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Abstract
For deep CNN-based image classification model-
s, we observe that confusions between classes with
high visual similarity are much stronger than those
where classes are visually dissimilar. With these
unbalanced confusions, classes can be organized in
communities, which is similar to cliques of peo-
ple in the social network. Based on this, we pro-
pose a graph-based tool named “confusion graph”
to quantify these confusions and further reveal the
community structure inside the database. With this
community structure, we can diagnose the model’s
weaknesses and improve the classification accuracy
using specialized expert sub-nets, which is compa-
rable to other state-of-the-art techniques. Utilizing
this community information, we can also employ
pre-trained models to automatically identify misla-
beled images in the large scale database. With our
method, researchers just need to manually check
approximate 3% of the ILSVRC2012 classification
database to locate almost all mislabeled samples.

1 Introduction
In the last few years, researchers have witnessed the great leap
of image classification [Russakovsky et al., 2015], especial-
ly after the significant success of deep convolutional neural
networks [Krizhevsky et al., 2012; Simonyan and Zisserman,
2014] and the emergence of large scale image datasets such
as ImageNet [Deng et al., 2009]. Though the classification
accuracy of the state-of-the-art model is surpassing that of
human beings, there still remain two critical challenges.

Firstly, it is extremely difficult to improve existing deep
CNN-based models. Although practical optimization meth-
ods have been put forward [Yan et al., 2015; Ahmed et al.,
2016; Kontschieder et al., 2015], few well-developed theo-
ries have been proposed to guide the model design or op-
timization. In view of this situation, most efforts tend to
employ experimental methods to improve existing model-
s and an important part of this approach is how to diag-
nose and understand the weaknesses of the model. In or-
der to address this issue, focusing on isolated samples that
are most responsible for the model’s errors, several diag-
nostic methods [Kabra et al., 2015; Breiman and Wald Lec-
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Figure 1: We use the “confusion graph” to quantify confusions be-
tween classes and reveal the community structure inside. Then we
utilize the community information to improve existing models and
automatically identify mislabeling in the image database.

ture, 2002] and visualization tools [Zeiler and Fergus, 2014;
Vondrick et al., 2013] have been developed. However, based
on our observation, actually, it is the confusions between
classes with high visual similarity that result in most mispre-
dictions, which can hardly be discovered by those sample-
scale diagnostic methods. For example, by previous meth-
ods, specific images of “hen” or “cock” may be found to be
responsible for the failures of the model. But only with this
sample-scale analysis, one can hardly notice that it is actually
the confusion between the class “hen” and the class “cock”
that results in most mispredictions. Contrarily, if confusions
between classes are revealed, we will then efficiently locate
the specific samples related to the errors. Thus, in order to de-
tect the model’s weaknesses, which further supports the im-
provement of the model, quantifying and understanding con-
fusions between different classes are of vital importance.

The second challenge is the inevitable mislabeling in the
large scale image database constructed by crowdsourcing,
which can result in severe negative effects on supervised
classifiers [Russakovsky et al., 2015; Frénay and Verleysen,
2014]. This label noise is unavoidable due to two main rea-
sons. Firstly, with more fine-grained classes added, expertise
in certain fields, such as ornithology, is required to correctly
label the images [Van Horn et al., 2015; Nilsback and Zisser-
man, 2008]. However, most people involved in crowdsourc-
ing have limited professional knowledge, which increases the
probability of mislabeling. Secondly, as the database scale
increases rapidly [Deng et al., 2009], it is extremely labori-
ous to identify all mislabeled samples by manual checking,
which makes it almost impossible to eliminate all label noise.
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Though researchers have noticed the severity of this issue,
unfortunately, few methods have been proposed to automati-
cally detect mislabeled images in the large scale database.

By analyzing the outputs of deep CNN models, we find that
confusions between classes that have similar visual character-
istics, such as shape, color, texture and background, is much
stronger than those between classes with low visual similari-
ty. This phenomenon is analogous to people’s relationships in
the social network, where relations between friends are closer
than those between strangers. Based on this analogy, we pro-
pose a graph-based tool, named “confusion graph”, to quanti-
fy confusions between different classes by accumulating the
top predictions of each test image. Applying the community
detection algorithm, we then reveal the expected communi-
ty structure inside the graph, where classes within the same
community have high visual similarity while those from dif-
ferent communities are visually dissimilar.

There are at least two applications of the confusion graph.
Firstly, it can be used as a diagnostic tool to detect weak-
nesses of a given model. Each community in the graph is a
weakness and the overall performance of the model can be
improved if these weaknesses are overcome. For illustration
purpose, we select ten 3-class communities and design spe-
cialized layers to overcome each weakness. For AlexNet-
based and VGG-verydeep-16-based models, the mean de-
creases of the top-1 error rate are 1.49% and 3.45% respec-
tively, which are comparable to other state-of-the-art methods
[Yan et al., 2015; Ahmed et al., 2016]. Secondly, we em-
ploy pre-trained models along with the community informa-
tion to automatically identify mislabeled samples in the im-
age database. Evaluated with the randomly polluted Oxford-
102 flowers dataset where 15% of the images are mislabeled,
our method can detect approximate 89% of all wrong labels
with the precision of 72%. When detecting mislabeling in the
ILSVRC2012 classification validation set, with our method,
researchers just need to manually check approximate 3% of
the whole database to locate almost all wrongly labeled sam-
ples, which significantly reduce the labour work. To the best
of our knowledge, there has been few similar work reported.

There are two main contributions in this paper as follows.
• We observe that most errors of deep CNN models occur

due to the confusions between classes which have high
visual similarity and image classes can be divided into
communities based on their visual confusions.
• We develop a graph-based tool, named “confusion

graph”, to quantify confusions between classes. We fur-
ther utilize the community structure inside the graph to
diagnose weaknesses of the model and automatically i-
dentify mislabeled images in large scale datasets.

2 Related Work
As far as we know, few diagnostic methods have been pro-
posed to understand errors of the image classification model.
The most related work is [Kabra et al., 2015], which locates
specific samples that is most responsible for the errors by ex-
amining influential neighbors. However, their method can not
figure out which classes are responsible for the model’s mis-
predictions, which we believe is the more fundamental reason

for failures. In addition, various visualization methods have
been proposed to visualize feature representations [Zeiler and
Fergus, 2014; Vondrick et al., 2013], which are also helpful
in terms of understanding failures of the model.

In order to improve the model’s robustness to label noise,
several approaches have been proposed by automatically i-
dentifying and down weighting mislabeled samples [Sánchez
et al., 2003; Freund, 2009; Brodley and Friedl, 1999]. How-
ever, few methods have been applied to the identification of
label noise in image databases. [Stokes et al., 2016] verifies
their method in some simple image databases such as MNIST,
which contains only 10 classes of digits. The performance of
mislabeled image identification in large scale database, such
as ImageNet, remains unknown.

3 Confusion Graph and Communities Inside
3.1 Definition of the Confusion Graph
Definition 1 Given a N -class classification with a model M
and a dataset T , the confusion graph G = (V,E) of the clas-
sification consists of a set of vertexes V = {v1, . . . , vN} and
undirected edges E ⊆ V × V without self loop.

Each vertex v ∈ V represents one class in the classifica-
tion. The edge ei,j ∈ E indicates that M may confuse class i
with class j. The weight wi,j (detailed in Section 3.2) of ei,j
quantifies the likelihood that M may mistake class i for class
j or mistake class j for class i. The larger the weight of an
edge is, the higher the likelihood is.

3.2 Establish a Confusion Graph
Given a model M , a testing dataset T that includes N class-
es with n single-label samples in each class and an integer
parameter τ , Algorithm 1 establishes the corresponding con-
fusion graph G by mapping the top-τ predictions of each test
sample to an undirected graph. The main idea of the algorith-
m is firstly normalizing the top-τ classification scores, where
the confusion information is hidden, of each test sample and
then accumulating each normalized score to the weight of the
edge that connects the labeled class and the predicted class.
For example, assume that we feed an image of “cat” to the
model and obtain the class “cat” with the score of 0.5 as the
top prediction, “dog” with the score of 0.2 as the second and
“deer” with the score of 0.1 as the third. Then the algorithm
will normalize the three scores as 0.625, 0.25 and 0.125 re-
spectively. Eventually, ignoring self loops, the algorithm will
accumulate 0.25 to the weight of the edge between “cat” and
“dog” and add 0.125 to that connecting “cat” and “deer”.

Specifically, in Algorithm 1, the function “TestOneSam-
ple” feeds one image t to model M and the output includes
the predicted classes and scores which are saved in R.c and
R.s respectively. The function “ScoreNormalization” takes
an array of scores as input and normalize each value by the
softmax-like Equation 1. By normalizing the top-τ scores,
each test sample has the same contribution in terms of con-
structing the weights of edges in graph G.

topR[i].s =
etopR[i].s∑τ
j=1 e

topR[j].s
(1)
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Figure 2: Confusion graph of LeNet-CIFAR10 (a) and communities
inside (b).

Using Algorithm 1 with τ set as 5, for illustration purpose,
we evaluate the pre-trained LeNet [LeCun et al., 1995] with
the CIFAR10 [Krizhevsky and Hinton, 2009] validation set
and obtain the confusion graph named LeNet-CIFAR10. All
experiments in this paper are completed using Matlab2014a
with MatConvNet [Vedaldi and Lenc, 2015] and the pre-
trained models are downloaded from the MatConvNet web-
site. As is shown in Figure 2 (a), each vertex represents one
class in the dataset and the weight of each edge quantifies the
confusion between the two classes. The strongest edge con-
necting “dog” and “cat” in the graph, for instance, indicates
that the model is likely to confuse dogs with cats. Contrar-
ily, the tiny link between “deer” and “truck” means that the
model seldom confuses deer with trucks.

Algorithm 1: Establish the confusion graph of a N -class
classification
Input: A N -class classification model M ; a dataset T ;
Top concern number τ(τ ≤ N);
Output: The confusion graph G = (V,E);

1 V ⇐ {v1, . . . , vN}, E ⇐ φ;
2 for each t ∈ T ( t’s label is l ) do
3 Rc,Rs ⇐ TestOneSample(M, t);
4 topR.s⇐ Rs[1 : τ ]; topR.c⇐ Rc[1 : τ ];
5 topR.s⇐ ScoreNormalization(topR.s);
6 for i from 1 to τ do
7 if topR[i].c 6= l then
8 if el,topR[i].c /∈ E then
9 E ⇐ E ∪ el,topR[i].c;

10 wl,topR[i].c ⇐ topR[i].s;

11 else
12 wl,topR[i].c ⇐ wl,topR[i].c + topR[i].s;

13 return G;

3.3 Detect Communities in a Confusion Graph
The confusions between different classes in the large scale
image database, such as ImageNet, are so complex that we
can never simply use isolated edges to analyze the many-to-
many relationships inside. Thus, inspired by the community

structure in the social network, which reveals the organiza-
tion of people, we apply the community detection algorithm
to explore communities inside the confusion graph and uti-
lize the modularity of each community as a metric to quanti-
fy each community’s compactness. In a confusion graph, the
meaning of a community is twofold. On the one hand, from
the model’s perspective, most of the mistakes result from the
confusions within the communities, which indicates that each
community can be viewed as a weakness of the model. On the
other hand, from the database’s perspective, classes belong-
ing to the same community are hard problems for the model
because most errors occur within these communities.

We utilize the first iteration of the fast community detec-
tion algorithm [Blondel et al., 2008] to find out fine-grained
communities inside the confusion graph. Due to the extreme-
ly unbalanced weight distribution of edges in the confusion
graph, in order to highlight main confusions, we delete most
tiny edges before applying the algorithm. Specifically, we
firstly sort the edges based on their weights. Then we use the
p-th percentile (0< p <100) as the cutting point to filter out
the tiny edges. Any edge whose weight is less than the p-th
percentile is deleted. We also introduce the concept of mod-
ularity from [Blondel et al., 2008] to measure the density of
links inside communities as compared to links among com-
munities. This value enables us to compare the compactness
of different communities (used in Section 4.1). Given a cer-
tain community partition, we can compute the modularityQk
of the kth community by Equation 2

Qk =
1

2m

∑
i,j

(wi,j −
sisj
2m

)δ(ci, cj)θ(ci, cj , k) (2)

where si =
∑
j wi,j is the sum of the weights of edges at-

tached to vertex i, ci is the community to which vertex i be-
longs, the δ-function δ(u, v) equals 1 if u = v and 0 oth-
erwise, the θ-function θ(ci, cj , k) is 1 if ci or cj is the kth
community and 0 otherwise and m = 1

2

∑
ij wij .

Setting p as 50, we obtain the community partition of
the LeNet-CIFAR10 (Figure 2 (b)) where classes from the
same community are colored the same. “Truck”, “automo-
bile”, “ship” and “airplane” belong to the same community
because they are all man-made transportation carriers with
shells, which separates them from the rest. Similarly, classes
of animals can further be separated into three communities
based on their visual characteristics.

In order to explain why certain classes gather together, we
select CIFAR100 [Krizhevsky and Hinton, 2009] as an object
of study because its complexity is between those of CIFAR10
and ImageNet. This moderate complexity provides diverse
communities for investigation and the manual analysis work-
load of the community structure is bearable. In CIFAR100,
There are 100 fine-grained classes which further come in 20
coarse-grained superclasses of 5 subclasses each. This class
structure design is based on the idea that classes within the
same superclass are similar and thus harder to distinguish
than classes belonging to different superclasses. By training
a LeNet-based model whose top-5 error rate is 22.5%, setting
τ as 5, we obtain its confusion graph with the validation set.
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Figure 3: Community structure inside CIFAR100 dataset.

Concealing tiny edges for illustration purpose, with p set as
95, we further reveal the communities inside (Figure 3).

By meticulous comparison, we find significant difference
between the community structure inside the confusion graph
and the original class structure of CIFAR100. The main
reasons that some classes from different superclasses in CI-
FAR100 assemble as a community in the confusion graph are
summarized as follows.
Similar shape For example, although “snake” belongs to su-
perclass “reptile” and “worm” is a member of “non-insect
invertebrates”, these two classes are in the same confusion
community because both of them have long bodies.
Similar background or environment A good example for
this is the biggest community consisting of “otter”, “seal”,
“whale”, “turtle”, “dolphin”, “aquarium fish”, “ray”, “shark”,
“trout” and “flatfish”. Though these creatures come from d-
ifferent superclasses, they all live in or near water. These
similar water backgrounds combine them as a community.
Similar texture or color “Forest”, “willow tree”, “pine tree”,
“maple tree”, “oak tree” and “palm tree”, for instance, con-
stitute a compact community because the color and texture of
foliage are quite similar.
Cooccurence Though “bed”, “table”, “chair”, “television”,
“couch”, “wardrobe” and “keyboard” have little visual simi-
larity, these classes form a community because these furniture
and electronic devices always appear together in a picture of
a living room or a bedroom.

Setting τ as 5, we obtain the confusion graph of AlexNet
evaluated with the ILSVRC2012 validation set, named AN-
ILSVRC2012. Then we perform similar analysis on the AN-
ILSVRC2012 and the phenomena, that classes with high vi-
sual similarity gather as a community, can also be observed.
Setting p as 92, we obtain a community list L recording 143
communities inside AN-ILSVRC2012. The sizes of the com-
munities vary from 1 to 24 (detailed in Figure 6) and 10 com-
munities with 3 classes in each are shown in Figure 4 as ex-
amples. From these examples, we can see that reasons sum-
marized based on CIFAR100 are compatible with the Ima-
geNet database. This further indicates that most classification
errors of the state-of-the-art CNN models result from classes
that have minor difference in visual characteristics.
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Figure 4: Examples of 3-class communities in ILSVRC2012. Class-
es within each community are visually similar.

4 Applications of the Confusion Graph
4.1 Detect Class-scale Weaknesses of the Model
The first application of the confusion graph is diagnosing
weaknesses of the the corresponding classification model be-
cause most errors occur within each community while few
confusions exist between different communities. Each com-
munity can be viewed as a weakness and the prediction accu-
racy can be improved if these weaknesses are overcome. In
addition, based on our experiments, we find that communities
with higher modularity values are more promising in terms of
improving the model’s classification performance.

In order to prove the advantage of the graph-based diag-
nosis and the effect of the modularity value, we select five
3-class communities with the highest modularity values and
another five with the lowest modularity values from the com-
munity list L obtained in Section 3.3. For each selected com-
munity, we train an AlexNet-based expert sub-net (ES) which
is shown in Figure 5. Each ES contains three full connection
layers and the forward prediction process can be divided into
2 stages. First, the image is classified by the original AlexNet
via path 1©. If none of the top-3 predictions belongs to the
ES’s community, the whole process ends. Otherwise, second-
ly, the feature extracted by the CNN part will be directly sent
to the corresponding ES via path 2© and the output of the ES
will replace the top-3 predictions of stage one. By cascading
the randomly initialized ES to the pre-trained convolutional
layers of AlexNet, we train each ES with images of the cor-
responding 3 classes from the ILSVRC2012 training set.

We tested each refined model using images from the
ILSVRC2012 validation set. Each test utilized 150 images
from 3 classes in which the ES specialized. The top-1 er-
ror rate was employed as the performance metric and the re-
sults are shown in Table 1. With the same parameter set-
ting, we have also performed similar experiments based on
VGG-verydeep-16, where we construct the confusion graph
of VGG-verydeep-16, detect communities inside and eventu-
ally employ the ES to overcome each weakness.

As is shown in Table 1, in AlexNet-based experiments, al-
l error rates decline and the mean decrease is approximate
1.49%. Additionally, the mean decrease in top-1 error rate
of the communities with top 5 modularity is larger than that

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1983



CNNcpartc
ofcAlexNet

FCcpartcofc
AlexNet

1000c
outputs

3coutputs

1024 256
Expertc

sub-net

Actestc
image

①

②

Communities

Decidecwhichc
ESctocusec

Figure 5: Structure of the AlexNet-based expert sub-net.

of the communities with the lowest 5 modularity, which are
2.15% and 0.84% respectively. Similar results can also be ob-
served in the VGG-based experiments, which are 5.52% and
1.38% respectively. This indicates that with the same opti-
mization method, more improvements can be obtained from
communities with higher compactness. Thus, by detecting
communities in the confusion graph, overcoming the weak-
ness represented by each community and focusing on com-
munities with high modularity, we can reduce the model’s
overall error rate effectively.

Comparable to ours, similar optimization results have been
reported in [Yan et al., 2015] which decreases the top-1 er-
rors by 1.11%. Specifically, they use spectral clustering based
on the confusion matrix to cluster fine-grained classes into
coarse classes. However, their method can not clearly show
which coarse class has more potential in terms of accuracy
improvement and spectral clustering is sensitive to parame-
ter selection [Zelnik-Manor and Perona, 2004], which is less
robust than our graph-based method [Blondel et al., 2008].

4.2 Identify Mislabeled Images in the Database
Mislabeled images are defined as images with totally irrele-
vant labels. If any object in an image is correctly labeled, the
image is not mislabeled. This definition is in accord with that
in [Deng et al., 2009]. With Algorithm 2, we can employ a
pre-trained model to automatically detect mislabeled images.

Algorithm 2: Detect mislabeled images in a dataset
Input: The classification model M ;
A subset S of the whole dataset, S = {s1, . . . , sn}
where all images are labeled α;
Community list L and an integer parameter µ (µ > 0);
Output: A dataset W containing wrongly labeled

images;
1 W ⇐ φ;
2 for each si ∈ S, do
3 Rc,Rs ⇐ TestOneSample(M, si);
4 If more than half of top-µ classes in Rc do not share

the same community with α, the Root-Mean-Square
of top-µ scores in Rs is higher than average and α
does not exist in top-µ classes of Rc, add si to W .

5 return W ;

Our method utilizes two criteria to filter out the suspicious-
ly mislabeled samples. Firstly, if most top-µ predicted class-
es do not stay in the same community with the labeled class,
this image may probably be mislabeled. Secondly, if the RM-
S of the top-µ predicted scores is higher than average, this
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Figure 6: The number of communities of different sizes in AN-
ILSVRC2012.

prediction is credible. Based on these two criteria, most mis-
labeling can be identified because a mislabeled image usually
has a credible prediction result but most of its top predicted
classes do not stay in the same community with the labeled
class. The community information in Algorithm 2 is of vital
importance because only with the community list can we take
advantage of the human-level top-5 error rate of state-of-the-
art models to identify the labeling mistakes. The parameter
µ controls the trade-off between the precision and the recall
of the detection, where a high µ leads to high precision with
low recall and a low µ leads to low precision with high re-
call. In practice, we iteratively correct the mislabeled images
by manually checking the output of Algorithm 2 in each it-
eration. The parameter µ decreases from 5 to 2 successively
during iterations of auto-detection and the iterative process
ends until no image in the output is true mislabeled.

We design two experiments to verify our method. Firstly,
in order to demonstrate the high precision and recall of our
method, we apply Algorithm 2 to cleaning the randomly pol-
luted Oxford 102 flowers dataset. The original dataset [Nils-
back and Zisserman, 2008] contains 102 categories of fine-
grained flowers and all images are correctly labeled by ex-
perts. We firstly train the classification model with the clean
dataset and obtain four models whose top-1 prediction error
rates are 40%, 30%, 20% and 10% respectively. Then we
use the validation set, containing 1020 images, i.e. 10 image
for each class, to construct the confusion graph and obtain
the community list of each model. In order to simulate the
situation where some images are mislabeled, we randomly
select 3%, 5% and 10% of the images in the validation set
and mislabel each of them with a random class. With our
iterative method, we utilize the four models to identify mis-
labeled samples in the polluted validation sets and the results
are shown in Table 2, where “PM” means the percentage of
mislabeling, “ER” means the error rate of the model, “NM”
denotes the number of mislabeled samples, “NMD” means
the number of mislabeled samples that are detected, “NTMD”
indicates the number of true mislabeled samples in the detec-
tion result. The “precision” is the ratio of “NTMD” to “N-
MD” and the “recall” is the ratio of “NTMD” to “NM”. As is
shown in Table 2, our method is able to identify approximate
92% of all mislabeled images and the corresponding preci-
sion is around 80%. In addition, the results suggest that the
“precision” and the “recall” of our method are negatively cor-
related with the model’s error rate, which means that we can
more accurately find more mislabeled samples if we employ
a model with lower classification error rate.

In order to investigate the performance when processing
large scale database, in our second experiment, we employ
the pre-trained VGG-verydeep-16 to detect wrong labels in
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Table 1: Accuracy improvement (error rate in %) in the experiments based on two different existing models.

AlexNet Communities with top 5 modularity Communities with lowest 5 modularity

Category No.
102
386
387

352
353
354

56
60
65

231
232
233

409
587
848

Mean
607
787
883

651
829
856

589
791
792

571
692
797

463
793
841

Mean

Top1 Error 51.67 29.33 54.00 44.66 46.20 45.17 48.96 65.71 51.67 52.48 51.38 54.04
ESTop1 Error 45.63 28.00 54.00 42.66 44.82 43.02 48.96 65.71 51.00 50.35 50.00 53.20
Top1Decrease 6.04 1.33 0.00 2.00 1.38 2.15 0.00 0.00 0.67 2.13 1.38 0.84
VGG-VD-16 Communities with top 5 modularity Communities with lowest 5 modularity

Category No.
36
37
38

278
279
281

357
359
360

172
173
177

156
201
205

Mean
31
32
33

548
566
706

367
368
370

11
14
16

188
194
202

Mean

Top1 Error 42.95 44.00 56.75 33.10 44.59 44.28 39.33 22.38 28.57 12.66 43.33 29.25
ESTop1 Error 40.26 38.66 52.70 25.67 36.48 38.75 38.00 20.15 28.57 10.66 42.00 27.88
Top1Decrease 2.69 5.34 4.05 7.43 8.11 5.52 1.33 2.23 0.00 2.00 1.33 1.38

Table 2: Mislabeled image detection results in the polluted Oxford
102 flowers dataset.

PM top-1 ER NM NMD NTMD precision recall

3%

40% 30 110 25 20.00% 83.33%
30% 30 58 22 37.93% 73.33%
20% 30 37 25 67.57% 83.33%
10% 30 39 28 71.79% 93.33%

5%

40% 51 164 34 20.73% 66.67%
30% 51 76 41 54.79% 80.39%
20% 51 50 38 76.00% 74.51%
10% 51 71 48 80.34% 90.20%

10%

40% 102 241 71 29.46% 69.61%
30% 102 116 82 70.69% 80.39%
20% 102 124 82 66.13% 80.39%
10% 102 117 94 80.34% 92.16%

the classification validation set of ILSVRC2012. The cor-
responding confusion graph and the community list are ob-
tained in Section 4.1. In our experiments, we firstly use Algo-
rithm 2 to detect the suspicious samples. Then we manually
check each auto-detected sample and confirm the number of
true wrong labels. The parameter µ varies from 0 to 5 and the
results are shown in Table 3, where “TMP” is the true misla-
beled percentage and “DMP” is the detected mislabeled per-
centage, which are the ratios of “NTMD” and “NMD” to the
number of all images in the dataset (50,000 in this experimen-
t) respectively. Figure 7 illustrates some of our auto-detection
results as examples.

Table 3: Mislabeled image detection results in the ILSVRC2012
validation set using pre-trained VGG-verydeep-16.

µ NMD NTMD precision TMP DMP µ NMD NTMD precision TMP DMP
5 1431 137 9.57% 0.27% 2.86% 5 1956 84 4.29% 0.17% 3.91%
4 1669 159 9.53% 0.32% 3.34% 4 2245 98 4.37% 0.20% 4.49%
3 1976 190 9.62% 0.38% 3.95% 3 2660 108 4.06% 0.22% 5.32%
2 2586 224 8.66% 0.45% 5.17% 2 3368 131 3.89% 0.26% 6.74%
1 3993 301 7.54% 0.60% 7.99% 1 4923 151 3.07% 0.30% 9.85%
0 6395 383 5.99% 0.77% 12.79% 0 7188 166 2.31% 0.33% 14.38%

Based on our second experiment, we can draw three main
conclusions. Firstly, according to [Deng et al., 2009], the
labeling accuracy of the ImageNet is 99.7%. However, by
manually checking the suspicious samples detected by VGG-
verydeep-16, we confirm 383 true wrong labels in 50K im-
ages, which indicates that the previously reported accuracy
of the ImageNet may be higher than reality. Secondly, if the

accuracy of the ImageNet is truly 99.7% as reported, with our
method, researchers just need to manually check approximate
3% of the ImageNet database to find out almost all wrongly
labeled samples, which significantly reduces the labour work.
Thirdly, we observe that most annotation errors occur in pe-
culiar flora and fauna, such as “whiptail” or “langur”, which
proves that expertise is necessary when labeling a large scale
image database with multifarious categories inside.

Mislabeled’
Image

Filename val_00022644 val_00011537 val_00020355 val_00025150 val_00004984

Original
Label

‘hen’ ‘red’wolf’ ‘desktop’ ‘strawberry’ ‘aircraft’carrier’

Mislabeled’
Image

Filename val_00012878 val_00018085 val_00022030 val_00025986 val_00037809

Original
Label

‘can’opener’ ‘wombat’ ‘honeycomb’ ‘pop’bottle’ ‘sea’snake’

Figure 7: Examples of mislabeling that are automatically detected
in the ILSVRC2012 classification validation set.

5 Conclusion
We propose the confusion graph to quantify confusions be-
tween different classes in image classification. Applying the
community detection algorithm, we further reveal the com-
munities inside the confusion graph, which are similar to
cliques of people in the social network. Classes within the
same community have high visual similarity and those from
different communities are visually dissimilar. The confusion
graph can be used to detect weaknesses of a classification
model. By designing specialized layers for each weakness,
we achieved state-of-the-art improvements of existing mod-
els. The community information can also be employed to
identify mislabeled images in the database. With our method,
researchers only need to manually check approximate 3% of
the ImageNet database to locate almost all mislabeled images.
To the best of our knowledge, this is the first reported work to
automatically detect mislabeled images in ImageNet.
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