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Abstract
In time-series forecasting, regression is a popular
method, with Gaussian Process Regression widely
held to be the state of the art. The versatility of
Gaussian Processes has led to them being used
in many varied application domains. However,
though many real-world applications involve data
which follows a working-week structure, where
weekends exhibit substantially different behaviour
to weekdays, methods for explicit modelling of
working-week effects in Gaussian Process Regres-
sion models have not been proposed. Not explicitly
modelling the working week fails to incorporate a
significant source of information which can be in-
valuable in forecasting scenarios. In this work we
provide novel kernel-combination methods to ex-
plicitly model working-week effects in time-series
data for more accurate predictions using Gaussian
Process Regression. Further, we demonstrate that
prediction accuracy can be improved by constrain-
ing the non-convex optimisation process of finding
optimal hyperparameter values. We validate the ef-
fectiveness of our methods by performing multi-
step prediction on two real-world publicly avail-
able time-series datasets - one relating to electricity
Smart Meter data of the University of Melbourne,
and the other relating to the counts of pedestrians
in the City of Melbourne.

1 Introduction
Forecasting time series is an important problem, with appli-
cations in fields as diverse as financial markets, robotics and
electricity generation. Many real-world forecasting tasks in-
volve data which exhibit periodic structure and which relate
to a Monday - Friday working week. In many scenarios,
the working week contains a great deal of information which
can be utilised to improve forecasting accuracy. In this work
we focus on making multi-step predictions of up to 24 hours
into the future, with an emphasis on methods of incorporating
prior information of periodicities and effects of the working
week in order to improve the accuracy of the forecasting.

Regression is a popular method to perform forecasting,
for which Gaussian Process Regression [Rasmussen, 2006]

is considered the state of the art. Gaussian Processes are
Bayesian nonparametric models and are popular for their sup-
port for intrinsic feature selection and their versatility in mod-
elling complex functions. They are fully defined by their un-
derlying mean and covariance functions, and derive their ver-
satility by the encoding of assumptions of the structure of the
data through varied combinations of covariance functions.

This specification of the structure of the data through com-
binations of covariance functions is not a straightforward ex-
ercise. A simple formulaic specification of a common co-
variance function will fail to fully capture the unique charac-
teristics of the data in most real-life scenarios. Such generic
model specifications will fall short in prediction, since the
prior knowledge incorporated by the covariance functions
chosen in Gaussian Processes plays a major role in their pre-
diction accuracy [Preotiuc-Pietro and Cohn, 2013].

On the other hand, though more elaborate models poten-
tially could model the data more closely, the wide variety of
combinations possible and the specificity of Gaussian Process
model specifications to the given problem domain results in
this model specification being done by experts. Examples
of work in which the main contribution involves experts en-
coding structure relevant to a given problem by using kernel
combinations include [Klenske et al., 2013] [Preotiuc-Pietro
and Cohn, 2013] and [Senanayake et al., 2016]. Too often
though, simple models are built which do not fully utilize
the flexibility of Gaussian Processes [Hachino and Kadirka-
manathan, 2007] [Kolter and Ferreira, 2011]. This is par-
ticularly apparent given the challenges posed in using more
elaborate models with multiple kernels, where the high num-
ber of parameters increases computational complexity as well
as the likelihood of reaching local optima in the optimisation
process.

Our work focuses on effective model specification relat-
ing to not only one particular application, but to the general
problem of modelling the working week in time-series data
using Gaussian Processes. In this work we introduce meth-
ods to build Gaussian Processes which model complex pe-
riodic structure relating to the working week. For example,
in Figure 1 we observe the working week effect of Monday-
Friday (high values) against weekends (low values), and also
the fact that the days in the second week have higher values
than the days in the first week. We propose multiple methods
to encode varied prior beliefs on periodicity, especially when
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such multiple periodic structure based on knowledge of the
working week is to be encoded in the same model for better
forecasting accuracy.

We list our contributions below.

1. We provide novel kernel-combination methods to ex-
plicitly encode weekday and weekend effects in a work-
ing week for improved accuracy in multi-step prediction.
These methods are flexible enough to be easily extended
to model holiday effects.

2. We suggest methods to mitigate the effects of conver-
gence to local optima in the optimisation process over
hyperparameters, which is especially important in the
case of low volume of training data or complex models.

3. We illustrate the effectiveness of our approaches on
two real-world time-series datasets relating to electric-
ity consumption and the counts of pedestrians in a city.

2 Related Work
Gaussian Process Regression is a highly flexible method and
has been used in a wide variety of forecasting problems.
For example, [Chen et al., 2013] forecasts power generation
in wind farms, [Bickel et al., 2008] makes predictions on
the effects of combinations of drugs, and [Sturm and Bur-
gard, 2013] [Williams et al., 2009] build models to represent
the kinematics and adaptive control functions to be used by
robotic manipulators. Work related to robotic mapping has
also been undertaken using spectral analysis to model pe-
riodic environment processes [Krajnik et al., 2014]. Work
with similar contributions of analysis of kernel combinations
in different application domains include identifying the ef-
fects of additive errors in control systems [Klenske et al.,
2013], forecasting the number of tweets with a particular
hashtag [Preotiuc-Pietro and Cohn, 2013], and modelling the
propagation of seasonal influenza [Senanayake et al., 2016]

In relation to the application domains that this work fo-
cuses on, much work has been done on the prediction of elec-
tricity load data. Some popular approaches include variations
on auto-regressive methods [Conejo et al., 2005] [Alzate and
Sinn, 2013], and Artificial Neural Networks [Guan et al.,
2013]. Gaussian processes have been utilised in [Kolter and
Ferreira, 2011] [Hachino and Kadirkamanathan, 2007] [Leith
et al., 2004], but they either do not consider the periodic struc-
ture in the data, or do not explicitly incorporate weekend and
weekday information in their models. Further, prior beliefs
on parameter values are not encoded. In relation to the ap-
plication domain of pedestrian data, little work exists in the
literature. The work in [Doan et al., 2015] performs anomaly
detection on pedestrian data, but to the best of our knowledge
no attempt at predicting future counts has been done.

3 Introduction to Gaussian Process
Regression

3.1 Gaussian Processes
A Gaussian Process is formally defined as a collection of ran-
dom variables where any subset of the random variables taken
together jointly form a (multivariate) Gaussian distribution.

A useful intuition is to view a Gaussian Process as defining a
distribution over functions (function-space view [Rasmussen,
2006].)

Since a Gaussian Process is a distribution over functions,
sampling from a Gaussian Process results in the draw of a sin-
gle function. It is possible to specify prior belief in the gen-
eral properties we expect to see in these functions drawn (e.g.
whether the function is continuous). Further, Gaussian Pro-
cesses follow the Bayesian paradigm of updating prior beliefs
based on observed data to form posterior distributions. In
the case of Gaussian Processes, these prior and posterior dis-
tributions are distributions over functions, and therefore the
Bayesian inference that takes place occurs in function space.

A Gaussian Process is fully defined by its mean function
(m(ttt)) and covariance (kernel) function (k(ttt, t′t′t′)) (where ttt
and t′t′t′ are two separate input vectors). Therefore we can write
the Gaussian Process as f(ttt) ∼ GP (m(ttt), k(ttt, t′t′t′))

In our tasks our data consists of n pairsD = (ti, yi), where
yi is the value of the time series at time ti. We define without
loss of generality a prior mean function of 0 and covariance
function k(t, t′), with the resulting general form of the Gaus-
sian Process f(t) ∼ GP (0, k(t, t′)).

3.2 Regression
Our goal is to predict values y∗ at time t∗ given training data
D. We assume a latent function f , which provides the val-
ues for each data point according to yt = f(t) + ε, where
ε ∼ N(0, σ2) is Gaussian noise. Noting that we perform
Bayesian inference with regards to functions f , we can write
the posterior predictive distribution as follows:

p(y∗|t∗, D) =

∫
f

p(y∗|t∗, f) · p(f |D) (1)

In the case of Gaussian Processes, we are able to solve for
this predictive posterior analytically with the solution given
below:

y∗ ∼ N(kT∗ (K + σ2I)−1yyy,

k(t∗, t∗)− kT∗ (K + σ2I)−1k∗) (2)

where k∗ = [k(t∗, t1)...k(t∗, tn)]T are the kernel evalua-
tions between the test point and all the training points, K =

k(ti, tj)
i=1..n
j=1..n is the covariance matrix formed by the eval-

uations of the kernel function between all pairs of training
points, and yyy is the vector of training outputs.

Therefore, it can be seen that the posterior includes both the
mean and the variance of the response at the required predic-
tion time points. In this paper the expected value (i.e. mean)
of the response is considered as the forecast of the prediction.

3.3 Covariance (Kernel) Functions
Covariance (kernel) functions define the similarity between
any two input points. That is, a kernel function outputs a
real-valued similarity score for any given pair of input points.
Evaluating the kernel function over all pairs of input points
results in a conventional covariance matrix.

The choice of kernel function determines the overall struc-
ture of the functions drawn from the Gaussian Process. For
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example, consider the popular Squared Exponential (SE) ker-
nel function defined below:

kSE(t, t′) = σ2 exp
(
− (t− t′)2

2l2

)
(3)

A kernel function defines the covariance or similarity be-
tween pairs of points. In this example, when the two points t
and t′ are close to each other they will have high covariance
compared to points far apart. This encoding of higher sim-
ilarity to points closer to each other results in smooth func-
tions being drawn from the Gaussian Process defined by this
kernel. We are further able to change the properties of these
smooth functions by changing the values of the hyperparam-
eters σ (output variance) and l (length scale).

3.4 Combinations of Kernel Functions
Combinations of kernel functions can be used to model a
number of effects together. For example, a squared expo-
nential kernel coupled with a periodic kernel can induce a
recency effect to the periodic kernel.

Kernels may be combined by either addition or subtraction.
The addition of two kernels can be thought of as a logical OR
operation, in that the final value of the addition will be high
if either one of the two kernels being added outputs a high
value. Similarly, the multiplication of two kernels is similar
to a logical AND operation, where the final value is high only
if both the two base kernels output a high value.

3.5 Optimisation over Hyperparameters
The nature of the functions drawn from the Gaussian Process
depends on the type of kernel chosen, as well as the values
of the kernel hyperparameters. These hyperparameters are
optimised to fit the training data.

The marginal likelihood of a model provides a measure of
how likely the data was generated by the given model. There-
fore, maximising the marginal likelihood of the model would
improve the fit of the model to the data. In Gaussian Pro-
cesses, it is possible to formulate an analytic solution to the
marginal likelihood. Therefore, the Type II maximum like-
lihood estimate of the marginal likelihood is found by using
gradient ascent with respect to the model hyperparameters in
the training process. It is important to note that the marginal
likelihood is non-convex in the hyperparameter values, and
therefore the optimisation process is at risk of converging to
local optima.

4 Methodology
We detail the process we followed in building the Gaussian
Process models. This includes the choice of the nature of the
covariance functions, the setting of the hyperparameter values
of the chosen covariance functions, specifying hyperpriors
on the hyperparameters to control the optimisation process,
and finally our methods to explicitly model the working-week
characteristics in the data.

4.1 Choice of Kernel Function
We use periodic kernel functions in this work, since our focus
is on time-series data that exhibit some degree of periodicity.

Figure 1: Modelling using only daily kernel on Smart Meter data

Periodic kernels allow the modelling of functions that repeat
themselves exactly. The distance between the repetitions can
be set by setting the periodicity hyperparameter in the kernel
to the required value.

The periodic kernel is defined as:

kPer(t, t′) = σ2 exp
(
− 2 sin2(π | (t− t′) | /p)

l2

)
(4)

where σ is the output variance and l is the length-scale (just
as in the Squared-Exponential kernel), and p is the periodicity
hyperparameter.

For example, if we have data sampled at an hourly fre-
quency, and we wish to enforce a daily repetition structure
in the functions drawn from the Gaussian Process, we can
achieve this by choosing a periodic kernel and setting its peri-
odicity hyperparameter value to 24. Similarly, we can choose
a periodic kernel with a periodicity value of 168 (i.e. 24*7) to
encode a weekly repetition structure in data sampled hourly.

We investigate periodic kernels with periodicity values set
to both 24 (referred to as the ‘daily kernel’) and 168 (referred
to as the ‘weekly kernel’). We utilise plain-vanilla versions of
these kernels for prediction, as well as more elaborate combi-
nations (Section 4.4) to model periodic effects that are more
complicated than simple repetition, with one or more of these
periodic kernels in the mix.

4.2 Setting of Hyperparameters
The optimal values of hyperparameters which effectively
model the given time series are found by minimising the neg-
ative log marginal likelihood (NLML). However, given that
the marginal likelihood objective function is commonly non-
convex, this optimisation procedure is sensitive to the initial
starting values of the hyperparameters provided. Therefore,
different starting values for the hyperparameters were ex-
perimented with, along with different numbers of iterations
for the optimisation process. Reasonable initial values were
found by using a manual grid-search-like process. The initial
parameter values chosen are given in Table 1.

4.3 Specifying a Hyperprior
We observed that the parameter values arrived at after opti-
misation of the initial parameter values did not necessarily
turn out to be values which would help reduce prediction
error. This was especially so in the case of the periodicity,
which was ‘tuned’ to values far away from 24 (daily) or 168
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Table 1: Initial hyperparameter values chosen

Hyperparameter Initial Value

Length Scale 0.03
Periodicity 24 or 168
Output Variance 0.1
ARD Bias a1 and b2 0.9
ARD Bias a2 and b1 0.1
Noise Variance 0.01

(weekly) set. However, visual inspection of the time-series
plots as well as knowledge of the problem domain gives us
strong confidence that the periodicities should indeed be ei-
ther 24 or 168. Therefore, we decided to encode our strong
prior belief by putting a prior over the hyperparameter values
(a hyperprior), in this case by clamping the value at either 24
or 168 and preventing the optimisation process from modify-
ing these values.

4.4 Modelling Combined Weekday and Weekend
Effects

It is frequently required to model daily and weekly varia-
tions in a single model. For example, most data exhibits
correlations on a weekly periodicity, in that the values for
Wednesday this week would be highly correlated to that of the
Wednesday last week. In addition, especially in cases where
the response variable values might have different levels in dif-
ferent weeks, the values of recent previous days would carry
valuable information.

Naive approach
A naive approach to model both these correlations would be
to combine two periodic kernels, one with a daily periodicity
and the other with a weekly periodicity using either addition
or multiplication of the kernel functions. However, this poses
the problem of Mondays being correlated to Sundays and Sat-
urdays being correlated to Fridays. We propose a method to
solve the problem of combining periodicities elegantly, and
with additional scope for more flexible models.

New features
We enhance the feature representation of the time series as
follows. Represent the current representation as (t, y), where
t is time and y is the corresponding output value. We augment
this representation with two features which represent whether
the date t is a weekday (w) or a weekend (n), resulting in the
representation (t, w, n, y). For example, a value of 554.2 on
Monday at 11 am might be represented by (143, 1, 0, 554.2)
and a value of 742.1 on Sunday at 10 pm might be (183, 0, 1,
742.1).

Consider two days represented by (t, w, n, y) and (t’, w’,
n’, y’). The dot product w.w’ would be 1 if both the days t
and t’ are weekdays, and would be 0 if either of the days are
weekends. Conversely, considering the dot product n.n’, this
would be 1 if both days are weekends, and 0 if either of the
days are weekdays. We are able to calculate dot products by
utilising linear kernels, which enables the elegant expression
of the mathematical operation in terms of kernel functions.

For example, covLIN(w,w′) is equivalent to the dot product
between w and w′ (w · w′).
Kernel combinations
Now consider the expression:

k(t, t′) = covLIN(w,w′)covPerdaily(t, t
′)

+ covLIN(n, n′)covPerweekly(t, t
′) (5)

It can be seen that the values generated by covPerdaily will be
activated only when both t or t′ are weekdays (i.e. w = w′ =
1), and the values generated by covPerweekly will be activated
only when both t or t′ are weekends (i.e. n = n′ = 1). There-
fore, scenarios similar to Fridays being considered correlated
to Saturdays will not arise. This simplest example of com-
bining the two kernels with different periodicities essentially
provides a switching mechanism between either covPerdaily
or covPerweekly based on the two dates t or t′ under consider-
ation.

More elaborate and flexible models may also be con-
structed. For example, we are able to provide a configurable
level of influence of each kernel function as follows:

k(t, t′) = (a1covLIN(w,w′)+b1covLIN(n, n′))covPerdaily(t, t
′)

+ (a2covLIN(w,w′) + b2covLIN(n, n′))covPerweekly(t, t
′) (6)

In this expression the weights b1 and a2 would be close to
0 to represent the low level of influence we desire from the
daily kernel on weekends and the weekly kernel on weekdays.
What is noteworthy is that we do not need to completely dis-
card one type of kernel, but can instead weight the kernels
according to our requirements.

This method can be equivalently expressed using a linear
Automatic Relevance Determination (ARD) kernel, which
provides the weighted sum of the outputs of the regular linear
kernels when applied separately on each dimension.

k(t, t′) = covLINard([w;n], [w′;n′])covPerdaily(t, t
′)

+ covLINard([w;n], [w′;n′])covPerweekly(t, t
′) (7)

This allows the use of the regular optimisation mechanism to
tune the weights in accordance with our data.

A further variation on this theme is the expression:

k(t, t′) = covLIN(w,w′)covPerdaily(t, t
′)

+ covPerweekly(t, t
′) (8)

which prevents the weekly periodic kernel being suppressed
to 0 for weekdays, but does so for the daily periodic kernel
for weekends.

This model is also further extensible to seamlessly model
public holidays to the model with a feature representing
whether the date is a public holiday which could be combined
with a yearly periodic kernel.

5 Experiments and Results
5.1 The Data
The data used for electricity load forecasting comes from
Smart Meters installed in the Parkville campus of the Uni-
versity of Melbourne1. This data consists of the electricity

1http://sustainablecampus.unimelb.edu.au
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load recorded in kWh at each point in time in the Smart Me-
ters of 21 buildings. The data is available at a granularity of
15-minutes, which was aggregated to be hourly data. We per-
form 24-hour ahead predictions of the electricity load values
in each of the 21 buildings.

The pedestrian data set was obtained through the Open
Data initiative of the City of Melbourne2. The data is the
output of a 24-hour system which monitors pedestrian move-
ment at key locations in Melbourne, Australia and provides
hourly pedestrian counts for each day. We use our methods
to perform 24-hour ahead predictions of pedestrian counts at
10 key locations in the City of Melbourne.

5.2 The Error Metric
We use as our metric the mean absolute error normalised by
the average magnitude of the actual load / prediction count
values for the prediction period, and expressed as a percent-
age. The normalisation step is required to compare error rates
between different buildings / sensors, which would have dif-
ferent levels of electricity usage / pedestrian counts. In gen-
eral form this metric (Mean Error Relative to ȳ - MER) is
expressed as follows:

Error(MER) = 100 · 1

N

N∑
h = 1

|ŷh − yh|
ȳ

(9)

where ŷh is the predicted value at hour h, yh is the actual
value at hour h, and y is the mean consumption in the period
considered (a day in this context), and N is the number of
hours predicted (24 in this scenario).

5.3 The Experimental Setup
All models discussed were implemented using the GPML
Matlab Toolbox3. Initial hyperparameter values were set to
values that were observed to provide reasonable prediction
accuracy and did not result in pathological cases. These val-
ues are outlined in Table 1. Hyperparameter optimisation was
done via conjugate gradient ascent on the log marginal likeli-
hood function with a maximum iteration limit of 100. Predic-
tions were made for the month of June 2014 for the electricity
load forecasting data and the month of October 2016 for the
pedestrian forecasting with two weeks of data used for train-
ing.

We also compare the results of Gaussian Process Regres-
sion with ARIMA, which is the most widely-used forecasting
technique based on regression. The Box-Jenkins methodol-
ogy was used in the tuning of parameters, which resulted in
an ARIMA(1,1,0) (number of time lags, degree of differenc-
ing and order of moving average model respectively) model
being selected.

5.4 The Results
Periodic kernels
We begin our exploration with a periodic daily kernel. How-
ever, as we see in Table 2 the daily kernel does not provide us

2http://www.pedestrian.melbourne.vic.gov.au/
3http://www.gaussianprocess.org/gpml/code/

with an acceptable degree of prediction accuracy. One reason
for this low prediction accuracy is that there is not much of
a daily signal in the data. Further, just using a daily kernel
means that the function is constrained to have a constant pat-
tern across weekends and weekdays, as well as across weeks
that may have different value levels. For example, we see
in Figure 1 where the day to be predicted was a Sunday (ac-
tual values in red, prediction output in green), that the pre-
diction was significantly inaccurate. Therefore this low accu-
racy is unsurprising. It is interesting to observe, even in this
case, that adding a hyperprior helps with accuracy, providing
notable improvements in accuracy especially for the campus
Smart Meter dataset.

We observe better accuracy with the use of a periodic ker-
nel with a weekly periodicity, and much better accuracy when
the weekly kernel is coupled with a hyperprior. This agrees
with our intuition that this kind of data will have a strong
weekly signal. The weekly kernel with the hyperprior also
turns out to be the simplest model that improves on the pre-
dictive accuracy of the ARIMA model.

Adding hyperpriors
It can be seen in Table 2 that adding a hyperprior improves
accuracy drastically in all the combinations under consider-
ation. Especially in the case of pedestrian count prediction,
it is seen that when coupled with a hyperprior the use of the
weekly kernel in place of the daily kernel provided a very
substantial improvement. This could be attributed to the fact
that the pedestrian count data has even less of a daily period-
icity compared to the Smart Meter data. Further, fixing some
parameters reduces the search space and makes it more likely
that good values are found for the parameters being optimised
over.

Figures 2- 5 show the accuracy changes across a range of
parameter values, which vary across a number of orders of
magnitude, when predicting with and without using a (hy-
per)prior on the periodicity hyperparameter. It is seen that
the prediction accuracy is significantly better when using a
hyperprior across all parameter values. This is true regardless
of the dataset or the hyperparameter being varied.

Further, it is worth noting that in most cases, even the pa-
rameter values that yield the worst accuracy when used with
a hyperprior are still better or close to the level of accu-
racy gained with the hyperparameter values that perform best
without using a hyperprior. For example, in campus dataset,
the absolute worst prediction accuracy using a hyperprior is
22.35%, compared with the absolute best prediction accuracy
without using a hyperprior being 19.31%.

Modelling weekday and weekend effects
Our initial attempt of modelling weekday and weekend ef-
fects was Combination I:

k(t, t′) = covLIN(w,w′)covPerdaily(t, t
′)+

covLIN(n, n′)covPerweekly(t, t
′)

It is seen in Table 2 that this combination results in a no-
ticeable improvement in the electricity load prediction sce-
nario, but not so for the prediction of pedestrian counts. This
can be attributed to the fact that the pedestrian count dataset
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Table 2: Error rates for different kernel combinations

Kernel Combination Smart Meter Error (MER) Pedestrian Count Prediction Error (MER)

Daily 36.05 72.63
Weekly 22.10 63.65
Daily with Hyperprior 17.12 70.30
Weekly with Hyperprior 9.33 17.98
Daily*LIN + Weekly*LIN (Combination I) 8.73 20.68
Daily*LIN + Weekly (Combination II) 9.26 16.53
Daily*LINard + Weekly*LINard (Combination III) 9.06 18.29
ARIMA 16.40 40.11
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Figure 4: Campus Smart Meter
- Noise Hyperparameter
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has a strong weekly signal, both for weekdays as well as for
weekends. The Combination I model forces the weekly ker-
nel to zero for weekdays, which prevents the modelling of the
weekly effect for weekdays.

We therefore modified the model specification to Combi-
nation II:

k(t, t′) = covLIN(w,w′)covPerdaily(t, t
′)+covPerweekly(t, t

′)

which prevents the forcing to zero of the weekly kernel for
weekdays (i.e. the weekly kernel is always used in the mix)
while still allowing the separate modelling of weekdays and
weekends. This modified model specification resulted in an
improvement in performance as seen in Table 2 for the pedes-
trian count prediction. This is in line with our previous ob-
servation where the pedestrian counts had a high weekly pe-
riodic signal compared to the daily signal. This model allows
us to utilise the weekly periodicity in the prediction of week
days as well, which is what would have resulted in the in-
creased accuracy.

The model specification in Combination III:

k(t, t′) = covLINard([w;n], [w′;n′])covPerdaily(t, t
′)

+ covLINard([w;n], [w′;n′])covPerweekly(t, t
′)

allows the setting of relative weights for the daily and weekly
kernels. Given that this model specification would not set the
kernels to exactly zero or one, and given the strong weekly
signal present in both datasets under consideration, it is un-
surprising that the accuracy of this model is between the
Combination I and Combination II models for both datasets.

This version of the model would be most useful in a dataset
which might have varying daily and weekly signal strengths
for weekends and weekdays.

Other observations
For all the kernel combinations discussed above, experiments
were run with and without adding a noise kernel to the com-
bination. Adding a noise kernel did not have any significant
effect. Further, though the product of a squared exponential
kernel with a periodic kernel would result in a recency ef-
fect being modeled along with the periodic effect, we did not
observe improvements in prediction accuracy. This could be
attributed to the modeled recency effect not being significant
enough to yield prediction accuracy gains, especially when
burdened with the need to now optimise over a higher num-
ber of hyperparameters.

6 Conclusions
We provide multiple mechanisms to model the weekend and
weekday effects in periodic time series data using Gaus-
sian Processes. Our results indicate significant improvements
when hyperpriors are introduced to both daily and weekly
kernels. Further improved predictions were observed using
mechanisms introduced to model daily and weekly periodic
kernels in concert. All results were obtained on two real-
world publicly available datasets with widely different appli-
cations. This is highly suggestive of the potential generalisa-
tion of the methods to other use cases with time series data
with similar working-week structure.
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