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Abstract
Recently, variants of neural networks for computa-
tional linguistics have been proposed and success-
fully applied to neural language modeling and neu-
ral machine translation. These neural models can
leverage knowledge from massive corpora but they
are extremely slow as they predict candidate word-
s from a large vocabulary during training and in-
ference. As an alternative to gradient approxima-
tion and softmax with class decomposition, we ex-
plore the tree-based hierarchical softmax method
and reform its architecture, making it compatible
with modern GPUs and introducing a compact tree-
based loss function. When combined with sev-
eral word hierarchical clustering algorithms, im-
proved performance is achieved in language mod-
elling task with intrinsic evaluation criterions on
PTB, WikiText-2 and WikiText-103 datasets.

1 Introduction
Language modeling is a basic and fundamental task in Com-
putational Linguistics (CL), and have attracted much academ-
ic and commercial attention for the last few decades. The use
of Language Model (LM) is universal in applications such as
Neural Machine Translation (NMT) [Jean et al., 2015] and
Automatic Speech Recognition [Wang and Wang, 2016].

Specifically, language model is composed of two parts:
context representation and next-step word prediction. The
context knowledge is generally represented by several exist-
ing neural-based architectures, e.g. Feedforward Neural Net-
work [Bengio et al., 2003], Recurrent Neural Network (RN-
N) [Mikolov et al., 2010], and Character-level Convolution
Neural Network (CharCNN) [Kim et al., 2016]. Besides, the
next-step word prediction, usually represented by softmax al-
gorithm, involves computing the probability of a true word in
the whole vocabulary.

Nonetheless, intensive computations are involved in lan-
guage model with modern neural network during training and
inference. Particularly, computing the softmax probability
normalisation function exploits great portion of time, and this
issue has become a bottleneck for all variations and applica-
tions as the practical speed decreases dramatically with the
vocabulary grows [Chen et al., 2016].

Therefore, various studies have attempted to address this
challenge in literature. An intuitive method was vocabu-
lary truncation, which relies on maintaining a shortlist of the
most frequently word-level or subword-level units, thereby
increases the speed of normalisation and expectation based
on the truncated vocabulary [Schwenk, 2007; Sennrich et al.,
2016]. Subsequently, several other workarounds were pro-
posed, which can be roughly divided into sampling-based ap-
proximations and factored output layer methods.

Sampling-based methods avoid intensive computation by
computing only a tiny fraction of the vocabulary. E.g., Noise
Contrastive Estimation (NCE) regards multi-class identifi-
cation tasks as psudo logistic classification by classifying
the empirical word distribution from noise words’ distribu-
tion [Gutmann and Hyvärinen, 2012]. Subsequently, Black-
out sampling is proposed to overcome NCE algorithm’s con-
text dependence problems [Ji et al., 2016]. Although these
approximations can speed up training significantly, the nor-
malisation term have to evaluated during inference.

Alternatively, factored output layer decompose the orig-
inal flattened architecture into a class structure or hierar-
chical tree, i.e., class-based (cHSM) and tree-based Hier-
archical Softmax (tHSM) respectively [Chen et al., 2016].
cHSM method partition the vocabulary into mutually exclu-
sive classes, and tHSM builds nested categories of words to
form a binary tree with words on the leaves. Recently, the
cHSM method has been benchmarked with different cluster-
ing strategies and compared with other sampling-based ap-
proaches [Chen et al., 2016]. Besides, the historical proposed
tHSM method that builds upon WordNet knowledge or Huff-
man coding performs relatively better than the cHSM method
in term of time efficiency [Mikolov et al., 2013b].

After investigating the tHSM model, it was shown that it
calculates the internal probability step-by-step and layer-by-
layer, giving a time complexity ofO(log |V|) [Mikolov et al.,
2013b; Mnih and Hinton, 2009]. Considering the modern ar-
chitecture of GPUs and generalised matrix-matrix operations,
it is interesting to ask whether it is possible to calculate the
internal probability in parallel? Furthermore, the Huffman
coding scheme for tHSM only consider the word’s frequen-
cy statistics while words’ context and semantic information
have yet been exploited, which demands for detailed discus-
sion of word hierarchical clustering’s strategies to initialise
the words’ distribution over the tree.
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Therefore, in this research, we propose a parallelised math-
ematical model for modeling tHSM’s variants (i.e., p-tHSM).
Moreover, hierarchical Brown clustering and other possible
clustering algorithms are employed to initialise the word hi-
erarchy before the training stage, to improve the stability and
performance of p-tHSM algorithm. Furthermore, we con-
ducted empirical analysis and comparisons on the standard
Penn Tree Bank (PTB) [Marcus et al., 1993], WikiText-2 and
WikiText-103 text datasets [Merity et al., 2017] with other
conventional optimisation methods to assess its efficiency and
accuracy on GPUs and CPUs1.

2 Background
Softmax with Over-large Vocabularies. As a standard prob-
ability normalisation method for multi-label classification,
the softmax function and its gradient can be formalised as:

p(wi|h) =
exp(h>vwi

)∑
wj∈V exp(h>vwj )

∂p(wi|h)

∂vwj

=p(wj |h)(δij − p(wi|h))h>
(1)

where h denotes the hidden layer (i.e., context representa-
tion), vw is the target word-embedding of word w and δij
represents the Kronecker delta.

The forward probability propagation and backward gradi-
ent optimisation manipulating all the words in the target vo-
cabulary, thereby resulting in low efficiency. For a vocabulary
comprising |V| words, the overall time complexity is O(|V|).
This computational burden is relatively high even for modern
architectures of GPUs, which are highly suitable for matrix
multiplication with its parallelism.

In order to alleviate the computational bottleneck when
computing the normalisation term in Eq. 1, various approxi-
mations have been developed, which can be divided into three
categories: vocabulary truncation, sampling-based approxi-
mation, and factored output layer methods.

Vocabulary Truncation. Intuitively, a relatively smaller
vocabulary list can be maintained to avoid computing a large
vocabulary, where it will run faster with less memory con-
sumption. Maintaining a short-list of the most frequent words
and pruning the rest has been explored in literature [Marcus
et al., 1993], while excessive words in texts will be mapped
to “〈unk〉” tokens. Another point of view is to split word-
s into subword-level units according to its character n-gram
statistics to reduce its vocabulary size [Sennrich et al., 2016].

Sampling-based Approximation. Sampling-based ap-
proaches have been employed successfully to approximate
the softmax and its gradient over a large vocabulary in
numerous fields [Baltescu and Blunsom, 2015; Mnih and
Kavukcuoglu, 2013]. The core idea is to compute only a tiny
fraction of the outputs dimensions to achieve computational
efficiency.

To be specific, NCE approximation regards the multi-class
prediction problem as psudo binary classification and this

1All our codes and models are publicly available at https://
github.com/jiangnanhugo/lmkit

method employs an auxiliary loss to optimise the goal of max-
imizing the probability of correct words, while also minimis-
ing the noise probability [Mnih and Teh, 2012]. To be specif-
ic, the model learn to classifyw0 from {w1 · · ·wk}, wherew0

is the empirical example and {w1 · · ·wk} are noise samples
generated from a prior unigram distribution q(w). The nor-
malised probability of positive categories and the joint prob-
ability of k noise samples is:

p̃(y = 1|h) =
exp(h>vw0)

exp(h>vw0
) + k ∗ q(w0)

p̃(y = 0|h) =
k∏

i=1

k ∗ q(wi)

exp(h>vwi) + k ∗ q(wi)

(2)

where p̃(y = 0|h) involves a sum over k noise samples in-
stead of a sum over the entire vocabulary, making the NCE
training time linear in the number of noise samples O(k) and
independent of the vocabulary size.

In addition, the recently proposed Blackout sampling algo-
rithm implicitly combine the advantages of importance sam-
pling and NCE to solve the unigram distribution’s context de-
pendency problems in NCE algorithm [Ji et al., 2016].

Overall, these approximations significantly accelerate the
training speed but time is still required to sample abundant
noises with the unigram distribution q(w). Nonetheless, the
partition function have to evaluated during inference as can-
didates are predicted in the whole vocabulary [Gutmann and
Hyvärinen, 2012].

Factored Output Layer. Factored output layer can dra-
matically reduce the cost of representing the probability dis-
tribution as well as learning and inference, and several pro-
posed structures can be divided into two categories: cHSM
and tHSM methods.

For cHSM model, it transforms one-step multi-label pre-
diction into two-step multi-label prediction, where the former
predicts the class of the word and the latter predicts the prob-
ability of this word in the corresponding class, as shown in
Fig.1 and Eq.3. Therefore, this procedure employs cascad-
ed softmax prediction to avoid the multiplication of a large
vocabulary. If we partition the vocabulary into k classes
{c1, · · · , ck}, such that ci

⋂
cj = φ, i 6= j and V =

⋃k
i=1 ci,

then the cHSM model can be written as:

p(wij |h) = p(ci|h) · p(wij |ci, h) (3)

where wij belongs to class ci. If each class contains√
|V| words, the optimal time complexity can be reduced to

O(
√
|V|) [Goodman, 2001].

h

c2

broommop

c1

catduck

Figure 1: Class-based Hierarchical Softmax.
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Likewise, tHSM decomposes one-step multi-class classifi-
cation into several steps of logistic classification so the vo-
cabulary is organised as binary tree, where words lie on its
the leaves and the intermediate nodes are internal parameters.
In the case of a balanced tree structure, the optimal case can
be O(log |V|). Traditionally, tree can be constructed from
WordNet with human experts [Morin and Bengio, 2005] or
Huffman coding with word unigram distribution [Mikolov et
al., 2013b]. Yet, expert knowledge is expensive in real world
challenge and the Huffman coding scheme only considers the
unigram statistics while words’ context, syntactic or semantic
information are neglected.

3 Methodology
In this section, we begin by defining the word polarity en-
coding scheme for modeling tree-based parameters and struc-
tures. With this scheme, we derive a compact and tight form
of cost function as well as its gradient for the proposed paral-
lelised tHSM (p-tHSM) model. Before training the p-tHSM
model, we investigate several word hierarchical clustering s-
trategies to define the distribution of word over the tree, in
order to achieve stable performance.

3.1 Word Polarity Encoding
In the case of binary tree with words on its leaves, we can
locate every word by all visiting the internal nodes from root
to the leaf. Here, the route for word w denotes the internal
nodes θwi and edges dwi it visits.

To illustrate, θwi represents the non-leaf nodes on the ith
layer on the route to word w, and θwi ∈ Rm, i ∈ [0, lw − 1].
Likewise, dwi represents the edge that connects the (i − 1)th

and ith layer’s node. For each non-leaf node, moving down
to the left branch is labelled as −1 and selecting the right
branch is labelled as +1. So, dwi ∈ {−1,+1}, i ∈ [0, lw−1].
Besides, lw ≈ log |V| denotes the route’s length from the
root to the leaf word. With this schema, we can change the
traditional word index or one-hot representation into a word
polarity encoding tuple (dw, θw) for word w by denoting the
polarity route to locate each word.

During implementation, we maintain a path looking-up ta-
ble Γ, memorising all the visited internal nodes’ index for
each word w from root to leaf. Such that, θw is retrieved from
parameter matrix Θ by selecting all the nodes from Γ(w). S-
ince the first dimension of Θ is V−1 (as

∑logV
i=0 2i = |V|−1),

no external parameters are involved for training. Besides, dw
is retrieved by obtaining the wth row vector from matrix D,
where w is the index in the vocabulary. Furthermore, {Γ,D}
are defined by the word clustering hierarchy, which is intro-
duced in the following section, and Θ is optimised by gradi-
ent descent on the training dataset.

3.2 Tree-based Loss and Gradient
During every step in the target word tree, we make a logistic
prediction about whether go to the left branch or right part
at each non-leaf node. The probability of i-th label dwi ∈
{−1, 1} given the i-th node and hidden layer h is:

p(dwi = ±1|θwi , h) = σ(dwi θ
w
i h) (4)

θw0

θw1

θw2

w′w

dw2 = −1

dw1 = +1

dw0 = −1

dw = [dw0 , d
w
1 , d

w
2 ]

θw = [θw0 , θ
w
1 , θ

w
2 ]

Figure 2: Tree-based Hierarchical Softmax. Internal nodes are pa-
rameterised by θwi , edges between nodes are parameterised by dwi ,
where dw is a vector and θw is a matrix. E.g., dw = [−1,+1,−1]
and dw

′
= [−1,+1,+1].

where σ(z) = 1/(1+exp(−z)) denotes the sigmoid function
and its symmetric rule is employed for abbreviation [Klein-
baum and Klein, 2010]: σ(z) + σ(−z) = 1. Therefore, the
probability of wordw is the joint product of the probability of
the route (dw, θw) taken from the root to the corresponding
leaf node:

log p(w|h) = log
lw−1∏
i=0

p(dwi |θwi , h)

=
lw−1∑
i=0

log σ(dwi θ
w
i h)

= log σ(dw>θwh)

(5)

and the corresponding loss function of the model L(θ|h,w)
is defined by the negative log-likelihood:

L(θ|h,w) =− log

lw−1∏
i=0

σ(dwi θ
w
i h)

=− log σ(dw>θwh)

= log(1 + exp(−dw>θwh))

=ζ(−dw>θwh)

(6)

where ζ(z) denotes the softplus function: ζ(z) =
log(1 + exp(z)) and its gradient is sigmoid-like function:
dζ(z)/dz = σ(z) = 1/(1 + exp(−z)) [Dugas et al., 2000].
Minimising the negative log-likelihood is directly maximis-
ing softplus loss and the probability of estimated words.

In the traditional tHSM algorithm, the model calculates the
log-probability of every node layer-by-layer consequently the
overall joint log-probability of this route is summarised lin-
early, thus the time complexity of tHSM takes O(logV):

L′(θ|h,w) =
lw−1∑
i=0

{(1− d′wi ) log(σ(θwi h))

+ d′wi log(1− σ(θwi h))}

(7)

where d′wi ∈ {0, 1}, and these two parts model the joint prob-
ability of the left and right branch of internal nodes separa-
tively. Noticeably, the main difference between p-tHSM and

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1953



tHSM is that: a) tHSM algorithm involves many tiny matrix
multiplications, instead we load all parameters (dw, θw) di-
rectly as 1D vector and 2D matrix at the expense of memory
consumption and we consider the multiplications of this vec-
tor and giant matrix, as shown in Fig 2; b) Based on that, a
compact loss function of the model is deducted and the nodes’
log-probability are calculated simultaneously which results in
better time efficiency for p-tHSM model.

Likewise, the model’s parameters {θw, h} are optimised
with regard to its gradient.

∂L
∂θw

=(σ(dw>θwh)− 1)dw>h

∂L
∂h

=(σ(dw>θwh)− 1)dw>θ

(8)

A major advantage of the binary decomposition is that it
avoids normalise the probability over the whole vocabulary,
as the summarised probabilities of words in the tree is natu-
rally equals to one.∑

w∈V
p(w|h) =

∑
w∈V

∑
i

σ(dwi θ
w
i h) = 1 (9)

In the procedure of inference, for a node in the i-th layer,
we choose the left branch when p(dwi |θwi , h) ≥ 0.5 and select
the right child when the opposite applies. Thus, the computa-
tional time complexity is O(log |V|).

3.3 Word Hierarchy Criterion
The polarity encoding of each word (dw, θw) in the vocabu-
lary is closely related to the tree’s structure. In the proposed
method, we employ several clustering algorithms to improve
the performance of p-tHSM algorithm.

Random Shuffle. This intuitive method ignores the word
hierarchy. Thus, words are randomly located in the leaves of
the tree’s nodes. This is the worst case for revealing the lower
bound of the tree modelling method.

Alphabetical Order. It is more efficient to sort the vocab-
ulary of words in alphabetical order and words with similar
tokens for strings share similar meanings in the text. Thus,
similar clustering results might be obtained to the commonly
used frequency binning method.

Huffman Clustering. This method sorts the vocabulary
based on word frequency and can be directly applied on p-
tHSM model, where words distribution on the tree are gen-
erated by the Huffman clustering rules. So frequent word-
s share similar short path and rare words are assigned with
similar long path [Mikolov et al., 2013b].

Brown Clustering. The Brown algorithm is an agglom-
erative hierarchical clustering method that clusters words to
maximise the mutual information for bigram words [Brown
et al., 1992; Liang, 2005], The binary prefix string for every
word it generates can be applied to initialise p-tHSM model.

4 Experimental Study
In order to validate the proposed p-tHSM method and com-
pare with other baseline methods, we conducted experimental
study and analysis with recurrent language modeling task on
three standard text datasets with several metrics.

...1w

......0h0

... n-2w

n-1hn-2h..

s /s

Figure 3: Recurrent Neural Language Model. Every sentence is
wrapped with start (i.e., 〈s〉) and end (i.e., 〈 /s〉) tokens. Before
predicting the next-step word wt+1, the input is received from the
last hidden state ht−1 and current word wt.

4.1 Recurrent Language Model and Metrics
The goal of a language model is to learn the probability for
a sequence of words. In particular, given a sequence of T
words: [w1, w2 · · · , wT ], the probability of this sequence can
be decomposed into the joint product of the conditional prob-
ability using the chain rule:

p(w1, w2 · · · , wT ) =
T∏

t=1

p(wt|w<t) (10)

where p(wt|w<t) denotes the next-step word probability giv-
en its previous context [w1, · · · , wt−1] as inputs, and its usu-
ally modeled by RNN model, as shown in Fig. 3. In this
research, recurrent neural network with gated units (GRU)
[Chung et al., 2014] is preferred as it requires a much smaller
set of parameters to model the internal recurrence mechanis-
m as well as its gating function ease the gradient vanishing
problem [Hochreiter, 1998].

In the training process, we regard the cross-entropy be-
tween the true word distribution and the predicted distribu-
tion, also known as the negative log-likelihood, as the mod-
el’s loss function:

L(θ|w1, · · · , wT ) = − 1

T

T∑
t=1

log p(wt|w<t) (11)

A standard score used for comparing LM’s performance
is the model’s perplexity (PP), which denotes the degree
of confusion when choosing the next-step word among can-
didates and a lower perplexity for a language model im-
plies better predictability. The perplexity is the exponential
of the average negative log-likelihood: PP(w1, · · · , wT ) =
exp(L(θ)), denoting that we are directly optimising the per-
plexity metric during training.

In addition, the training time efficiency, vocabulary scala-
bility and runtime memory consumption should also be con-
sidered as important metrics to benchmark models. Thus,
we analysed these evaluative metrics for different optimisa-
tions algorithms in both theoretical and empirical perspec-
tives on GPUs and CPUs respectively. Finally, experiments
are conducted and results are collected on the standard PTB,
WikiText-2 and WikiText-103 dataset to evaluate their accu-
racy and efficiency, and the detailed statistics of these dataset-
s2 are demonstrated in Table 1.

2https://metamind.io/research/the-wikitext-long-term-
dependency-language-modeling-dataset/
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Table 1: Statistics of the PTB, WikiText-2 and WikiText-103 Dataset.

Dataset PTB WikiText-2 WikiText-103
#train #valid #test #train #valid #test #train #valid #test

Articles 2,000 155 155 600 60 60 28,475 60 60
Sentences 42,068 3,370 3,761 36,718 3,760 4,358 1,801,350 3,760 4,358

#Vocabulary 10,000 33,278 267,735
Out-of-Vocabulary (%) 4.8% 2.6% 0.4%

4.2 Results and Discussions
Factored Output Layer Comparison. As shown in Table 2,
we benchmarked the empirical time complexity and parame-
ters size for training the same batched data on GPUs and C-
PUs. The “Softmax” method denotes the traditional flattened
softmax method, the “cHSM” algorithm is the class-based hi-
erarchical softmax, the “tHSM” method denotes the tradition-
al tree-based hierarchical softmax that has been discussed in
section 3, and the “p-tHSM” algorithm is the proposed paral-
lelised tree-based hierarchical softmax.

We tried to process the WikiText-103 dataset with these
algorithms and calculated the average time required for pro-
cessing one batch data. Besides, the input sentence’s max
length, hidden layer, output vocabulary and batch size were
set as {50, 256, 267735, 20}, respectively. Furthermore, the
“Total” process denotes the process for the forward propaga-
tion and backward gradient optimisation, and the “Forward”
process denotes the time consumption required from the input
of the data until the model’s cost was calculated.

Subsequently, we calculated the runtime memory usage for
the above mentioned algorithms, as shown in Table 2. Here,
the “Runtime” denotes the required memory we need to load
during training, and |H| is the embedding dimension. During
training, tHSM only consumed a minimal memory resource
while p-tHSM covered a much larger set of memory, and p-
tHSM employed larger memory and achieved better speedup
ratio when considering both memory consumption and speed.

In order to verify the scalability of cHSM, tHSM and p-
tHSM algorithms with relevance to the vocabulary size, re-
sults are collected in Fig. 4. In order to visualise the impact of
the p-tHSM algorithm, the “Softmax” method is not includ-
ed as it consumed much more computational time compared
with the others. Clearly, the cHSM scales with the square
root of the vocabulary size (i.e., O(

√
|V|)) whereas p-tHSM

exhibits stable performance as the vocabulary size increases.
Based on these experiments, we may conclude that the

proposed p-tHSM method outperformed the historical bench-
mark O(log |V|) and achieved a satisfactory speed-up ratio
for the hierarchical softmax architecture. This performance
was attributable to the acceleration based on the hardware’s
parallelism, but also due to the fundamental structure of the
p-tHSM method, which could maintain the target word tree
in a parallel manner.

Word Clustering Strategy Analysis. Chen et al. revealed
that the performance of cHSM is sensitive to the hierarchical
clustering of the words based on the tree [Chen et al., 2016].
Likewise, we considered several existing tree clustering crite-
ria in order to stabilise the performance of p-tHSM algorithm.

Table 2: Runtime time and memory comparison on GPUs and CPUs
with WikiText-103 dataset.

Runtime Total (ms) Forward (ms)

memory cpu gpu cpu gpu

Softmax |HV| 510.4 262.1 352.2 62.9
cHSM 2|H|

√
|V| 506.5 40.6 28.7 14.6

tHSM |H| 1,004.0 444.4 8.1 5.6
p-tHSM |H| log |V| 383.5 86.4 7.0 1.4

Vocabulary Size
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Figure 4: Scalability of cHSM, tHSM and p-tHSM algorithms with
relevance to the vocabulary size.

Table 3: Perplexity of p-tHSM method with various hierarchical
clustering algorithms on PTB Dataset.

Methods Valid Test

Random Shuffle 199.62 189.37
Alphabetical Order 154.02 149.12
Huffman Clustering 134.33 129.34
Brown Clustering 133.12 128.78

So we compared several tree clustering criteria using the
PTB dataset in Table 3. Randomly shuffling words and s-
plitting them into clusters of equal sizes performed the worst
as it did not provide any information about the distribution
of words. Besides, Huffman clustering (i.e., frequency bin-
ning) method categorised words into frequency groups, where
words in the same branches of the tree shared a similar word-
s’ frequency [Mikolov et al., 2013a]. This method performed
better than alphabetical order clustering algorithm, which
words were sorted considering their alphabetical order and
split them into equal-size groups of words. Although Brown
clustering token time to calculate and similar words were
grouped together according to its bigrams’ distribution, it per-
formed the best than the others. To be noticed, Randomly
shuffling and alphabetical order methods partition the vocab-
ulary into balanced tree structures while the rest not.
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Table 4: Perplexity benchmark on validation and testing dataset with PTB, WikiText-2 and WikiText-103 corpus.

PTB WikiText-2 WikiText-103

Valid Test Valid Test Valid Test

GRU + Softmax 131.59 125.10 169.07 160.45 170.19 171.02
GRU + NCE [Gutmann and Hyvärinen, 2010] 139,79 137.35 210.19 189.15 194.78 195.01
GRU + Blackout [Ji et al., 2016] 137.68 135.49 201.51 185.31 192.11 193.76
GRU + cHSM [Chen et al., 2016] 133.17 125.05 179.64 169.09 171.81 166.74

GRU + p-tHSM (pretrain via Huffman)[Mikolov et al., 2013b] 134.33 129.34 218.42 216.05 165.70 166.11
GRU + p-tHSM (pretrain via Brown) [Brown et al., 1992] 133.12 128.78 186.23 189.58 164.15 161.55

All Experiments Benchmark. As shown in Table 4, we
collected all the perplexity results on validation and testing
dataset of the above mentioned three standard corpus for ev-
ery algorithms. Besides, all experiments implemented with
Theano framework [Theano Development Team, 2016] were
run on one standalone GPU device with 12 GB of graphical
memory (i.e., Nvidia K40m), which allowed the large em-
bedding matrix multiplications to be possible. However, the
resource of one GPU memory was exploited quickly with the
rise of parameters’ dimension.

To be noticed, we employed one layer of GRU cell as the
context representation for all these algorithms, the dimension
of which was set to 256. Besides, for the NCE and Black-
out approximations, the hyper-parameter k was set to |V|/20
for smaller PTB and Wikitext-2 datasets and k = |V|/200
for the larger WikiText-103 dataset. Furthermore, for cHSM
method, we partitioned the vocabulary according its words’
unigram distribution.

Considering results on PTB and Wikitext-2 datasets, the
original softmax achieved the best ever score than the rest
algorithms, as it did not introduce any structural loss in cHSM
and p-tHSM algorithms or sampling-based variational loss in
Blackout and NCE approximations.

For the last ever-large Wikitext-103 dataset, the p-tHSM
method with Brown clustering not only achieved better result-
s than the Huffman clustering methods, but also performed
better than the others. Alternatively, the cHSM model were
capable of getting similar results than the p-tHSM variants,
denoting we might achieved better results with other suitable
clustering algorithms for cHSM methods. Even the Wikitext-
103 and Wikitext-2 dataset shared the same testing set, we
found the original softmax were hard to converge and per-
formed the worst results. Besides, for sampling-based meth-
ods, it converged to much better results than the softmax
method at the same time improve the time efficiency.

To conclude, after replacing the traditional Huffman cod-
ing scheme in tHSM with a word polarity coding scheme and
a compact tree-based model p-tHSM is achieved, we demon-
strated that this novel proposed coding scheme allowed the
calculations to run in parallel on GPUs. This reduced the time
complexity of raw tHSM O(log |V|) and obtained the opti-
mum speed-up ratio for large vocabulary problems. Further-
more, after testing several existing clustering algorithms for
stabilising the performance of the p-tHSM model, we found
that word clustering based on the tree model was closely re-
lated to binary classification based on the internal nodes.

5 Conclusions and Future Work
In this study, we considered the over-large vocabulary prob-
lem in the language modeling fields. In the literature, various
approaches have been proposed to address this issue, which
can be roughly divided into three categories: vocabulary trun-
cation, sampling-based approximation, and factored output
layer algorithms.

The first approach was easy to implement yet not perfectly
solve the problem as it can not generalise to large real world
tasks. While the second categories of method can reduce
the training time consumption in an efficient manner without
summarising all the words through variations of importance
sampling, but it failed during inference because a prior distri-
bution is applied and the multi-polynomial sampling method
was not time efficient. The third methods changed the flatten
architecture of the softmax algorithm into a heuristic hierar-
chical structure with two possible types: cHSM and tHSM
algorithms. The cHSM method built on the two-step softmax
classification method and tHSM extended this idea to log |V|
steps binary classification tasks.

In this research, we not only proposed a potential encod-
ing scheme to improve the standard tHSM but also built a
compact mathematical model for tHSM’s variants (i.e., p-
tHSM) but also exploited the advantages of GPU hardware,
so it can efficiently calculate the exact softmax and gradient
with a large target vocabulary. Remarkably, the complexity of
this algorithm is beyond the historical record O(log |V|) but
not in constant time complexity, thereby allowing it to tackle
very large vocabulary problems. Furthermore, we evaluated
several word hierarchical clustering algorithms for organizing
words in the tree model in a more efficient manner. Compared
with the baselines, the results showed that the speed-up ratio
was enhanced for the other probability normalisation method
and more efficient tree clustering was obtained.

In future research, we plan to explore the application of
the softplus activation function and optimise several existing
hierarchical clustering algorithms, in order to design a more
efficient hierarchical structure.
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[Jean et al., 2015] Sébastien Jean, KyungHyun Cho, Roland
Memisevic, and Yoshua Bengio. On using very large tar-
get vocabulary for neural machine translation. In Proc. of
ACL, pages 1–10, 2015.

[Ji et al., 2016] Shihao Ji, S. V. N. Vishwanathan, Nadathur
Satish, Michael J. Anderson, and Pradeep Dubey. Black-
out: Speeding up recurrent neural network language mod-
els with very large vocabularies. In Proc. of ICLR, 2016.

[Kim et al., 2016] Yoon Kim, Yacine Jernite, David Sontag,
and Alexander M. Rush. Character-aware neural language
models. In Proc. of AAAI, pages 2741–2749, 2016.

[Kleinbaum and Klein, 2010] David G Kleinbaum and
Mitchel Klein. Maximum likelihood techniques: An
overview. Logistic regression, pages 103–127, 2010.

[Liang, 2005] Percy Liang. Semi-supervised learning for
natural language. PhD thesis, MIT, 2005.

[Marcus et al., 1993] Mitchell P. Marcus, Beatrice Santorini,
and Mary Ann Marcinkiewicz. Building a large annotat-
ed corpus of english: The penn treebank. Computational
Linguistics, 19(2):313–330, 1993.

[Merity et al., 2017] Stephen Merity, Caiming Xiong, James
Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proc. of ICLR, 2017.

[Mikolov et al., 2010] Tomas Mikolov, Martin Karafiát,
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