ◦ 0.847
LS-CNN 0.869 0.793 0.895 0.917 0.869

Table 3: Performance Comparisons (MAP) of all methods. The best
performance of each data sets is boldfaced. The value significantly
worth than LS-CNN is marked with ◦.

Method AspectJ PDE Platform JDT Avg.

BugLocator 0.416 ◦ 0.367 ◦ 0.422 ◦ 0.441 ◦ 0.412
BLUiR 0.431 ◦ 0.391 ◦ 0.441 ◦ 0.451 ◦ 0.429

AmaLgam 0.428 ◦ 0.435 ◦ 0.449 ◦ 0.458 ◦ 0.443
CNN 0.512 ◦ 0.463 ◦ 0.493 ◦ 0.517 ◦ 0.496

NP-CNN 0.545 ◦ 0.497 0.541 ◦ 0.533 ◦ 0.529
LSTM 0.519 ◦ 0.464 ◦ 0.521 ◦ 0.524 ◦ 0.507

LSTM+ 0.548 ◦ 0.502 0.542 ◦ 0.546 ◦ 0.535
LS-CNN 0.568 0.503 0.568 0.583 0.556

From the results, we can find that LS-CNN achieves the
best average performance in terms of Top 10 Rank. The Top
10 Rank of LS-CNN achieves 0.869, which improves state-
of-the-art bug localization methods BugLocator (0.690) by
25.9%, BLUiR (0.709) by 22.5% and AmaLgam (0.729) by
19.2%. It is reasonable that LS-CNN performs better than
traditional baseline models (BugLocator, BLUiR and AmaL-
gam) because LS-CNN costs more time and space to extract
features during training process. Comparing with the best
deep learning model NP-CNN, LS-CNN still improves the
performance of NP-CNN (0.843) by 3.00%, which means
the sequential nature between statements from source code
can be well exploited by the LSTM network, leading to a
better bug localization performance. Additionally, although
LSTM+ also utilizes LSTM in source code processing, we
find LSTM+ does not perform well in comparison to LS-
CNN. The reason may be that the sequential nature within
statements may not be as important as those between state-
ments when modeling source code, so that LS-CNN captures
the information within statements by CNN can exploit more
local semantics, leading to a better feature representation and
bug localization performance.

The performance comparisons in terms of MAP are sim-
ilar to Top 10 Rank, as shown in Table 3. MAP evaluates
the average performance across all data sets and has been
widely used in information retrieval based bug localization
problems [Zhou et al., 2012; Saha et al., 2013]. For baseline
methods, AmaLgam achieves the best performance among
baseline models and the reason may because AmaLgam con-
siders more information such as structure and version history
for bug localization. It can be clearly observed that LS-CNN

Figure 3: Performance Comparisons (AUC) of all methods on all
data sets.

receives the best MAP value (0.556 in average) across all data
sets and shows significant improvement in most data sets, in-
dicating the superiority of LS-CNN over the other compared
methods is statistically significant.

We also evaluate the performance comparisons between
LS-CNN and state-of-the-art bug localization models in terms
of AUC, illustrating in Figure 3. AUC measures the compre-
hensive performance of different predictors and LS-CNN still
performs the best on all data sets comparing to state-of-the-art
bug localization models.

In summary, the sequential nature from source code in pro-
gramming language is able to provide a better semantic rep-
resentation, and the specific model LS-CNN that combines
CNN and LSTM can exploit the sequential nature as well as
the structural information of source code and further improve
the bug localization performance.

5 Conclusion

In this paper, we propose a novel deep model called LS-CNN
to enhance the unified features for bug localization by exploit-
ing the sequential nature of source code, where a particular
network structure is designed to combine CNN and LSTM
that captures sequential semantics as well as structural infor-
mation from source code. Experimental results on widely-
used software projects indicate that enhancing the unified fea-
ture by exploiting the program sequential information from
source code is beneficial and effective, where LS-CNN sig-
nificantly outperforms the state-of-the-art methods for locat-
ing buggy source code.

In the future, incorporating additional data to enrich the
network structure of LS-CNN will be carefully investigated.
Furthermore, improving bug localization by combining richer
program structural and sequential information derived from
program analysis tools for feature extraction will be another
interesting future work.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1914



References
[Donahue et al., 2015] Jeff Donahue, Lisa Anne Hendricks,

Sergio Guadarrama, Marcus Rohrbach, Subhashini Venu-
gopalan, Trevor Darrell, and Kate Saenko. Long-term re-
current convolutional networks for visual recognition and
description. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2625–2634,
Boston, MA, USA, 2015.

[Fischer et al., 2003] Michael Fischer, Martin Pinzger, and
Harald Gall. Populating a release history database from
version control and bug tracking systems. In Proceedings
of the 19th International Conference on Software Mainte-
nance, pages 23–32, Amsterdam, The Netherlands, 2003.

[Gay et al., 2009] Gregory Gay, Sonia Haiduc, Andrian
Marcus, and Tim Menzies. On the use of relevance feed-
back in ir-based concept location. In Proceedings of the
25th International Conference on Software Maintenance,
pages 351–360, Edmonton, Canada, 2009.

[Graves, 2012] Alex Graves. Supervised sequence labelling
with recurrent neural networks. Studies in Computational
Intelligence, 385:1–131, 2012.

[Hinton et al., 2012] Geoffrey E Hinton, Nitish Srivastava,
Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhut-
dinov. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv:1207.0580, 2012.

[Huo et al., 2016] Xuan Huo, Ming Li, and Zhi-Hua Zhou.
Learning unified features from natural and programming
languages for locating buggy source code. In Proceedings
of the 25th International Joint Conference on Artificial In-
telligence, pages 1606–1612, New York, NY, USA, 2016.

[Johnson and Zhang, 2015] Rie Johnson and Tong Zhang.
Effective use of word order for text categorization with
convolutional neural networks. In Proceedings of the Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 103–112, Denver, CO, USA, 2015.

[Kim, 2014] Yoon Kim. Convolutional neural networks for
sentence classification. In Proceedings of Conference
on Empirical Methods in Natural Language Processing,
pages 1746–1751, Doha, Qatar, 2014.

[Kochhar et al., 2016] Pavneet Singh Kochhar, Xin Xia,
David Lo, and Shanping Li. Practitioners’ expectations on
automated fault localization. In Proceedings of the 25th
International Symposium on Software Testing and Analy-
sis, pages 165–176, 2016.

[Lam et al., 2015] An Ngoc Lam, Anh Tuan Nguyen,
Hoan Anh Nguyen, and Tien N. Nguyen. Combining
deep learning with information retrieval to localize buggy
files for bug reports. In Proceedings of the 28th Inter-
national Conference on Automated software Engineering,
pages 476–481, Lincoln, NE, USA, 2015.

[Lukins et al., 2008] Stacy K. Lukins, Nicholas A. Kraft,
and Letha H. Etzkorn. Source code retrieval for bug local-
ization using latent dirichlet allocation. In Proceedings of
15th Working Conference on Reverse Engineering, pages
155–164, Antwerp, Belgium, 2008.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafit, Luks
Burget, Jan Cernocky, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Proceed-
ings of the 11th Annual Conference of the International
Speech Communication Association, pages 1045–1048,
Makuhari, Japan, 2010.

[Mou et al., 2016] Lili Mou, Ge Li, Lu Zhang, Tao Wang,
and Zhi Jin. Convolutional neural networks over tree struc-
tures for programming language processing. In Proceed-
ings of the 13th AAAI Conference on Artificial Intelligence,
pages 1287–1293, Phoenix, AZ, USA, 2016.

[Poshyvanyk et al., 2007] Denys Poshyvanyk, Yann-Gaël
Guéhéneuc, Andrian Marcus, Giuliano Antoniol, and
Vá Clav Rajlich. Feature location using probabilistic rank-
ing of methods based on execution scenarios and informa-
tion retrieval. IEEE Transactions on Software Engineer-
ing, 33(6):420–432, 2007.

[Saha et al., 2013] Ripon K Saha, Matthew Lease, Sarfraz
Khurshid, and Dewayne E Perry. Improving bug local-
ization using structured information retrieval. In Proceed-
ings of the 28th International Conference on Automated
Software Engineering, pages 345–355, Silicon Valley, CA,
USA, 2013.

[Sepp and Juergen, 1977] Hochreiter Sepp and Schmidhuber
Juergen. Long short-term memory. In Proceedings of the
25th International Joint Conference on Artificial Intelli-
gence, pages 1606–1612, Cambridge, MA, USA, 1977.

[Sutskever et al., 2014] Ilya Sutskever, Oriol Vinyals, and
Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing,
pages 3104–3112, Montreal, Canada, 2014.

[Wang and Lo, 2014] Shaowei Wang and David Lo. Ver-
sion history, similar report, and structure: putting them
together for improved bug localization. In Proceedings of
the 22nd International Conference on Program Compre-
hension, pages 53–63, Hyderabad, India, 2014.

[White et al., 2015] Martin White, Christopher Vendome,
Mario Linares-Vásquez, and Denys Poshyvanyk. Toward
deep learning software repositories. In Proceedings of
the 12th IEEE Working Conference on Mining Software
Repositories, Florence, Italy, 2015.

[Ye et al., 2014] Xin Ye, Razvan C. Bunescu, and Chang
Liu. Learning to rank relevant files for bug reports using
domain knowledge. In Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Soft-
ware Engineering, pages 689–699, Hong Kong, China,
2014.

[Zaremba and Sutskever, 2014] Wojciech Zaremba and Ilya
Sutskever. Learning to execute. arXiv/1410.4615, 2014.

[Zhou et al., 2012] Jian Zhou, Hongyu Zhang, and David
Lo. Where should the bugs be fixed? more accurate in-
formation retrieval-based bug localization based on bug re-
ports. In Proceedings of the 34th International Conference
on Software Engineering, pages 14–24, Zurich, Switzer-
land, 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1915


