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Abstract
Adaptive learning rate algorithms such as RM-
SProp are widely used for training deep neural net-
works. RMSProp offers efficient training since it
uses first order gradients to approximate Hessian-
based preconditioning. However, since the first or-
der gradients include noise caused by stochastic op-
timization, the approximation may be inaccurate.
In this paper, we propose a novel adaptive learn-
ing rate algorithm called SDProp. Its key idea is
effective handling of the noise by preconditioning
based on covariance matrix. For various neural net-
works, our approach is more efficient and effective
than RMSProp and its variant.

1 Introduction
Adaptive learning rate algorithms are widely used for the effi-
cient training of deep neural networks. RMSProp [Tieleman
and Hinton, 2012] and its follow-on methods [Zeiler, 2012;
Kingma and Ba, 2014] are being used in many deep neu-
ral networks such as Convolutional Neural Networks (CNNs)
[LeCun et al., 1998] since they can be easily implemented
with high memory efficiency.

The empirical success of RMSProp could be explained by
using Hessian-based preconditioning [Dauphin et al., 2015].
Hessian is the matrix that represents the curvature of the
loss function; Hessian-based preconditioning locally changes
the curvature of the loss function. When training deep neu-
ral networks, pathological curvatures such as saddle points
[Dauphin et al., 2014] and cliffs [Pascanu et al., 2013] can
slow the progress of first order gradient descent, such as
Stochastic Gradient Descent (SGD) [Robbins and Monro,
1951]. Hessian-based preconditioning improves the condi-
tion of the curvature, and thus enhances SGD speed. How-
ever, SGD with Hessian-based preconditioning incurs high
computation cost because it generally computes the inverse
matrix of Hessian. Since RMSProp approximates Hessian-
based preconditioning by using first order gradients [Dauphin
et al., 2015], it achieves efficient training. In addition, RM-
SProp is easy to implement. Therefore, in terms of practi-
cal use, RMSProp and its variants such as AdaDelta [Zeiler,
2012] and Adam [Kingma and Ba, 2014] are still seen as the
most powerful approach to training deep neural networks.

However, the first order gradients used in RMSProp in-
clude noise caused by stochastic optimization techniques
such as mini-batch setting. With batch setting, since the
model inputs are fixed in each iteration, only parameter up-
dates change the gradients. On the other hand, with mini-
batch setting, since the inputs are not fixed in each iteration,
gradients can also be changed by randomly selecting the in-
puts in each iteration. This change in the mini-batch setting
can be seen as noise. Since RMSProp uses the noisy first or-
der gradients to approximate Hessian-based preconditioning,
the approximation may be inaccurate. This indicates that the
efficiency of RMSProp can be improved by effectively han-
dling the noise in the first order gradients.

This paper proposes a novel adaptive learning rate algo-
rithm called SDProp. The key idea is to use covariance matrix
based preconditioning instead of Hessian-based precondition-
ing. The covariance matrix is derived by assuming a distribu-
tion for the noise in the observed gradients. Since the distri-
bution effectively captures the noise, SDProp can effectively
capture the changes in gradients caused by random input se-
lection in each iteration. Interestingly, our theoretical analysis
reveals that SDProp uses the information of directions over
past gradients in adapting the learning rate while RMSProp
and its variants use the magnitudes of the gradients. In exper-
iments, we compare SDProp with RMSProp. SDProp needs
50 % fewer training iterations than RMSProp to reach the fi-
nal training loss for CNN in Cifar-10, Cifar-100 and MNIST
datasets. In addition, SDProp outperforms Adam, a state-of-
the-art algorithm based on RMSProp, in several datasets. Our
approach is also more effective than RMSProp for training
Recurrent Neural Network (RNN) [Elman, 1990] and very
deep fully-connected neural networks.

2 Preliminary
We briefly review the background of this paper. First, we
describe SGD, which is a basic algorithm in stochastic opti-
mization such as mini-batch setting. Second, we review RM-
SProp. Finally, we explain the relationship between Hessian-
based preconditioning and RMSProp.

2.1 Stochastic Gradient Descent
Many learning algorithms aim at minimizing loss function
f(θ) with respect to parameter vector, θ[Fujiwara et al.,
2016a; 2016b]. SGD is a popular algorithm in the mini-batch
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setting. To minimize f(θ), SGD iteratively updates θ with a
mini-batch of samples as follows:

θi,t = θi,t−1 − α∇f (θi,t−1;xt−1) (1)
where α is the learning rate, θi,t is the i-th element of the pa-
rameter vector at time t, xt−1 is the sample or mini-batch at
time t − 1, and ∇f (θi,t−1;xt−1) is the first order gradient
with respect to the i-th parameter given by xt−1. SGD ap-
plies Equation (1) to each sample or mini-batch while Gra-
dient Descent (GD) applies Equation (1) to all data in the
batch setting. Although∇f (θi,t−1;xt−1) includes noise due
to the random selection of mini-batch xt−1, SGD uses it in
the training phase. Since SGD only uses a part of the data
for computing ∇f (θi,t−1;xt−1), each iteration has reduced
computation cost while memory efficiency is high.

2.2 RMSProp
RMSProp is a popular algorithm based on SGD for training
neural networks. AdaDelta and Adam are follow-up methods
of RMSProp. RMSProp rapidly reduces loss function f(θ)
by adapting the learning rate of SGD. The updating rule of
RMSProp is as follows:

vi,t = βvi,t−1 + (1− β)∇f (θi,t−1;xt−1)
2 (2)

θi,t = θi,t−1 − α√
vi,t+ε

∇f (θi,t−1;xt−1) (3)

where vi,t is the moving average of uncentered variance over
past first order gradients ∇f (θi,t−1;xt−1), β is the decay
rate for computing vi,t, and ε is the small value for the sta-
ble computation. Intuitively, RMSProp divides the learning
rate, α, by magnitude √vi,t of the past first order gradients
∇f (θi,t−1;xt−1). Therefore, if the i-th parameter has large
∇f (θi,t−1;xt−1) values in terms of the magnitude in the
past, RMSProp yields a small learning rate because √vi,t in
Equation (3) is large. Empirically, this idea efficiently re-
duces the loss function for deep neural networks. Follow-up
methods such as AdaDelta and Adam are based on this idea.
For the convex optimization, regret analysis can be used to ex-
plain the efficiency of the methods [Kingma and Ba, 2014].
For non-convex optimization such as deep neural networks,
the empirical success of RMSProp could be explained by us-
ing Hessian-based preconditioning. We briefly review the re-
lationship between Hessian-based preconditioning and RM-
SProp by following [Dauphin et al., 2015] in the next section.

2.3 Hessian-based Preconditioning
Some kind of pathological curvature of the loss function
slows the progress of SGD [Dauphin et al., 2014]. Therefore,
it is important to capture the curvature in order to efficiently
train deep neural networks.

Hessian-based preconditioning locally changes the func-
tion by using Hessian H , which can capture the curvature of
the function. Hessian is the square matrix of the second order
gradients of function f(θ) represented by H=∇2f(θ). The
condition number of Hessian estimates the extent to which
the curvature is pathological. Condition number is defined
as σmax(H)/σmin(H) where σmax(H) and σmin(H) are the
largest and smallest singular values of H , respectively. The
function has less pathological curvature if the condition num-
ber has a small value. This is because the function equally

curves if it has small condition number. Therefore, we can
increase the efficiency of the training by reducing the Hes-
sian condition number [Dauphin et al., 2015].

Hessian-based preconditioning locally transforms an orig-
inal parameter into another parameter so that the Hessian
has small condition number. Preconditioning matrix D gives
transformations such as θ̂=D1/2θ where θ̂ is the transformed
parameter. By using θ̂, function f is transformed into func-
tion f̂ where f(θ)=f(D−1/2θ̂)= f̂(θ̂). If f̂(θ̂) has smaller
condition number than f(θ), we can efficiently train a model
by applying first order gradient descent to θ̂. The updating
rule of θ̂ is θ̂t=θ̂t−1−α∇f̂(θ̂). Since ∇f̂(θ̂)=D−1/2∇f(θ),
we have the following form for original parameter θ:

θt = θt−1 − αD−1∇f(θt−1). (4)

If Ĥ is the Hessian of transformed function f̂(θ̂), Ĥ is given
as Ĥ = (D−1/2)THD−1/2. When D1/2 =H1/2, Ĥ has a
smaller condition number because Ĥ is an identity matrix.
In this case, Equation (4) corresponds the Newton method.
However, H1/2 exists only when H is positive-semidefinite.
Since deep neural networks have many saddle points where
Hessian can be indefinite [Dauphin et al., 2014], the New-
ton method is unsuitable for training deep neural networks.
On the other hand, the diagonal equilibration matrix of D=√

diag (H2) works well even if H is indefinite [Dauphin et
al., 2015]. This indicates that GD can efficiently escape from
saddle points by preconditioning based on the diagonal equi-
libration matrix.

In RMSProp, the role of √vi,t in Equation (3) could be
explained by using Hessian-based preconditioning [Dauphin
et al., 2015]. A comparison of Equation (4) to Equation (3)
indicates that √vi,t corresponds to the i-th element of the di-
agonal preconditioning matrix. In addition, empirical results
suggest that√vi,t approximates the i-th element of the diago-
nal equilibration matrix which can be used to efficiently train
deep neural networks [Dauphin et al., 2015]. Thus, RMSProp
can be interpreted as Hessian-based preconditioning using an
approximated diagonal equilibration matrix in the mini-bath
setting. Therefore, since RMSProp is more efficient in escap-
ing from saddle points than SGD, RMSProp and its follow-up
methods achieve high efficiency.

3 Proposed Method
We first introduce the novel preconditioning idea. Then, we
derive SDProp based on this idea.

3.1 Idea
RMSProp approximates Hessian-based preconditioning by
using the first order gradients ∇f (θi,t−1;xt−1) as described
in the preliminary section. However, in stochastic optimiza-
tion approaches such as mini-batch setting, the first order gra-
dients ∇f (θi,t−1;xt−1) include noise because input xt−1 is
randomly selected in each iteration. Since the first order gra-
dients ∇f (θi,t−1;xt−1) in Equation (2) and the square roots
of the uncentered variances √vi,t in Equation (3) contain
noise, it is difficult to effectively approximate Hessian-based
preconditioning. In order to effectively handle the noise, we
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replace Hessian-based preconditioning with covariance ma-
trix based preconditioning.

In covariance matrix based preconditioning, we assume
that the first order gradients∇f (θi,t−1;xt−1) follow a Gaus-
sian distribution. This is because the field of probabilistic
modeling uses Gaussian distributions to model the noise of
observations[Sra et al., 2012; Ida et al., 2013; Fukuda et al.,
2014; Miyashita et al., 2013]. By following [Sra et al., 2012],
we assume the following Gaussian distribution of first order
gradient ĝt = ∇f (θt−1;xt−1) ∈ Rd:

ĝt|ḡt ∼ N(ḡt, Ct) (5)

where ḡt ∈ Rd is the true gradient without the noise while
ĝt ∈ Rd includes the noise. N(ḡt, Ct) is a Gaussian distribu-
tion with mean ḡt and covariance matrix Ct; Ct is the covari-
ance matrix of ĝt whose size is d× d. The diagonal elements
in Ct represent the magnitude of oscillation of the first order
gradients ĝt that include the noise. Specifically, let Ct[i, j]
be the i-th row and the j-th column element in Ct, Ct[i, j]
represents the covariance of the i-th and the j-th first order
gradient. Therefore, if the i-th first order gradient strongly
correlates with the j-th first order gradient, Ct[i, j] has large
absolute value. On the other hand, Ct[i, i] represents the vari-
ance of the i-th first order gradient. Therefore, Ct[i, i] has
large value if the first order gradient strongly oscillates in the
i-th dimension.

Intuitively, large oscillations in i-th dimension incur high
variance of updating directions and inefficient progress in
plain SGD. However, it is difficult to reduce the oscillation
since it can be a result of the noise induced by the mini-batch
setting. How can we reduce the oscillation by usingCt ? This
is the motivation behind our approach; plain SGD efficiently
progresses if we can control the oscillation by utilizing Ct.
In this paper, we propose the preconditioning of Ct to control
the oscillation. While Hessian-based preconditioning reduces
the condition number of Hessian, our preconditioning reduces
the condition number of Ct by transforming Ct into an iden-
tity matrix. We describe our approach in the next section.

3.2 Covariance Matrix Based Preconditioning
The previous section suggests that large values in the diago-
nal of Ct prevent the efficient progress of SGD. Therefore, if
we could control the values in the diagonal ofCt, we improve
the efficiency of SGD. Our covariance matrix based precon-
ditioning transformsCt into ρ2 I where I is an identity matrix
whose size is d×d and ρ is a hyper-parameter that has a posi-
tive value. Since the element in the diagonal of Ct represents
the variance of first order gradient, we can hold the variance
to constant value ρ2. If the variance is larger than ρ2, its value
is reduced to ρ2. Therefore, SGD efficiently progresses if we
transform Ct into ρ2 I.

We first describe the approach used to transform Ct into
I instead of ρ2 I. This is because once Ct is transformed

into I, it is easy to transform I into ρ2 I as we describe later.
Hessian-based preconditioning transforms first order gradi-
ents to yield ∇f̂(θ̂)=D−1/2∇f(θ) where D is a precondi-
tioning matrix. The preconditioning matrix of D1/2 = H1/2

reduces the condition number of Hessian H as described in

the preliminary section. Unlike the previous approach, we
execute the preconditioning of Ct and so use the transforma-
tion gp=D−1ĝt. In this transformation, gp is a transformed
first order gradient and ĝt is a first order gradient as defined
in Equation (5). Since the transformation is an affine trans-
formation of ĝt generated from the Gaussian distribution in
Equation (5), we have following distribution of gp:

gp = D−1ĝt|ḡt ∼ N(D−1ḡt, D
−1Ct(D

−1)T). (6)

In Equation (6), we use the following major rule to transform
Equation (5) into (6): if X ∼N(m,Σ) and Y =AX , then
Y∼N(Am,AΣAT ); N(m,Σ) is a Gaussian distribution that
has mean m and covariance matrix Σ, A is a matrix for affine
transformation and Y is a transformed variable. By setting
D=C

1/2
t in Equation (6), we have the following property :

Theorem 1. If we transform first order gradient ĝt to yield
gp=C

−1/2
t ĝt, we have the following Gaussian distribution:

gp|ḡt ∼ N
(
C
− 1

2
t ḡt, I

)
(7)

where I is an identity matrix whose size is d× d.

Proof. By using eigen decomposition, we can represent Ct
as Ct = UΣUT where U is an orthogonal matrix of d × d
and Σ is a diagonal matrix of (λ1, λ2, ..., λd). Since Ct is as-
sumed to be a positive semi-definite matrix, all eigen values
are equal to or higher than 0. Thus, C1/2

t can be computed as
C

1/2
t =UΣ1/2UT. By setting the covariance term of Equation

(6) to D−1=(C
1/2
t )−1=UΣ−1/2UT, the Gaussian distribu-

tion of gp is represented as follows:

gp = C
−1/2
t ĝt|ḡt ∼ N(C

−1/2
t ḡt, C

−1/2
t Ct(C

−1/2
t )T)

= N(C
−1/2
t ḡt, UΣ−1/2UTUΣUT(UΣ−1/2UT)T)

= N(C
−1/2
t ḡt, I).

In the above formulations, sinceU is an orthogonal matrix,
we use UUT = I and (UΣ−1/2UT)T =UΣ−1/2UT. As a
result, we have the distribution of Equation (7).

The above theorem indicates that the transformation of
gp = C

−1/2
t ĝ results in the Gaussian distribution of gp whose

covariance matrix is identity matrix I. In other words, we can
control the covariance matrix to be I by using gp instead of ĝ.

Our preconditioning transforms the value of variance for
first order gradients into 1 by using gp. However, gp may
have an extremely large value if the variance is 1. Thus, we
introduce hyper-parameter ρ to generalize our precondition-
ing. Specifically, by using the transformation of gp=ρC

−1/2
t ĝ

instead of gp=C
−1/2
t ĝ, we have the following distribution:

ρC
− 1

2
t ĝt|ḡt ∼ N

(
ρC
− 1

2
t ḡt, ρ

2 I
)
. (8)

The above equation denotes that ρ controls the value of the
covariance matrix while the previous transformation only
gives an identity matrix as shown in Equation (7). We show
that ρ has the same role as learning rate α when we derive
SDProp in the next section.
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Since we compute the first order gradients at each time t in
SGD, we have to incrementally compute the covariance ma-
trix Ct although Theorem 1 is based on the property that Ct
is a positive semi-definite matrix. In order to incrementally
compute Ct as a positive semi-definite matrix, we use the on-
line updating rule of [Sra et al., 2012] as follows:

Ct=γCt−1+γ(1−γ)(ĝt−µt−1)(ĝt−µt−1)T (9)
µt=γµt−1+(1−γ)ĝt (10)

where µt is the moving average of ĝt and γ is the hyper-
parameter of the decay rate for the moving average that has
γ ∈ [0, 1). Ct and µt are initialized as µ1 = ĝ1 and C1 = 0.
The above updating rule gives the following property:
Theorem 2. If we compute covariance matrix Ct by using
Equations (9) and (10), Ct is positive semi-definite.
Proof. In order to prove Theorem 2, we first prove that (ĝt−
µt−1)(ĝt−µt−1)T in Equation (9) is a positive semi-definite
matrix. By setting y = xT(ĝt−µt−1), we have:

xT(ĝt−µt−1)(ĝt−µt−1)Tx = yyT ≥ 0.

By following the definition of positive semi-definite matrixes,
if we have matrix A of d × d such that xTAx ≥ 0 holds
for every non-zero column vector x of d real numbers, A is
a positive semi-definite matrix. Since the above inequation
shows that xT(ĝt−µt−1)(ĝt−µt−1)Tx ≥ 0 holds, it is clear
that (ĝt−µt−1)(ĝt−µt−1)T is a positive semi-definite matrix
even if µt−1 in Equation (10) has any real value.

Then, we prove that Ct in Equation (9) is a positive semi-
definite matrix by mathematical induction.
Initial step: If t=1, the initialization yields C1 = 0. Since C2

is computed as C2 =γ(1 − γ)(ĝ2 − µ1)(ĝ2 − µ1)T by using
Equation (9) and (10), C2 is a positive semi-definite matrix.
This is because (ĝt−µt−1)(ĝt−µt−1)T is a positive semi-
definite matrix as proved above.
Inductive step: We assume that Ct−1 is a positive semi-
definite matrix. Since Ct is computed as Ct=γCt−1 + γ(1−
γ)(ĝt − µt−1)(ĝt − µt−1)T by using Equations (9) and (10),
xTCtx is represented as follows:
xTCtx = xT(γCt−1+γ(1−γ)(ĝt−µt−1)(ĝt−µt−1)T)x

= γxTCt−1x+γ(1−γ)xT(ĝt−µt−1)(ĝt−µt−1)Tx.

In the above equation, xTCt−1x ≥ 0 and xT(ĝt−µt−1)(ĝt−
µt−1)Tx ≥ 0 because Ct−1 and (ĝt−µt−1)(ĝt−µt−1)T are
positive semi-definite matrices. Therefore, Ct is a positive
semi-definite matrix because xTCtx ≥ 0 holds in the above
equation. This completes the inductive step.

Thus, if we compute Ct by using Equations (9) and (10),
we can execute the preconditioning specified by Theorem 1.

Note that Hessian-based preconditioning cannot con-
trol the oscillation of first order gradients. This is
because its transformation results in the distribution of
N(H−

1
2 ḡt, H

− 1
2Ct(H

− 1
2 )T) where the covariance matrix is

uncontrollable. In addition, since Hessian H may not be a
positive semi-definite matrix, it is difficult to computeH−1/2.
Therefore, our covariance matrix based preconditioning in-
herently differs from Hessian-based preconditioning. Our
idea of preconditioning Ct is more suitable than Hessian-
based preconditioning in handling the oscillation triggered by
the noise of first order gradients.

3.3 Algorithm
Since deep neural networks have a large number of parame-
ters, the idea described in the previous section incurs large
memory consumption of O(d2) where d is the number of
parameters. In addition, it costs O(d3) time to compute
D=C

1/2
t by using eigenvalue decomposition [Halko et al.,

2011]. To avoid these problems, we employ diagonal precon-
ditioning matrix D=diag(Ct)

1/2. Since this approach only
needs the diagonal terms, the memory and computation costs
are O(d). Although this approach ignores the correlation of
first order gradients, it is sufficient to control the oscillation
in each dimension. This is because the diagonal of Ct repre-
sents the variance of the oscillation as described in the pre-
vious section. By picking the diagonal of Equation (8), the
updating rule is:

θt = θt−1 − ρ · diag (Ct)
− 1

2 ∇f (θi,t−1;xt−1) . (11)

We rewrite this updating rule (all steps) as follows:

µi,t = γµi,t−1+(1−γ)∇f (θi,t−1;xt−1) (12)

c2i,t = γc2i,t−1+γ(1−γ)(∇f (θi,t−1;xt−1)−µi,t−1)2 (13)

θi,t = θi,t−1−
ρ√
c2
i,t
+ε
∇f(θi,t−1;xt−1) (14)

where µi,t is the moving average of first order gradients for
the i-th parameter at time t and γ is the hyper-parameter of
the decay rate for the moving average that has γ ∈ [0, 1).
c2i,t is the exponentially moving variance of first order gradi-
ents for the i-th parameter at time t. We use γ in Equation
(13) as the decay rate of the exponentially moving variance.
µi,t and c2i,t are initialized as µi,1=∇f (θi,0;x0) and c2i,1=0,
respectively. For stable computation, ε is set at a small pos-
itive value. Equation (14) corresponds to Equation (11). We
call the algorithm SDProp because Equation (14) includes
Standard Deviation

√
c2
i,t

. Although ci,t includes the bias
imposed by initialization, we can remove the bias in the same
way as [Kingma and Ba, 2014].

Notice that ρ takes the same role as learning rate α in
Equation (3) of RMSProp. Therefore, Equation (14) divides
the learning rate by the square root of centered variance c2i,t
while Equation (3) of RMSProp divides the learning rate by
the square root of uncentered variance v2i,t. In other words,
RMSProp and its follow-up methods such as Adam adapt the
learning rate by the magnitude of gradients while we adapt
it by the variance of gradients. Although RMSProp and SD-
Prop have similar updating rules, they have totally different
goals as described in the previous sections. RMSProp exe-
cutes Hessian-based preconditioning while SDProp executes
covariance matrix based preconditioning.

4 Experiments
We performed experiments to compare SDProp to RMSProp
and Adam, a state-of-the-art algorithm based on RMSProp.
[Kingma and Ba, 2014] shows that Adam is a more efficient
and effective approach than RMSProp or AdaDelta by inte-
grating momentum into RMSProp. First, we show the ef-
ficiency and effectiveness of our approach by using CNN.
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(a) Cifar-10
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(b) Cifar-100
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(c) SVHN
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(d) MNIST

Figure 1: Training losses for CNN. We show the results for (a) Cifar-10, (b) Cifar-100, (c) SVHN and (d) MNIST.

Second, since SDProp effectively handles the oscillation de-
scribed in the previous section, we evaluate SDProp by using
small mini-batches which suffer noise in the first order gradi-
ents. Third, we show the efficiency and effectiveness of SD-
Prop for RNN. Fourth, we demonstrate the effectiveness of
SDProp for 20 layered fully-connected neural network that is
difficult to train due to many sadle points.

4.1 Efficiency and Effectiveness for CNN

We investigate the efficiency and effectiveness of SDProp.
We used 4 datasets to assess the classification of images;
Cifar-10, Cifar-100 [Krizhevsky and Hinton, 2009], SVHN
[Sermanet et al., 2012] and MNIST. The experiments were
conducted on a 7-layered CNN with ReLU activation func-
tion. The loss function was negative log likelihood. We
compared SDProp to RMSProp and Adam. In SDProp, we
tried various combinations of hyper-parameters by using γ ∈
{0.9, 0.99} and ρ∈{0.1, 0.01, 0.001}. In RMSProp, we tried
combinations of hyper-parameters by using β ∈ {0.9, 0.99}
and α∈{0.1, 0.01, 0.001}. As a result, SDProp achieves the
lowest loss in the settings of γ = 0.99, ρ = 0.001. RM-
SProp has the lowest loss when β = 0.99 and α = 0.001.
Adam achieves the lowest loss when β1 = 0.9, β1 = 0.999
and α = 0.001. The mini-batch size was 128. The number
of epochs was 50. We use the training loss to evaluate the
algorithms because they optimize the training criterion.

Figure 1 shows the training losses of each dataset. In Cifar-
10, Cifar-100 and SVHN, SDProp yielded lower losses than
RMSProp and Adam in early epochs. In MNIST, although
the training loss of SDProp and Adam nearly reached 0.0,
SDProp reduces the loss faster than Adam. SDProp needs 50
% fewer training iterations than RMSProp to reach its final
training loss in Cifar-10, Cifar-100 and MNIST. This suggests
that our idea of covariance matrix based preconditioning is
more efficient and effective than Hessian-based precondition-
ing in the mini-batch setting because RMSProp and Adam
approximate Hessian-based preconditioning as described in
the preliminary section. Since SDProp captures the noise, it
effectively reduces the loss even if the gradients are noisy. In
the next experiment, we investigate the performance of SD-
Prop in terms of its effectiveness against noise by using noisy
first order gradients.

Table 1: Training accuracy percentage for Cifar-10 in CNN for dif-
ferent mini-batch sizes. We tuned the hyper-parameters; the 1st row
presents mini-batch size.

16 32 64 128
RMSProp 81.42 93.10 94.98 95.07

Adam 83.24 93.57 95.48 97.12
SDProp 90.17 94.87 96.54 97.31

4.2 Sensitivity of Mini-batch Size
The previous experimental results show that SDProp is more
efficient and effective than existing methods because it well
handles the noise in our idea and in practice. In other words,
SDProp is expected to effectively train the model even if we
use small mini-batch sizes that incur noisy first order gradi-
ents [Dekel et al., 2012]. Therefore, we investigated the sen-
sitivity of SDProp and existing methods to mini-batch size.
While the main purpose of this experiment is to reveal the
one performance attribute of SDProp, the result suggests that
SDProp can be used on devices with scant memory that must
use small mini-batches.

We compared SDProp to RMSProp and Adam using mini-
batch sizes of 16, 32, 64 and 128. We used the Cifar-10
dataset for the 10-class image classification task. We used
CNN as per the previous section. The hyper-parameters are
also the same as the previous section; they are tuned by grid
search. The number of epochs was 50.

Table 1 shows the final training accuracies. SDProp out-
performs RMSProp and Adam in all mini-batch size values
examined. Specifically, although small mini-batch size of
16 incurs very noisy first order gradients, SDProp obviously
achieves effective training unlike RMSProp and Adam. In
addition, Table 1 shows that the superiority of our approach
over RMSProp and Adam increases as mini-batch size falls.
For example, if the mini-batch size is 16, our approach has
8.75 percent higher accuracy than RMSProp and 2.24 percent
more accurate if the mini-batch size is 128. This indicates
that our covariance matrix based preconditioning effectively
handles the noise of first order gradients.

4.3 Efficiency and Effectiveness for RNN
We evaluated the efficiency and effectiveness of SDProp for
the Recurrent Neural Network (RNN). In this experiment,
we predicted the next character by using previous charac-
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Figure 2: Cross entropies in training RNN for shakespeare dataset
(left) and source code of linux kernel (right).

Table 2: Average, Best and Worst training accuracy percentage of
20 layered fully-connected networks.

Accuracy
Method α β Ave. Best Worst

RMSProp 0.001 0.9 92.86 97.95 84.79
0.99 98.81 99.11 98.34

ρ γ Ave. Best Worst
SDProp 0.001 0.9 93.77 97.9 87.57

0.99 99.20 99.42 99.09

ters via character-level RNN. We used the subset of shake-
speare dataset and the source code of the linux kernel as the
dataset [Karpathy et al., 2015]. The size of the internal state
was 128. The pre-processing of the dataset followed that of
[Karpathy et al., 2015]. The mini-batch size was 128. In SD-
Prop, we tried grid search with ρ ∈ {0.1, 0.01, 0.001} and
γ ∈ {0.9, 0.99}. As a result, SDProp used the settings of
ρ = 0.01 and γ = 0.99. In RMSProp, we tried grid search
with α ∈ {0.1, 0.01, 0.001} and β ∈ {0.9, 0.99}. Finally, we
used the settings of α = 0.01 and β = 0.99 for RMSProp.
The training criterion was cross entropy. We used gradient
clipping and learning rate decay. Gradient clipping is a popu-
lar approach for scaling down the gradients by manually set-
ting a threshold; it prevents gradients from exploding in RNN
training [Pascanu et al., 2013]. We set the threshold to 5.0.
We decayed the learning rate α every tenth epoch by the fac-
tor of 0.97 for RMSProp following [Karpathy et al., 2015].
In SDProp, ρ was also decayed the same as α of RMSProp.

Figure 2 shows the results of the shakespeare dataset and
the source code of the linux kernel. SDProp reduces the train-
ing loss faster than RMSProp. Since SDProp effectively han-
dles the noise induced by the mini-batch setting, it can effi-
ciently train models other than CNN, such as RNN.

4.4 20 Layered Fully-connected Neural Network
In this section, we performed experiments to evaluate the ef-
fectiveness of SDProp for training deep fully-connected neu-
ral networks. [Dauphin et al., 2014] suggests that the number
of saddle points exponentially increases with the dimensions
of the parameters. Since deep fully-connected networks typi-
cally have parameters with higher dimension than other mod-
els such as CNN, this optimization problem has many saddle
points. This problem is challenging because SGD slowly pro-

gresses around saddle points [Dauphin et al., 2014].
We used a very deep fully-connected network with 20 hid-

den layers, 50 hidden units and ReLU activation functions.
We used the MNIST dataset for the 10-class image classi-
fication task. This setting is the same as [Neelakantan et
al., 2015] used in evaluating the effectiveness of SGD with
high dimensional parameters. Note that MNIST is sufficient
for our evaluation because, unlike CNN, fully-connected net-
works do not saturate the accuracy in our experiment. Our
purpose is to evaluate the effectiveness under the setting of
very high dimensional parameter. Thus, it is sufficient to
evaluate effectiveness if the accuracy is not saturated. The
training criterion was negative log likelihood. The mini-batch
size was 128. We initialized parameters from a Gaussian with
mean 0 and standard deviation 0.01 following [Neelakantan
et al., 2015]. We compared SDProp to RMSProp. In SD-
Prop, we tried the combinations of hyper-parameters by us-
ing γ ∈ {0.9, 0.99} and ρ ∈ {0.1, 0.01, 0.001}. In RM-
SProp, we tried the combinations of hyper-parameters by us-
ing β ∈ {0.9, 0.99} and α ∈ {0.1, 0.01, 0.001}. The num-
ber of epochs was 50. Although these algorithms are trapped
around saddle points, its frequency may depend the initializa-
tion of parameter. Therefore, we tried 10 runs for each of the
above settings.

Table 2 lists the results for the best setting of α and ρ. It
shows averages, best, worst of training accuracies for each
setting. The result shows that SDProp achieves higher ac-
curacy than RMSProp for the best setting. In addition, the
difference between best and worst accuracy of SDProp is
smaller than RMSProp. Since SDProp effectively handles the
randomness of noise, it can reduce result uncertainty. The re-
sults show that SDProp effectively trains models that have
very high dimensional parameters.

5 Conclusion
We proposed SDProp for the effective and efficient training of
deep neural networks. Our approach utilizes the idea of using
covariance matrix based preconditioning to effectively handle
the noise present in the first order gradients. Our experiments
showed that, for various datasets and models, SDProp is more
efficient and effective than existing methods. In addition, SD-
Prop achieved high accuracy even if the first order gradients
were noisy.
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