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Abstract
Dynamic Boltzmann machines (DyBMs) are re-
cently developed generative models of a time se-
ries. They are designed to learn a time series by
efficient online learning algorithms, whilst tak-
ing long-term dependencies into account with help
of eligibility traces, recursively updatable mem-
ory units storing descriptive statistics of all the
past data. The current DyBMs assume a finite-
dimensional time series and cannot be applied to a
functional time series, in which the dimension goes
to infinity (e.g., spatiotemporal data on a continu-
ous space). In this paper, we present a functional
dynamic Boltzmann machine (F-DyBM) as a gen-
erative model of a functional time series. A techni-
cal challenge is to devise an online learning algo-
rithm with which F-DyBM, consisting of functions
and integrals, can learn a functional time series us-
ing only finite observations of it. We rise to the
above challenge by combining a kernel-based func-
tion approximation method along with a statistical
interpolation method and finally derive closed-form
update rules. We design numerical experiments to
empirically confirm the effectiveness of our solu-
tions. The experimental results demonstrate consis-
tent error reductions as compared to baseline meth-
ods, from which we conclude the effectiveness of
F-DyBM for functional time series prediction.

1 Introduction
This work is concerned with learning a time series for fore-
casting future events. In particular, we are focusing on a
light-weight model that can be trained online while preserv-
ing the predictive performance as much as possible. Aside
from recent high-performance but complex models like a
family of recurrent neural networks (RNNs) [Rumelhart et
al., 1986; Hochreiter and Schmidhuber, 1997; Sundermeyer
et al., 2012], light-weight models are required when train-
ing and predicting on devices with low computational power
such as mobile and IoT devices and when dealing with mas-
sive amount of stream data reported from a number of sen-
sors. In this light, we focus on a family of vector autore-
gressive models (VARs) [Lütkepohl, 2005], and above all,

Figure 1: Illustration of F-DyBM, modeling a functional pat-
tern f [t](x) defined on a two dimensional space. Heat maps
represent functional patterns. The current pattern depends on
five past patterns and two eligibility traces (which summarize
all the past patterns) through weight functions w[δ] and ul,
respectively.

one of its state-of-the-art variants called dynamic Boltzmann
machines (DyBMs) [Osogami and Otsuka, 2015; Osogami,
2016; Dasgupta and Osogami, 2017].

DyBMs are recently emerging generative models of a
binary/real-valued multi-dimensional time series. One of
their essential characteristics is a recursively updatable mem-
ory unit summarizing all the past data, which is dubbed as
an eligibility trace. Its recursive update rule enables us to de-
velop online learning algorithms for DyBMs while capturing
long-term dependencies of a time series to increase its pre-
dictive ability. Osogami [2016] reported up to 20-30% per-
formance gain by eligibility traces. Therefore, we employ
DyBMs as a time-series modeling framework.

In this paper, we present a new variant of DyBMs called
a functional dynamic Boltzmann machine (F-DyBM), which
is able to handle a partially-observable functional time series,
where at each discrete time step t ∈ Z, finite evaluations of a
function f [t](x) : X → R are given. Our F-DyBM is mainly
motivated by spatiotemporal data. Assume that a functional
time series is a spatiotemporal time series collected from mo-
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bile devices, where f [t](x) corresponds to a temperature, wa-
ter quality, or air quality observed at location x ∈ X and time
step t. This example implies two properties that cannot be
handled by the existing DyBMs designed for a vectorial time
series. First, it is required to forecast a future value at any lo-
cation x in a continuous spaceX , rather than finite fixed loca-
tions as in the case with a vectorial time series, in which each
dimension corresponds to each fixed location. The existing
DyBMs are not able to forecast values at infinite locations by
themselves. Second, observational points can move and may
appear and disappear abruptly, and in some cases, the identi-
ties of observations are lost due to privacy concerns, inhibit-
ing us from constructing a vectorial time series. These two
properties clearly highlight the essential difference between
a vectorial time series and a functional one. To this end, we
develop F-DyBM along with an online learning algorithm.

The development of F-DyBM constitutes of a modeling
task and an algorithm implementation task. The model of
F-DyBM can be derived rather straightforwardly based on
the Gaussian DyBM (G-DyBM) [Osogami, 2016; Dasgupta
and Osogami, 2017]; replacing vectors with functions, weight
matrices with weight functions, and matrix-vector multiplica-
tions with integrals. As a result, we obtain a model of a func-
tional time series as depicted in Fig. 1. On contrary, a learn-
ing algorithm cannot be directly derived in the same way as
modeling because of the following three technical challenges.
First, neither a functional time series nor weight functions can
be represented in a computer having only a finite memory.
Second, the model now involves integrals, which in general
cannot be efficiently computed. Third, typically, only finite
observations of a functional pattern are available at each time,
which breaks the fully-observable assumption in G-DyBM

Our idea to overcome these difficulties is twofold. The first
idea, addressing the first and second challenges, is to model
weight functions by finite kernel-based basis functions. Then,
we are able to represent model parameters by finite parame-
ters, and furthermore, the kernel trick allows us to analytically
compute the integrals, finally resulting in closed-form learn-
ing rules. Second, to address the third challenge, we employ
a Gaussian process as a core component of our model, and
estimate a functional pattern from finite observations by the
maximum-a-posteriori (MAP) estimation. These ideas suc-
cessfully lead to an online learning algorithm for F-DyBM.

The effectiveness of F-DyBM is empirically demonstrated
using five real spatiotemporal data sets. As we will discuss in
the related work section, F-DyBM can be interpreted as an ex-
tension of VAR and functional autoregression (FAR) [Bosq,
2000] as well as G-DyBM; eligibility traces mainly differen-
tiate F-DyBM from FAR and G-DyBM from VAR, and rig-
orous modeling of a functional time series differentiates F-
DyBM from G-DyBM and FAR from VAR. Therefore, we
design the experiment to validate the contribution of each
of these innovations. The experimental results indicate that
adding eligibility traces decreased the error by 12% on av-
erage, and the function-based modeling decreased the error
by 11.7% on average as compared to a heuristic application
of vector-based models. Hence, we conclude that F-DyBM
achieves substantial performance improvement because of
the two features.

Notation. We employ the following mathematical conven-
tions. For a matrix X = [x1 . . . xN ]

> ∈ RN×D
and a function f : RD → R, we define f(X) :=

[f(x1) . . . f(xN )]
> ∈ RN . For matrices X and Y =

[y1 . . . yM ]
> ∈ RM×D and a function K : RD × RD →

R, we define K(X,Y ) as an N ×M matrix whose (n,m)-
element corresponds to K(xn, ym). Let us denote a value as-
sociated with time t by f [t]. A sequence of values from time
−∞ to t− 1 (including t− 1) is denoted by f [<t].

2 Problem Setting
We assume that observations are carried out in X (e.g., the
Euclidean space in the case of a standard spatiotemporal
data). Let us denote a signal observed at x ∈ X at time t ∈ Z
by f [t](x) ∈ R. We call a function f [t] as a pattern. Our
problem setting is that, at every time t, we are given finite ob-
servations of a pattern f [t], and are willing to predict the next
pattern f [t+1]. Let us denote the observational points at time t

by X [t] =
[
x
[t]
1 . . . x

[t]

N [t]

]>
. The observational points as

well as the number of them, N [t], can be time-variant.

3 Gaussian Dynamic Boltzmann Machine
This section briefly reviews a Gaussian dynamic Boltz-
mann machine (G-DyBM) [Osogami, 2016; Dasgupta and
Osogami, 2017], which extends the original binary-valued
DyBM [Osogami and Otsuka, 2015] to handle real values.

G-DyBM models an N -dimensional time series by N
neural units. The n-th unit (n = 1, . . . , N ) outputs a sig-
nal f [t]n ∈ R at time t. We call the set of signals emitted
from all the neurons a pattern, which is denoted by f [t] =[
f
[t]
1 . . . f

[t]
N

]>
. G-DyBM models the dynamics of the

pattern as follows:

p(f [t] | f [<t]) =
N∏
n=1

N (f [t]n ;µ[t]
n , σ

2
n), (1)

µ[t] = b +
d∑
δ=1

W [δ]f [t−δ] +
L∑
l=1

Ulα
[t−1]
l , (2)

α
[t−1]
l =

∞∑
δ=1

λδ−1l f [t−δ] (l = 1, . . . , L), (3)

where parameters are b, {W [δ]}dδ=1, and {Ul}Ll=1, and hyper-
parameters are d, L, {σn}Nn=1, and {λl}Ll=1.1 The pattern at
time t is dependent on all the past patterns through the mean

µ[t] =
[
µ
[t]
1 . . . µ

[t]
N

]>
(Eq. (1)). The mean at time t is

calculated using two types of memory units (Eq. (2)). One
stores the recent d patterns {f [t−δ]}dδ=1, and the other called
an eligibility trace, α[t−1]

l (l = 1, . . . , L) summarizes all the
past patterns (Eq. (3)).

1We fix σn = 1 for all n.
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4 Functional Dynamic Boltzmann Machines
We present a functional dynamic Boltzmann machine (F-
DyBM), which models the dynamics of a functional pattern
emitted from an infinite number of neurons distributed in X .
We first present the model of F-DyBM, and then, we develop
an online learning algorithm, which trains F-DyBM from fi-
nite observations of a functional pattern and enables us to
forecast the next functional pattern.

4.1 Model
We assume that each neuron is associated with location x ∈
X , instead of index n. Let us denote a pattern at time t by
f [t] : X → R. f [t](x) represents a signal of a neuron at x and
time t. We derive F-DyBM by extending Eqs. (1), (2), and (3)
to Eqs. (4), (5), and (6) respectively as follows.

Equation (1) is refined by substituting a Gaussian process
for the Gaussian distribution:

p(f [t] | f [<t]) = GP(f [t];µ[t],Kσ2), (4)

where f [t] is a functional pattern, µ[t] : X → R is the mean
function at time t, which is dependent on all the past patterns
f [<t], andKσ2 : X×X → R is a covariance function.2 Equa-
tions (2) and (3) are refined as follows:

µ[t](x) =b(x) +
d∑
δ=1

∫
X
w[δ](x, x′)f [t−δ](x′)dx′

+

L∑
l=1

∫
X
ul(x, x

′)α
[t−1]
l (x′)dx′,

(5)

α
[t−1]
l (x) =

∞∑
δ=1

λδ−1l f [t−δ](x), (6)

where we substitute weight functions for weight matrices and
integrals for matrix multiplications. Model parameters are
b(x), {w[δ](x, x′)}dδ=1, and {ul(x, x′)}Ll=1, and hyperparam-
eters are d, L, Kσ2 , and {λl}Ll=1.

4.2 Online Learning Algorithm
So far, we have successfully compiled G-DyBM for a func-
tional pattern. However, as discussed in the introduction,
there still remain the following three technical challenges to
deploy F-DyBM into the real world:

(i) The model involves functional parameters, b, w[δ], and ul,
as well as functional patterns f [t](x), which cannot be
stored using finite memory.

(ii) Equation (5) involves integrals of the weight functions
and previous patterns. In general, numerical integration
is an error-prone and time-consuming procedure, and
should be avoided whenever possible.

(iii) Our problem setting assumes that only finite observa-
tions of a pattern are available at each time step.

2We employ the following shorthand:Kσ2(x, x′) := K(x, x′)+
σ2δx,x′ with denoting the Kronecker delta by δx,x′ .

Main Ideas
We introduce two main ideas to address the three technical
challenges raised above.

The first idea is to assume a particular parametric form
for functional parameters using finite parameters along with
the covariance function Kσ2 of the Gaussian process. Then,
we can represent all of the functional parameters by finite-
dimensional vectors, and in addition, the kernel trick allows
us to avoid numerical integration, addressing both challenges,
(i) and (ii). In specific, weight functions, w[δ](x, x′) and
ul(x, x

′), and the bias function b(x) are assumed to have the
following parametric forms:

w[δ](x, x′) = Kσ2(x, P )W [δ]Kσ2(P, x′) (δ = 1, . . . , d),
(7)

ul(x, x
′) = Kσ2(x, P )UlKσ2(P, x′) (l = 1, . . . , L), (8)

b(x) = Kσ2(x, P )b, (9)

where P = [p1 . . . pN ]
> is a set of points in X , and

W [δ], Ul ∈ RN×M and b ∈ RN are parameters. Then, by
substituting Eqs. (7), (8), and (9) for Eq. (5), we obtain

µ[t](x) = Kσ2(x, P )

[
b +

d∑
δ=1

W [δ]f [t−δ](P )

+
L∑
l=1

Ulα
[t−1]
l (P )

]
,

(10)

where the integrals can be analytically computed via the ker-
nel trick because f [t−δ](x) and α[t−1]

l (x) belong to the repro-
ducing Hilbert kernel space of Kσ2(·, ·) (see Eq. (4)). Thus,
the two challenges (i) and (ii) are addressed.

Another benefit of the resultant model is that it is sufficient
to memorize patterns at the fixed set of points, P , for comput-
ing Eq. (10), rather than the time-varying points X [t]. This is
especially significant when computing the eligibility trace us-
ing fixed-sized memory. In fact, the eligibility trace α[t−1]

l (P )
can be defined in a similar way to Eq. (3):

α
[t−1]
l (P ) =

∞∑
δ=1

λδ−1l f [t−δ](P ), (11)

which is also recursively updatable.
The second idea addressing the third challenge (iii), is to

replace the functional patterns appearing in Eqs. (10) and (11)
with their estimators. At time t, given f [t](X [t]) and µ[t](x),
the MAP estimator of f [t](P ) is obtained as

f̂ [t](P ) = µ[t](P ) +K(P,X [t])Kσ2(X [t], X [t])−1d[t](X [t]),
(12)

where we denote d[t](x) := f [t](x)− µ[t](x). At each time t,
we compute the MAP estimator f̂ [t](P ) as Eq. (12) and use it
as a proxy for f [t](P ) in Eq. (10) from time t+1 onward. We
choose to impute unobserved values by their estimators pro-
gressively, instead of relying on EM-based algorithms (e.g.,
[Shumway and Stoffer, 1982]), in order to keep the online
algorithm as efficient as possible.
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Algorithm 1 An online learning algorithm for F-DyBM.
1: for t = 0, 1, 2, . . . do
2: Predict the pattern at time t using µ[t](x) as Eq. (10).
3: Observe the pattern at time t, (X [t], f [t](X [t])).
4: Update parameters as Eqs. (13)–(16).
5: Compute f̂ [t](P ) as Eq. (12).
6: Update Q and E using f̂ [t](P ) as Eq. (17).
7: end for

Implementation
Putting everything together, we derive an online learning al-
gorithm for F-DyBM (Algorithm 1). It learns Θ = {b} ∪
{W [δ]}dδ=1 ∪ {Ul}Ll=1 in an online way, and enables us to
predict the next unseen pattern. Its input is hyperparameters,
d, L, P ∈ RN×D, Kσ2 , and {λl}Ll=1. First, two memory
units, Q and E , and the model parameters Θ are initialized
by filling 0, where Q is a queue storing {f̂ [t−δ](P )}dδ=1, and
E is a set of eligibility traces {α[t−1]

l (P )}Ll=1. For each time
t = 0, 1, 2, . . . , we first predict the next pattern as Eq. (10).
Then, we observe (X [t], f [t](X [t])) and update Θ as

Θ← Θ + η[t] · ∂L
[t](Θ)

∂Θ
, (13)

where η[t] is a learning rate, and L[t](Θ) is a conditional log-
likelihood of the current observations, which is given by

L[t](Θ) := log p(f [t](X [t]) | f [<t];Θ)

=− 1

2
d[t](X [t])

>
Kσ2(X [t], X [t])−1d[t](X [t]) + C,

where C is a constant independent of Θ. The gradients of
L[t](Θ) with respect to the model parameters are,

∂

∂b
L[t](Θ) = K(P,X [t])Kσ2(X [t], X [t])−1d[t](X [t]),

(14)
∂

∂W [δ]
L[t](Θ) =

[
∂

∂b
L[t](Θ)

]
f̂ [t−δ](P )>, (15)

∂

∂Ul
L[t](Θ) =

[
∂

∂b
L[t](Θ)

]
α
[t−1]
l (P )

>
. (16)

Finally, we update the memory unitsQ and E ; f̂ [t](P ) is com-
puted as Eq. (12) and is enqueued to Q, and E is updated as

α
[t]
l (P ) = λlα

[t−1]
l (P ) + f̂ [t](P ) (l = 1, . . . , L). (17)

5 Related Work
As we have shown in the previous section, F-DyBM is de-
rived from G-DyBM by taking the number of neurons to
infinity. Besides, Osogami [2016] and Dasgupta and Os-
ogami [2017] discussed a close connection between G-DyBM
and VAR, which has been extensively used in econometrics.
Therefore, we spare this section to discuss the relationships
among a family of DyBMs and VARs, as illustrated in Fig. 2.

First, we discuss the relationships among VAR, G-DyBM,
and F-DyBM. The relationship between F-DyBM and G-
DyBM has been discussed so far; F-DyBM extends G-DyBM

Gaussian DyBM

Vector Autoregression Functional Autoregression

Functional DyBM

+ Eligibility traces
+ Online learning algorithm

+ Eligibility traces
+ Online learning algorithm

#(neurons) → ∞

#(dims) → ∞

Figure 2: Relationship diagram among VAR, FAR, G-DyBM,
and F-DyBM.

by increasing the number of neurons to infinity. The rela-
tionship between G-DyBM and VAR was discussed by Os-
ogami [2016]; G-DyBM extends VAR by adding eligibility
traces. In fact, VAR(d), a VAR model of the d-th order can
be derived by setting Ul = O (l = 1, . . . , L) in Eq. (2). The
extension from VAR to G-DyBM complies with the design
principle of DyBMs to learn a time series online, because
the recursive update rule of eligibility traces enables us to
equip G-DyBM with an efficient online learning algorithm.
This research direction to extend the model while keeping its
learning algorithm online is unique in the research domain of
VARs, because most of the existing VARs do not focus on the
online setting. This direction is also unique in neural network
modeling for time-series data. In the same way as DyBM, re-
current neural networks have a memory unit (i.e., a hidden
unit) h[t] that summarizes all the historical patterns by recur-
rent connection defined as,

h[t] = σ
(
Whf

[t] + Uhh
[t−1] + bh

)
,

in the case of Elman network [Elman, 1990]. However, in or-
der to train the parametersWh, Uh, and bh, backpropagation-
through-time is required for gradient computation, and for-
ward computation of h[t] from the beginning of a time series
is also required for prediciton whenever the parameters are
updated. Thus, most of the learning algorithms for RNNs are
typically not suitable to the online setting as compared with
those for DyBMs. Note that the only exception is a family of
echo-state networks [Jaeger and Haas, 2004], where the pa-
rameters above are fixed, and only the connection from h[t] to
the next pattern f [t+1] is learned, resulting in a simple linear
regression task. Dasgupta and Osogami [2017] augment G-
DyBM by an echo-state network, and the resultant learning
algorithm is almost as efficient as the original G-DyBM.

Then, we review functional autoregression (FAR) [Bosq,
2000], and discuss its relationship with other models. FAR
extends VAR by increasing the dimension of the vector space
to infinity in order to model a functional time series. In a simi-
lar way to G-DyBM and VAR, we can show that F-DyBM ex-
tends FAR by attaching eligibility traces. Besides, F-DyBM
is different from FAR in its application as well as the al-
gorithmic aspects. While F-DyBM considers X as a multi-
dimensional space in general, FAR has been mostly applied
to a one-dimensional case, i.e., X ⊆ R, such as a periodic
continuous time series. For example, suppose we have a con-
tinuous time series g(x) (x ∈ R) that has period 1, where x
represents time. Then, for each time step t ∈ N, a functional
time series f [t](x) is defined as f [t](x) = g(t + x) (x ∈
[0, 1)). Such applications of FAR range over climate [Besse
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et al., 2000], mortality and fertility rates [Hyndman and Ul-
lah, 2007], the concentration of ozone [Damon and Guil-
las, 2002], and Eurodollar futures rates [Kargin and Onatski,
2008] to name a few. As for a learning algorithm, Diderick-
sen et al. [2012] reviewed and compared two popular meth-
ods for training FAR. The first one is referred to as estimated
kernel (EK), which expands and approximates weight func-
tions using finite functional principle components of func-
tional data with the largest eigenvalues [Ramsay and Silver-
man, 2005]. EK may be preferable to our method in that EK
forms basis functions adaptively dedicated to the data set at
hand (while ours pre-defines basis functions). However, we
avoid from employing EK as a learning algorithm because
EK cannot be easily applied to our online setting. The sec-
ond one is referred to as predictive factors (PF) [Kargin and
Onatski, 2008], which employs basis functions that are help-
ful for prediction rather than explaining the data as EK does.
In a similar reason to EK, we do not apply PF to F-DyBM.

6 Experiment
We empirically investigate the effectiveness of F-DyBM. F-
DyBM is unique in that it has eligibility traces and it models
a functional time series rather than a vectorial time series.
Thus, we design an experiment to quantitatively evaluate the
benefit from these two features.

6.1 Methods Evaluated
We evaluated the four methods descried in the related work:
VAR, FAR, G-DyBM, and F-DyBM. VAR and FAR are
equipped with online learning algorithms in the same way
as G-DyBM and F-DyBM. Since VAR and G-DyBM cannot
deal with a functional time series as they are, we rely on the
following wrapping method.

Wrapping method. The basic idea is to associate each unit
of G-DyBM or VAR with a point in X and to interpolate
a value at any point via a Gaussian process. Let us assume
that the n-th unit is associated with a point pn ∈ X , and
let us denote the set of the points by P = [p1 . . . pN ]

>.
Let us assume that a function f [t] is distributed according to
the Gaussian process GP(0,Kσ2). Then, given observations
f [t](X [t]), the signals at P can be estimated as

f̂ [t](P ) = K(P,X [t])Kσ2(X [t], X [t])−1f [t](X [t]).

Then, we feed f̂ [t](P ) to VAR or G-DyBM for online learn-
ing. Prediction can be also implemented using the Gaussian
process. Given a prediction by VAR or G-DyBM µ[t], a pre-
diction at any point x ∈ X can be estimated as

f̂ [t](x) = K(x, P )Kσ2(P, P )−1µ[t].

We chose these four methods because performance com-
parison between F-DyBM and G-DyBM and that between
FAR and VAR allow us to quantify the contribution of our
rigorous treatment of a functional pattern, and performance
comparison between F-DyBM and FAR and that between G-
DyBM and VAR reveal the contribution of eligibility traces.

6.2 Data Sets
We employ five real data sets for performance evaluation. In
specific, since our primary motivating example is spatiotem-
poral prediction, we evaluate the performance on the follow-
ing two types of spatiotemporal data sets.

NOAA Global Surface Temperature V4.01
We use a temperature data set provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. It
contains the global temperature anomalies from January
1880 to present, resulting in the length 1638.3 The globe is
spatially gridded by 5◦ × 5◦, and a temperature anomaly
at each location is reported. We selected 392 locations
that observe the temperature without interruption. For each
observational location, we define x ∈ R3 to be the location
on the earth represented by a point on a unit ball in the
orthogonal coordinate system.

AirData
In addition to the temperature data, we employ four air quality
data sets retrieved from AirData4. We used the daily summary
data of criteria gases (CO, NO2, O3, and SO2) from 1990 to
November 2016. Each data set contains daily concentration
data of each criteria gas measured at outdoor monitors lo-
cated in the United States. Since each gas has interrelated but
its own generating mechanism, their concentration data have
different dynamics. Therefore, it is valuable to evaluate the
predictive performance on each of the four data sets.

We preprocessed the data sets as follows. For each data
set, we extracted the data summarized by its primary stan-
dard of National Ambient Air Quality Standards. Then,
we chose records with Event Type = None to exclude
anomaly records caused by wildfire for example. After that,
we dropped multiple records at the same day and the same lo-
cation by selecting the first record. Finally, we converted each
concentration measurement c ∈ R+ to log(c+10−5), and re-
garded it as f [t](x), where t corresponds to a day, and x ∈ R3

is defined in the same way as the NOAA data set. Each data
set has the same length 9,831 and time-variant numbers of ob-
servational pointsN [t]. The means and standard deviations of
N [t] of CO, NO2, O3, and SO2 are 401.3±87.6, 371.0±37.8,
870.0± 260.9, and 540.7± 107.5, respectively.

6.3 Protocol and Configuration
We design the following experimental protocol for perfor-
mance evaluation. Assume that we have a time series and
multiple instances of each model that have different sets of
hyperparameters. Our aim is to choose the best instance from
the set of candidates and evaluate its generalization ability.
To do so, we first divide the time series into training, valida-
tion, and test sets in chronological order with ratio 3 : 3 : 4.

3Retrieved from http://www.esrl.noaa.gov/psd/
data/gridded/data.noaaglobaltemp.html on Aug. 23,
2016. A temperature anomaly refers to a departure from a reference
value such as a long-term average

4AirData is maintained by the United States Environmental
Protection Agency, and we retrieved it from Air Quality System
Data Mart (http://aqsdr1.epa.gov/aqsweb/aqstmp/
airdata/download_files.html) on Dec. 28, 2016.
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Table 1: Means and standard deviations of test RMSEs.
NOAA CO NO2 O3 SO2

VAR 1.164± 0.001 2.184± 0.068 1.723± 0.040 1.383± 0.042 3.931± 0.018
FAR 1.158± 0.003 1.880± 0.124 1.668± 0.067 0.561± 0.024 3.888± 0.042

G-DyBM 1.155± 0.003 1.872± 0.099 1.604± 0.047 0.598± 0.056 3.852± 0.034
F-DyBM 1.131± 0.009 1.768± 0.073 1.520± 0.014 0.457± 0.049 3.750± 0.058

Then, we train each instance by running its online learning
algorithm on the training set. The trained instances are then
exposed to the validation set. At each step, each instance pre-
dicts one step ahead, and we compute the root-mean-square
error (RMSE) using the prediction and the actual observa-
tion. The mean of the RMSEs across the entire validation set
is computed for each instance, and we choose the instance
with the smallest mean RMSE as the best. Finally, we evalu-
ate the performance of the best one on the test set, and report
the mean RMSE. Note that in our setting the algorithm runs
through each subset of a time series only once, and the model
parameters are always updated using a new observation.

For all the models, we used the RBF kernel K(x, x′; γ) =
exp(−γ‖x−x′‖2), and prepared the instances by all the com-
binations of the following hyperparameters: N = 25, d = 3,
η[0] ∈ {2−n}23n=19, σ2 ∈ {2−n}2n=0, γ ∈ {2n}5n=0 for all
the models and L = 3, λ1 = 0.1, λ2 = 0.5, λ3 = 0.9 for
G-DyBM and F-DyBM. Since the validation scores of VAR
were sometimes exceptionally worse than the others, we ad-
ditionally tried γ ∈ {2n}2n=−3 for VAR. All the models are
trained by using SGD, and the learning rate is controlled by
rmsprop [Tieleman and Hinton, 2012]. Points P ∈ RN×3
were uniform-randomly sampled from [−1, 1]3 and normal-
ized to the unit vectors. Due to the randomness arising from
P , we executed the above procedure for ten times, and report
the mean and standard deviation for each model.

6.4 Results
Experimental results are summarized in Table 1. We first no-
tice consistent performance improvements resulting from di-
rect modeling of a functional time series when comparing F-
DyBM with G-DyBM and FAR with VAR. In specific, the
RMSE of F-DyBM is 76–98% (92% on average) of that of G-
DyBM, and the RMSE of FAR is 41–99% (84% on average)
of that of VAR. Also, performance comparison between F-
DyBM and FAR, and G-DyBM and VAR demonstrates con-
sistent benefit from eligibility traces; the RMSE of F-DyBM
is 81–98% (92% on average) of that of FAR, and the RMSE
of G-DyBM is 43–99% (84% on average) of that of VAR.
In summary, this numerical experiment demonstrates consis-
tent performance improvements by turning on each feature of
F-DyBM, which verifies its effectiveness.

7 Concluding Remark and Future Work
This paper has presented a functional dynamic Boltzmann
machine (F-DyBM) as an extension of Gaussian DyBM with
the aim of learning a functional time series online while
still considering all the past patterns. Whereas it is relatively
straightforward to extend the model, devising an online learn-
ing algorithm yields three technical challenges regarding how

to deal with and operate functions and how to learn from fi-
nite observations of a functional pattern. We have addressed
these difficulties with two ideas: to model weight functions
by a kernel function and finite parameters and to replace the
functional patterns with their MAP estimators progressively.
These two ideas successfully lead an online learning algo-
rithm for F-DyBM. We designed an experiment to demon-
strate the effectiveness of two essential characteristics of F-
DyBM, i.e., eligibility traces and careful modeling of a func-
tional time series. As a result, we have observed that eligi-
bility traces decrease the error by 12.0% on average and the
functional modeling decreases the error by 11.7%.

One future direction will be to develop further more ef-
ficient learning algorithms. Since our current implementation
requires to solve a linear system of sizeN [t] at each time step,
time complexity of each step amounts to O

(
(N [t])3

)
(while

the wrapping method requires O
(
(N [t])3 +N3

)
). In the

Gaussian process community, inference algorithms with
much lower time complexity have been extensively stud-
ied [Quiñonero-Candela and Rasmussen, 2005; Rasmussen
and Williams, 2006; Wilson et al., 2015], and we believe
leveraging these innovations will lead to a scalable algorithm.

Another research direction is to use F-DyBM for language
modeling, predicting the next word given the former words in
a document. F-DyBM can model this task by regarding a po-
sition in a document as a time step, a word vector obtained by
word2vec [Mikolov et al., 2013] as x, and f [t](x) as a one-
hot representation of the word appearing at position t. Since
F-DyBM can leverage all the predecessor words and their
similarities for prediction, we believe F-DyBM will achieve
more than moderate performance with much efficiency.

Finally, it is fruitful to examine the theoretical properties
of F-DyBM, especially the estimation error induced by pro-
gressively replacing f [t−δ](Q) with its MAP estimator in
Eq. (10). Recently, Anava et al. [2015] have presented an
online prediction algorithm for an AR model that can han-
dle missing data, and they also have derived its regret bound.
However, there are still several obstacles that hinder us from
applying their theory to our algorithm. For example, since
their theory does not assume the underlying model generat-
ing a time series, they consider the regret between a particular
inefficient predictor and its efficient but approximated predic-
tor, not the regret between their algorithm and the best pos-
sible AR model in the fully-observable case. Therefore, we
believe that the first step towards investigating the theoretical
properties of F-DyBM is to examine the regret bound against
the fully-observable case.
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