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Abstract

Zero-shot learning predicts new class even if no
training data is available for that class. The solu-
tion to conventional zero-shot learning usually de-
pends on side information such as attribute or text
corpora. But these side information is not easy to
obtain or use. Fortunately in many classification
tasks, the class labels are ordered, and therefore
closely related to each other. This paper deals with
zero-shot learning for ordinal classification. The
key idea is using label relevance to expand supervi-
sion information from seen labels to unseen labels.
The proposed method SIDL generates a supervi-
sion intensity distribution (SID) that contains each
label’s supervision intensity, and then learns a map-
ping from instance to SID. Experiments on two typ-
ical ordinal classification problems, i.e., head pose
estimation and age estimation, show that SIDL per-
forms significantly better than the compared regres-
sion methods. Furthermore, SIDL appears much
more robust against the increase of unseen labels
than other compared baselines.

1 Introduction
In some computer vision tasks, such as object classification,
there are tens of thousands of different classes, only a few
of which have been annotated. The class label space is huge
and it is hard to have all classes available for training. In
this case there are no training instances for some classes
but we still want to make a prediction. Thus, the goal is
learning to classify unseen class instances. This problem is
generally referred to as zero-shot learning [Lampert et al.,
2014] [Palatucci et al., 2009].

Most zero-shot learning methods are based on side in-
formation, such as attributes [Farhadi et al., 2009] or text
corpora [Socher et al., 2013]. For example, [Palatucci et
al., 2009] uses the semantic knowledge bases to classify at-
tributes; [Lampert et al., 2014] proposes a probabilistic at-
tribute prediction method; [Akata et al., 2013] embeds each
class into the space of attribute vectors and then learns a linear
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Figure 1: Supervision intensity for different labels. Green repre-
sents seen labels and red represents unseen labels. The ground truth
label of this instance is “Good”, so it has the strongest supervision
intensity. Although “Common” is an unseen label, it still has certain
supervision information because it is closely related to “Good”.

classifier; [Zhang and Saligrama, 2016] learns a joint latent
space using structured learning.

The difficulty in obtaining the side information or using
other techniques to process the side information are the most
serious issues for many existing zero-shot learning methods.
For the attribute-based methods, human experts are needed to
label attributes and this is very time-consuming and not easy
to obtain the discriminative category-level attributes. Some
methods discover attributes interactively [Parikh and Grau-
man, 2011] [Branson et al., 2010], but this also requires la-
borious human participation. Although many algorithms can
discover attribute-related concepts on the Web [Rohrbach et
al., 2010] [Berg et al., 2010], they can also be biased or lack
information that is critical to a particular task [Parikh and
Grauman, 2011]. For the text corpora-based methods, they
first require a large language corpora, such as Wikipedia, and
then need to learn word representation [Socher et al., 2013] or
use standard Natural Language Processing (NLP) techniques
to produce class descriptions [Elhoseiny et al., 2013]. It is
hard to guarantee the correctness of such class descriptions
for zero-shot learning. Conclusively, although side informa-
tion is helpful for zero-shot learning, it has many disadvan-
tages. Generating these side information is very tedious and
sometimes we cannot know which side information is truly
wanted. If we depend on human labor or NLP techniques,
noisy side information will become almost inevitable and in-
fluence the final performance. To avoid these problems, it
is important to solve zero-shot learning in whatever possible
cases that have some properties we can utilize to avoid using
side information.
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One of the properties we can rely on is ordinal labels,
which are quite common in real applications, such as fa-
cial beauty, student grades, restaurant evaluates, image scores
and so on, where ordinal labels, such as “Perfect”, “Good”,
“Common”, “Poor” or “Bad”, are used to represent lev-
els, grades, degrees, etc. Ordinal zero-shot learning could
be solved by standard regression methods if the ordinal la-
bels are regarded as (sometimes a transformation process is
needed) continuous real numbers. However, transforming or-
dinal labels into real numbers and vice versa often suffers cer-
tain information loss. Besides, it is hard to incorporate prior
knowledge in the real numbers. Therefore, it is preferable for
the ordinal classification problem to remain in the classifica-
tion style, i.e., regarding the classes as discrete ordered labels
rather than continuous numbers. Toward this goal, the rela-
tionship among the ordinal labels is used to expand supervi-
sion information from the seen classes to the unseen classes.
Gradualness is perhaps the most common relationship among
the ordinal label, i.e., once a label describes an instance, its
neighboring labels in the order sequence may also describe
the same instance to some extent less than the original la-
bel does. As shown in Figure 1, the ground truth label is
“Good”, so it has the strongest “supervision intensity”, which
means it describes the instance most accurately. The unseen
neighboring label “Common” can also describe the instance
to some extent due to its high relevance with “Good”. It
can be regarded that the “supervision intensity” of “Good”
has been expanded to “Common”. Different from conven-
tional zero-shot learning, where the unseen labels offer no
supervision information, in the method proposed in this pa-
per, the supervision information of the unseen labels can be
expanded from the seen labels according to the relationship
among them. Combining the supervision intensity of all pos-
sible labels yields a data form similar to a probability distri-
bution. We call it Supervision Intensity Distribution (SID)
and propose an approach to learn effectively from SID for
zero-shot learning problems.

The main contribution of this paper is to find a new so-
lution for zero-shot learning with ordinal labels. Compared
with previous methods, we use no side information and learn
directly from the training data. To the best of our knowledge,
this is one of the first attempts to solve the zero-short lean-
ing problem without using any side information. Besides, we
also study the unseen label patterns, which will influence the
zero-shot learning performance. We conduct experiments in
two computer vision tasks with ordinal labels: head pose es-
timation and age estimation. These experiments demonstrate
that our method is effective and robust. The rest of the paper
is organized as follows. Section 2 gives the definition of SID
and introduces how to generate SID for a given instance, and
then proposes the method to learn from SID. In Section 3, ex-
perimental results on head pose estimation and age estimation
are reported. Finally, conclusions are drawn in Section 4.

2 Ordinal Zero-Shot Learning
In this section, we first introduce four patterns of unseen la-
bels in ordinal label space, and then we give the definition
of SID and introduce how to generate SID from ground truth

(a) Inner pattern (b) Outer pattern

(c) Interval pattern    (d) Random pattern

Figure 2: Four unseen label patterns in the ordinal label space. The
disk represents the label space, and the dark parts represent the un-
seen labels.

label. Finally, we show the method of learning from SID.

2.1 Unseen Label Patterns
Previous works on zero-shot learning usually randomly
choose unseen labels as test labels. This can also be used
in ordinal zero-shot learning. But, since the label space is
ordered and finite in ordinal classification, there are differ-
ent patterns of unseen labels, which might influence zero-shot
learning in different ways. Some patterns may be more chal-
lenging than the random pattern. The key idea of our method
is expanding supervision information from seen labels to un-
seen labels. Different unseen label patterns may have differ-
ent response to such expanding process. As can be seen in
Figure 2, we study four typical unseen label patterns in this
paper. The disk represents the entire ordinal label space and
the dark parts represent the unseen labels. The four patterns
are inner pattern, outer pattern, interval pattern and random
pattern. For the inner pattern, the supervision information
can only be expanded from the outside of the unseen labels;
For the outer pattern, the supervision information can only be
expanded from the seen labels surrounded by the unseen la-
bels; For the interval pattern, the supervision information can
be expanded from the seen labels between the unseen labels;
Finally, for the random pattern, the expansion is also random.
These four patterns are representative and fundamental and
the combination of these patterns can generate more other
patterns.

2.2 Supervision Intensity Distribution
For a given instance, each label in the label space can provide
supervision information to this instance. We use supervision
intensity to represent the strength of supervision information.
Supervision intensity indicates the correlation of a label to an
instance. The supervision intensity of all labels constitute a
data form similar to a probability distribution which we call
supervision intensity distribution (SID).

Assume the label space is L = {l1, l2, ..., lC}, and given
an instance x, the SID is y = (y1, y2, ..., yC), where C is
the number of labels. The desired SID should satisfy two
criteria. First is yi ∈ [0, 1] and

∑
i yi = 1; Second is the

ground truth label l̂ is assigned with the highest supervision
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intensity ŷ, and the supervision intensity decreases as the rel-
evance between l̂ and li decreases. That is, if the i-th label
has the strongest correlation with l̂, yi will be higher than the
supervision intensity of other labels less correlated with l̂.

SID has a natural advantage for ordinal zero-shot learning.
When learning for a particular label l, the instances assigned
to other labels can also help because their labels are related to
l according to the SID. This means that even if the training set
has no instance with respect to a label, we can still use SID to
learn this label.

However, the ground truth SID is not available in most
datasets. Therefore, we need to transform the ground truth
labels into SID before learning from SID. We use Maha-
lanobis distance to measure label relevance. When the labels
are numbers, we can directly use the following formula to
compute relevance between two labels,

r(li, lj) = (li − lj)TΣ−1(li − lj), (1)

Σ is a diagonal covariance matrix of D×D, where D is the
dimensionality of each label1. If class labels are not numbers,
such as “Perfect”, “Good”, “Common”, a straight-forward
method is using evenly spaced integers to replace the labels2.
Then, we can generate supervision intensity distribution by

yi =
1

Z
exp

(
−r(li, l̂)

)
, (2)

where Z is a normalization factor that ensures
∑
i yi = 1,

i.e.,

Z =
∑
i

exp
(
−r(li, l̂)

)
. (3)

Through transformation from the ground truth label to SID,
the supervision information has been expanded to unseen la-
bels from seen labels. Figure 3 gives one example. Assume
there are 100 labels in the label space and these ordinal labels
consist a square, we generate SID for each seen label out-
side the red box and the superposition of these SID consists
a gray-scale image. Each pixel of the image corresponds to
one label in the label space. For each pixel, higher intensity
(brighter) means strong supervision information of the cor-
responding label. The labels inside the red box are unseen
labels. Originally, they have no supervision information. But
after expansion from the SID of the seen labels, the unseen
labels inside the red box will also have supervision informa-
tion of variant intensities. Note that the image in Figure 3
undergos a contrast stretching process to increase the image
contrast for a better view.

2.3 Supervision Intensity Distribution Learning
After generating SID, the training set becomes G =
{(x1,y1), (x2,y2), ..., (xn,yn)}, where yi is the SID of in-
stance xi, and yji is the j-th element in yi. The goal is to
learn a model that can predict a SID which is similar to yi

1The label considered in this paper might be multivariate, such
as the 2-dimensional head pose label used in the later experiments

2In this paper, we only do experiments on databases which labels
are numbers.

Figure 3: Supervision information expansion through SID. Labels
inside red box are unseen labels. For each pixel, higher intensity
(brighter) means strong supervision information of the correspond-
ing label.

given the instance xi. This problem setting matches a re-
cently proposed machine learning paradigm called Label Dis-
tribution Learning [Geng, 2016], where SID can be viewed as
a special form of label distribution. There are many criteria to
measure the similarity between two distributions and here we
use Jeffrey’s divergence. Jeffrey’s divergence between two
distribution P andQ is defined by

DJ(P ||Q) =
∑
i

(Pi −Qi) log
Pi
Qi
, (4)

where Pi and Qi are the i-th element of P and Q, respec-
tively. As Geng described in [Geng et al., 2013] and [Geng
and Xia, 2014], we use the maximum entropy model to em-
body the mapping from the instance to its corresponding SID,
i.e.,

p(lj |xi;θ) =
1

Γi
exp(

∑
r

θjrx
r
i ), (5)

where Γi =
∑
k exp(

∑
r θkrx

r
i ) is the normalization factor,

xri is the r-th feature of xi, and θjr is an element in θ corre-
sponding to the label lj and the r-th feature.

Then the best parameter θ∗ is determined by

θ∗ = argmin
θ

∑
i

DJ(yi||p(l|xi;θ))+λ1
∑

(m,n)∈N

||θm−θn||22,

(6)
The first term is Jeffrey’s divergence and yi is the ground
truth SID of i-th instance, and the p(l|xi;θ) is the pre-
dicted SID. The second term is a regularizer, where N is
the set of the indices of the neighboring labels, and θm
and θn represent the rows in θ corresponding to the m-th
and n-th labels, respectively. Suppose each label is a D-
dimension vector, then the labels li and lj are neighbors if
|l1i − l1j | ≤ δ1 ∧ |l2i − l2j | ≤ δ2 ∧ ... ∧ |lDi − lDj | ≤ δD,
where lki and lkj are k-th element in li and lj , respectively.
δ = (δ1, δ2, ..., δD) is a D-dimension parameter vector that
controls the distance among neighbors. The regularization
term guarantees that similar labels have similar supervision
intensities, which makes the SID smooth. λ1 is a balance
factor.
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(a) Pointing’04 database (b) BJUT-3D database (c) MORPH database

Figure 4: Examples in the Pointing’04 database, BJUT-3D database
and MORPH database.

Substituting Eq. (5) to Eq. (6), we get the target function

T (θ) =
∑
i

ln Γi −
∑
i

∑
j

(yji
∑
r

θjrx
r
i )+

∑
i

∑
j

1

Γi
exp(

∑
r

θjrx
r
i )(
∑
r

θjrx
r
i

− ln Γi − ln yji ) +
1

2
λ1

∑
(m,n)∈N

||θm − θn||22.

(7)

The minimization of T (θ) can be solved by the limited-
memory quasi-Newton method L-BFGS [Liu and Nocedal,
1989]. After obtaining the optimal parameter θ∗, we can get
the predicted SID by p(l|x′;θ∗) given instance x′. The la-
bel corresponding to the maximum supervision intensity is
regarded the final label prediction for x′.

3 Experiments
In this section, we will report experiments on two computer
vision tasks, i.e., head pose estimation and facial age esti-
mation. For each task, we test not only the performance of
the proposed ordinal zero-shot learning algorithm, but also
its robustness against the increase of unseen labels in differ-
ent patterns.

3.1 Datasets
For head pose estimation, the datasets used in this experiment
are the Pointing’04 database [Gourier et al., 2004] and the
BJUT-3D Chinese Face database [Baocai et al., 2009]. For
age estimation, the dataset is the MORPH database [Ricanek
and Tamirat, 2006]. Three examples in these databases are
shown in Figure 4.

The Pointing’04 database has 13 yaw angles {±90◦,±75◦,
±60◦, ±45◦, ±30◦, ±15◦, 0◦} and 9 pitch angles {±90◦,
±60◦,±30◦,±15◦, 0◦}. A pose is represented by the combi-
nation of a yaw angle and a pitch angle. Specially, when the
pitch angle is ±90◦, the yaw angle is always 0◦. Thus, there
are in total 13×7+2 = 93 poses involved in the dataset. The
images are taken from 15 different human subjects in two dif-
ferent time and there are 93 × 15 × 2 = 2790 images. For
each image, the bounding box of the face is provided in the
database.

The BJUT-3D Chinese Face database is a three dimension
face database including 500 Chinese persons. There are 250
females and 250 males in this database. Everyone has a high-
resolution 3D face data which is acquired by the CyberWare
3D scanner. We render 65 different poses from each 3D face

Pointing’04 database BJUT-3D database
SIDL 6.83◦ 1.80◦

Kernel PLS 7.73◦ 2.08◦

Linear PLS 14.25◦ 4.57◦

Kernel SVR 11.15◦ 2.17◦

Linear SVR 13.96◦ 2.32◦

Table 1: Ordinal zero-shot learning results on Pointing’04 database
and BJUT-3D database. Lower result is better.

MAE
SIDL 3.88
Kernel PLS 4.12
OHRank 5.82
AAS 4.54
WAS 8.49
Kernel SVR 8.14
CART 5.26

Table 2: Ordinal zero-shot learning results on MORPH database.
Lower result is better.

which has 9 yaw angles {±60◦, ±45◦, ±30◦, ±15◦, 0◦} and
9 pitch angles {±40◦, ±30◦, ±20◦, ±10◦, 0◦}. Specially,
when the pitch angle is ±40◦, the yaw angle is always 0◦

because the 3D faces only include the frontal surface so that
too large angles will fail the rendering process. Thus there
are 500× 65 = 32500 images in total.

The MORPH database is one of the largest publicly avail-
able aging face databases. It contains 55,132 face images
from more than 13,000 subjects and the ages of the face im-
ages range from 16 to 77. The MORPH database is very im-
balanced with regard to the number of instances for each age.
Generally speaking, the face images from the ages older than
45 are relatively rare in this database. In order to eliminate
the influence of class imbalance, we only use the instances
with age labels between 16 to 45, which results in a total of
47,579 instances.

3.2 Zero-Shot Learning Experiment
On each dataset, we randomly choose 2/3 labels as seen labels
in the training phase. Then, we test on the data whose labels
are the remaining 1/3 labels.

For head pose estimation, we resize each image to 64× 64
and the features are extracted by a three-level pyramid HOG
of cell sizes: 8×8, 16×16 and 32×32. The SID is generated

according to Eq. (2) and Σ =

[
τ21 0
0 τ22

]
, where τ1 = τ2 = 30

for the Pointing’04 dataset, which are 2 times of the mini-
mum angle interval (15◦). δ is set to (15, 15). These hyper-
parameters are obtained by cross validation. Similarly, we set
τ1 = 20, τ2 = 30 on the BJUT-3D dataset and δ is (10, 15).
In this experiment, we compare several regression methods
including Linear/Kernel PLS [Haj et al., 2012], Linear/Kernel
SVR [Guo et al., 2008]. As to the parameter configurations,
on the Pointing’04 dataset, Kernel PLS uses the RBF kernel
with the width of 3; Kernel SVR is implemented by by LIB-
SVM [Chang and Lin, 2011] using the RBF kernel with the
parameter “gamma” of 0.01; On the BJUT-3D dataset, Ker-
nel PLS uses the RBF kernel with the kernel width of 5; for
Kernel SVR, we use RBF kernel with the “gamma” of 0.1.

For age estimation, the features extracted from the face im-
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(a) Inner pattern (b) Outer pattern

(c) Interval pattern (d) Random pattern
Figure 5: Four unseen label patterns for the Pointing’04 dataset. Blue parts represent seen labels, black parts represent candidate unseen
labels. Unseen labels will be selected from these candidate unseen labels. Better view in color.
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Figure 6: Results in the four unseen label patterns on the Pointing’04 dataset. The horizontal axis is gradually increase number of unseen
labels, vertical axis is MAE. Better view in color.

ages are the Biologically Inspired Features (BIF) [Guo et al.,
2009] and their dimensionality is reduced to 200 by Marginal
Fisher Analysis (MFA) [Yan et al., 2007]. The SID of each
face image is initialized using Eq. (2) with its mean at the
chronological age and Σ degenerates to variance, which is
set to 72. δ in this dataset is a 1-dimensional vector and
is set to 1. Several existing algorithms are compared as the
baseline methods, which include AAS [Lanitis et al., 2004],
WAS [Lanitis et al., 2002], OHRank [Chang et al., 2011], and
Kernel PLS [Guo and Mu, 2011]. Two conventional general-
purpose regression methods are also compared, i.e., Kernel
SVR and CART (Classification and Regression Tree). For
AAS, the error threshold in the appearance cluster training
step is set to 3. For OHRank, the absolute cost function and
the RBF kernel are used. Kernel PLS uses the RBF kernel
with the width of 1. Kernel SVR uses the RBF kernel with
the “gamma” of 15. CART is implemented as the “regres-
sion” type and set to the default values of the MATLAB im-
plementation (“classregtree” class in MATLAB).

The performance of head pose estimation and age estima-
tion is measured by the commonly used mean absolute error
(MAE). For head pose estimation, the MAE of yaw and pitch
is calculated by the Euclidean distance between the predicted
(pitch,yaw) pair and the ground truth (pitch,yaw) pair. For
age estimation, the MAE is the average absolute difference
between the estimated age and the chronological age. The
results of the two tasks are shown in Table 1 and Table 2.

As can be seen, SIDL performs significantly better than
other baseline methods. For example, compared to the sec-
ond best result, the MAE of SIDL decreases by 11.64%,

13.46% and 5.83% on three datasets, respectively. The ad-
vantage of SIDL on age estimation is not as prominent as that
on head pose estimation. This is because that in head pose
estimation, there are more labels with higher dimensionality
so that supervision information can be expanded more effec-
tively among the labels.

3.3 Robustness Experiment
In previous experiments, SIDL appears robust against miss-
ing class labels since it expands supervision information to
the unseen labels. To further demonstrate this, we design an
experiment that gradually increases the number of unseen la-
bels. In order to observe the performance variation of a par-
ticular algorithm, the test set should keep the same when the
unseen labels in the training set changes. So we first split the
dataset into a training set and a test set. Then, while keeping
the test set unchanged, the instances associated to more and
more labels in the training set are gradually removed.

For each dataset, first we generate a candidate unseen label
set and then we randomly select labels as unseen labels from
the candidate unseen label set. As discussed in Section 2.1,
we generate candidate label set according to the four unseen
label patterns shown in Figure 2. In detail, Figure 5 shows the
candidate unseen label sets for different patterns on the Point-
ing’04 dataset (those for the BJUT-3D dataset and MORPH
dataset are similar). Black parts represent candidate unseen
labels and blue parts represent seen labels. Then, for head
pose estimation, in each pattern we choose the unseen labels
4 times and the proportions of the unseen labels to the total
candidate unseen labels gradually increase as 1/4, 2/4, 3/4
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Figure 7: Results in the four unseen label patterns on the BJUT-3D dataset. The horizontal axis is gradually increase number of unseen labels,
vertical axis is MAE. Better view in color.
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Figure 8: Results in the four unseen label patterns on the MORPH dataset. The horizontal axis is gradually increase number of unseen labels,
vertical axis is MAE. Better view in color.

and 1; for age estimation, we choose the unseen labels 3 times
and the proportions are 1/3, 2/3 and 1, respectively. Note that
the unseen labels are randomly chosen without replacement,
i.e., the latter selection will include the previous selection.

Each algorithm undergoes a five-fold cross validation on
each unseen label pattern. The performance with the in-
crease of unseen labels on the three datasets is shown in Fig-
ure 6, Figure 7 and Figure 8, respectively. Generally speak-
ing, SIDL performs the best in all cases compared with the
baseline methods. More importantly, in most cases, the per-
formance of SIDL deteriorates most slowly with the increase
of unseen labels. This indicates that SIDL deals with ordi-
nal zero-shot learning well in not only the value of MAE,
but also the robustness against more and more unseen labels.
Note that when starting from the lowest MAE, it is much
harder for SIDL to remain the slowest performance deteri-
orating rate than those baseline methods starting from higher
MAE. For example, on the BJUT-3D dataset, the second best
algorithm when 1/4 unseen labels are selected, Kernel SVR,
deteriorates rapidly with the increase of unseen labels. On
the other hand, although some algorithms starting from a very
high MAE, such as Linear PLS, and deteriorate slowly, it does
not make much sense since their performance is significantly
worse than SIDL consistently. Note that exceptions might
happen only in the inner and interval patterns on the BJUT-3D
and the MORPH datasets. For example, SIDL performs sim-
ilarly with Kernel SVR in the inner pattern on the BJUT-3D
dataset. Its performance deteriorates faster than Kernel PLS
in the interval pattern on the BJUT-3D dataset and in the in-
ner pattern on the MORPH dataset. The reason might be that
in both the inner and interval patterns, the unseen labels are
surrounded by the seen labels. So they are relatively easier
cases compared with other patterns. Thus, general-purpose
regression methods like SVR or PLS may also achieve good
performance. Even though, SIDL still performs better than

their best achievements.
Moreover, it can be observed that SIDL exhibits different

performance trends in different patterns. For example, on all
datasets, the trends in the inner, interval and random patterns
are usually smoother than those in the outer pattern. This is
because that in the former three patterns, the unseen labels
are often surrounded by other seen labels, and thus the label
correlation can be better utilized to help with the learning of
unseen labels.

4 Conclusion
This paper is motivated by the missing ordinal labels in the
training set. Ordinal labels are usually closely related to each
other, which we can use to expand the supervision informa-
tion in zero-shot learning. Toward this, we propose to use
Supervision Intensity Distribution (SID) in zero-shot learn-
ing for ordinal classification without side information. SID
contains the supervision intensity of each label to a certain
instance. Learning from SID is mainly implemented by mini-
mizing the Jeffrey’s divergence between the ground truth SID
and predicted SID. By conducting experiments on head pose
and facial age estimation, we demonstrate that our method
performs significantly better than compared regression meth-
ods, and is more robust against the increase of unseen labels.
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