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Abstract

The probability that a user will click a search re-
sult depends both on its relevance and its position
on the results page. The position based model ex-
plains this behavior by ascribing to every item an
attraction probability, and to every position an ex-
amination probability. To be clicked, a result must
be both attractive and examined. The probabilities
of an item-position pair being clicked thus form the
entries of a rank-1 matrix. We propose the learn-
ing problem of a Bernoulli rank-1 bandit where at
each step, the learning agent chooses a pair of row
and column arms, and receives the product of their
Bernoulli-distributed values as a reward. This is a
special case of the stochastic rank-1 bandit problem
considered in recent work that proposed an elimina-
tion based algorithm Rank1Elim, and showed that
Rank1Elim’s regret scales linearly with the number
of rows and columns on “benign” instances. These
are the instances where the minimum of the aver-
age row and column rewards p is bounded away
from zero. The issue with Rank1Elim is that it
fails to be competitive with straightforward ban-
dit strategies as ¢ — 0. In this paper we pro-
pose Rank1E1imKL, which replaces the crude con-
fidence intervals of Rank1Elim with confidence
intervals based on Kullback-Leibler (KL) diver-
gences. With the help of a novel result concerning
the scaling of KL divergences we prove that with
this change, our algorithm will be competitive no
matter the value of . Experiments with synthetic
data confirm that on benign instances the perfor-
mance of Rank1E1imKL is significantly better than
that of even Rank1Elim. Similarly, experiments
with models derived from real-data confirm that the
improvements are significant across the board, re-
gardless of whether the data is benign or not.

1 Introduction

When deciding which search results to present, click logs are
of particular interest. A fundamental problem in click data is
position bias. The probability of an element being clicked de-
pends not only on its relevance, but also on its position on the
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results page. The position-based model (PBM), first proposed
by Richardson et al. [2007] and then formalized by Craswell
et al. [2008], models this behavior by associating with each
item a probability of being attractive, and with each position
a probability of being examined. To be clicked, a result must
be both attractive and examined. Given click logs, the attrac-
tion and examination probabilities can be learned using the
maximum-likelihood estimation (MLE) or the expectation-
maximization (EM) algorithms [Chuklin et al., 2015].

An online learning model for this problem is proposed in
Katariya et al. [2017], called stochastic rank-1 bandit. The
objective of the learning agent is to learn the most rewarding
item and position, which is the maximum entry of a rank-1
matrix. At time ¢, the agent chooses a pair of row and column
arms, and receives the product of their values as a reward.
The goal of the agent is to maximize its expected cumulative
reward, or equivalently to minimize its expected cumulative
regret with respect to the optimal solution, the most reward-
ing pair of row and column arms. This learning problem is
challenging because when the agent receives the reward of
zero, it could mean either that the item was unattractive, or
the position was not examined, or both.

Katariya et al. [2017] also proposed an elimina-
tion algorithm, Rank1Elim, whose regret is O((K +
L) u=2A=1logn), where K is the number of rows, L is the
number of columns, A is the minimum of the row and col-
umn gaps, and p is the minimum of the average row and
column rewards. When p is bounded away from zero, the
regret scales linearly with K + L, while it scales inversely
with A. This is a significant improvement over using a stan-
dard bandit algorithm that (disregarding the problem struc-
ture) would treat item-position pairs as unrelated arms and
would achieve a regret of O(KLA~!logn). The issue is
that as p gets small, the regret bound worsens significantly.
As we verify in Section 5, this indeed happens on models de-
rived from some real-world problems. To illustrate the sever-
ity of this problem, consider as an example where K = L,
and the row and column rewards are Bernoulli distributed.
Let the mean reward of row 1 and column 1 be A, and the
mean reward of all other rows and columns be 0. We re-
fer to this setting as a “needle in a haystack”, because there
is a single rewarding entry out of K2 entries. For this set-
ting, 4 = A/K, and consequently the regret of Rank1Elim
is O(u2A"'Klogn) = O(K3logn). However, a naive
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bandit algorithm that ignores the rank-1 structure and treats
each row-column pair as unrelated arms has O(K? log n) re-
gret.! While a naive bandit algorithm is unable to exploit
the rank-1 structure when y is large, Rank1E1im is unable to
keep up with a naive algorithm when g is small. Our goal in
this paper is to design an algorithm that performs well across
all rank-1 problem instances regardless of their parameters.

In this paper we propose that this improvement can be
achieved by replacing the “UCB1 confidence intervals” used
by Rank1Elim by strictly tighter confidence intervals based
on Kullback-Leibler (KL) divergences. This leads to our al-
gorithm that we call Rank1El1imKL. Based on the work of
Garivier and Cappe [2011], we expect this change to lead to
an improved behavior, especially for extreme instances, as
# — 0. Indeed, in this paper we show that KL divergences
enjoy a peculiar “scaling”. In particular, thanks to this im-
provement, for the “needle in a haystack” problem discussed
above the regret of Rank1E1imKL becomes O (K2 logn).

Our contributions are as follows. First, we propose
a Bernoulli rank-1 bandit, which is a special class of a
stochastic rank-1 bandit where the rewards are Bernoulli
distributed. Second, we modify Rank1Elim for solving
the Bernoulli rank-1 bandit, which we call Rank1E1imKL,
to use KL-UCB intervals. Third, we derive a O((K +
L) (uyA)~!logn) gap-dependent upper bound on the n-step
regret of Rank1E1imKL, where K, L, A and p are as above,
while v = max {g, 1 — pmax} With ppax being the maxi-
mum of the row and column rewards; effectively replacing
the =2 term of the previous regret bound of Rank1Elim
with (uy)~1. It follows that the new bound is an unilat-
eral improvement over the previous one and is a strict im-
provement when p1 < 1 — py .y, Which is expected to hap-
pen quite often in practical problems. For the “needle in a
haystack” problem, the new bound essentially matches that of
the naive bandit algorithm, while never worsening the bound
of Rank1Elim. QOur final contribution is the experimental val-
idation of Rank1E1imKL, on both synthetic and real-world
problems. The experiments indicate that Rank1E1imKL out-
performs several baselines across almost all problem in-
stances.

We denote random variables by boldface letters and define
[n] = {1,...,n}. For any sets A and B, we denote by A”
the set of all vectors whose entries are indexed by B and take
values from A. We let d(p,q) = plog% + (1 —p)log %g
denote the KL divergence between the Bernoulli distributions
with means p, ¢ € [0, 1]. As usual, the formula for d(p, q) is
defined through its continuous extension as p, g approach the
boundaries of [0, 1].

2 Setting

The setting of the Bernoulli rank-1 bandit is the same as that
of the stochastic rank-1 bandit [Katariya et al., 2017], with
the additional requirement that the row and column rewards
are Bernoulli distributed. We state the setting for complete-

! Alternatively, the worst-case regret bound for Rank1Elim be-
comes O(Kn?*/?logn), while that of for a naive bandit algorithm
with a naive bound is O(Kn'/? log n).
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ness, and borrow the notation from Katariya et al. [2017] for
the ease of comparison.

An instance of our learning problem is defined by a tu-
ple (K, L, Py, Py), where K is the number of rows, L is the

number of columns, Py is a distribution over {0, 1}K from
which the row rewards are drawn, and P, is a distribution
over {0, l}L from which the column rewards are drawn.

Let the row and column rewards be

iid

(ug,ve) ~ Py @ Py, t=1,...,n.

In particular, u; and v; are drawn independently at any time
t. Attime ¢, the learning agent chooses a row index i; € [K]
and a column index j, € [L], and observes u,(i;)v(j;) as its
reward. The indices i; and j; chosen by the learning agent are
allowed to depend only on the history of the agent up to time
t.

Let the time horizon be n. The goal of the agent is to maxi-
mize its expected cumulative reward in n steps. This is equiv-
alent to minimizing the expected cumulative regret in n steps

ZR(it,jt,ut,Vt)] )
t=1

where R(it, ji, us, vi) = ue(i*)ve (%) — ue(ir)ve(je) is the
instantaneous stochastic regret of the agent at time ¢, and

R(n)=E

(i*,J*) = argmax (; j)cix)x (L] E[u(@)v(j)]

is the optimal solution in hindsight of knowing P; and P,.

3 RanklElimKL Algorithm

The pseudocode of our algorithm, Rank1El1imKL, is in
Algorithm 1. As noted earlier this algorithm is based on
Rank1Elim [Katariya et al., 2017] with the difference that
we replace their confidence intervals with KL-based confi-
dence intervals. For the reader’s benefit, we explain the full
algorithm.

Rank1E1imKL is an elimination algorithm that operates in
stages, where the elimination is conducted with KL-UCB con-
fidence intervals. The lengths of the stages quadruple from
one stage to the next, and the algorithm is designed such that
at the end of stage ¢, it eliminates with high probability any
row and column whose gap scaled by a problem dependent
constant is at least A, = 2~¢. We denote the remaining rows
and columns in stage ¢ by I, and J,, respectively.

Every stage has an exploration phase and an exploitation
phase. During row-exploration in stage ¢ (lines 12-16), every
remaining row is played with a randomly chosen remaining
column,

In the exploitation phase, we construct high-probability
KL-UCB [Garivier and Cappe, 2011] confidence intervals
[Ly (i), Uy(i)] for row ¢ € I, and confidence intervals
[Ly(5), Uy (4)] for column j € J,. As noted earlier, this is
where we depart from Rank1E1lim. The elimination uses row
iy and column j,, where

iy = argmax Ly (1), je = argmax Ly (j).
icly JEJ,
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Algorithm 1 Rank1E1imKL for Bernoulli rank-1 bandits.

1: // Initialization
20t 1, Ag+1,n_1«0
3: C§ + Og.r, Cy < Og 1 // Zero matrix with K rows
and L columns
s hi «—(1,...,K), hy < (1,...,L)

Ny [165[2 log n—‘
Lo Uiy (b (D)} Je = Ujeppy {br (5)}

10:  // Row and column exploration
11:  for ny — ny_; times do

4
5:
6: for(=0,1,... do
7
8

12: Choose uniformly at random column j € [L]
133 j < hy(j)

14: forall i € I, do

15: Cy(i,7) + C{(i,5) + w(i)vi(j)

16: t—t+1

17: Choose uniformly at random row ¢ € [K]
18: i < hyj(i)

19: forall j € J, do

20: CJ(i,7) < Cy(i,7) + () ve(y)

21: t—t+1

22:

23:  // UCBs and LCBs on the expected rewards of all re-
maining rows and columns with divergence constraint
d¢ < logn + 3loglogn

24:

25: foralli € I,do

26: (i) < ny ' 37 CY(i. )

27 Uj(i) « argmax ¢ pq,(i),1) {ned (0e(2), q) < 6}
28: Ly (i) < argmin g1 q,(:)) {ned (Te(7), q) < 00}
29: forallj € J,do

300 Velj) <m0, CYL ) o

31 Uj(j) « arg MAaX g e (v, (5),1] {red (Ve(4), q) < de}
32: Ly (j) < argmin oo ¢, () {ned (Ve(5), q) < de}
33:

34:  // Row and column elimination
35: iy + argmax ;q, Ly (i)

36: h;’_,’_l < hj

37 fori=1,...,K do

38 if UY(hY(i)) < LY(i,) then
39: h;’_i_l(’t) — ig
40:

41: jo < argmax g, Ly (j)
42: hZ+1 «—hj
43: forj=1,...,Ldo

44: if Uy (hy(j)) < Lj(je) then
45: hZ+1(j) < Je
46:

470 Ngpr + Ay/2, CY,, « CY, CY,, «+ CY

We eliminate any row ¢ and column j such that

Up() <Li(ie),  U(G) <Ly(e)-
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We also track the remaining rows and columns in stage ¢ by
h}/ and hy, respectively. When row 4 is eliminated by row i,
we set hy/ (i) = i,. If row i, is eliminated by row i, at a later
stage ¢/ > {, we update hj (i) = i,. This is analogous for
columns. The remaining rows I, and columns J, can be then
defined as the unique values in hj and hy, respectively. The
maps hj and hy help to guarantee that the row and column
means are non-decreasing.

The KL-UCB confidence intervals in Rank1E1imKL can be
found by solving a one-dimensional convex optimization
problem for every row (lines 27—28) and column (lines 31—
32). They can be found efficiently using binary search be-
cause the Kullback-Leibler divergence d(z, ¢) is convex in ¢
as ¢ moves away from z in either direction. The KL-UCB con-
fidence intervals need to be computed only once per stage.
Hence, Rank1E1imKL has to solve at most K + L convex
optimization problems per stage, and hence (K + L)logn
problems overall.

4 Analysis

In this section, we derive a gap-dependent upper bound on the
n-step regret of Rank1E1imKL. The hardness of our learning
problem is measured by two kinds of metrics. The first kind
are gaps. The gaps of row i € [K] and column j € [L] are
defined as

AV =ali) —ali), A} =) -0G), (M)
respectively; and the minimum row and column gaps are de-
fined as

Umin = min A;J ’ Xlin = min A;/ ) (2)
i€[K]:AY>0 JE[L]:AY>0
respectively. Roughly speaking, the smaller the gaps, the

harder the problem. This inverse dependence on gaps is tight
[Katariya et al., 2017].
The second kind of metrics are the extremal parameters

1 & 1<
p=ming 2> (@), 2> 0@, O
=1 j:1
max = Max < max 4(z), maxv(j) ¢ . 4
y { s ati), ot} @

The first metric, p, is the minimum of the average of entries
of u and v. This quantity appears in our analysis due to the
averaging character of Rank1E1imKL. The smaller the value
of u, the larger the regret. The second metric, pmax, 1S the
maximum entry in @ and v. As we shall see the regret scales
inversely with

7 = max {,U/7 1- pmax} . @)
Note that if x — 0 and ppax — 1 at the same time, then the
row and columns gaps must also approach one. With this we
are ready to state our main result.
Theorem 1. Let C = Ge + 82 and n > 5. Then the expected
n-step regret of Rank1E1imKL is bounded as

K

160 1 &K1
i=1 i =177
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where
A} = A7 + 1{A] =0} AL,

AV =AY +1{A} =0} A}

The difference from the main result of Katariya et
al. [2017] is that the first term in our bound scales with
1/(wy) instead of 1/pu?. Since p < 7 and in fact often
W < 7, this is a significant improvement. We validate this
empirically in the next section.

Due to the lack of space, we only provide a sketch of the
proof of Theorem 1. At a high level, it follows the steps of
the proof of Katariya et al. [2017]. Focusing on the source
of the improvement, we first state and prove a new lemma,
which allows us to replace one 1/ in the regret bound with
1/~. Recall from Section 1 that d denotes the KL divergence
between Bernoulli random variables with means p, ¢ € [0, 1].

Lemma 1. Let c,p,q € [0,1]. Then
¢(1 —max {p,q})d(p,q) < d(cp,cq) < cd(p,q).  (6)
In particular,
2cmax(c, 1 —max {p,q})(p — q)* < d(cp,cq). (7)

Proof. The proof of (6) is based on differentiation. The first
two derivatives of d(cp, cq) with respect to ¢ are

9 (g —p)
—d(ep,cq) = ———=,
dq (€, cq) q(1 = cq)

2 *(g —p)* + cp(1 — cp)
o iepcd) = (1 — cq)? ’
and the first two derivatives of ¢d(p, ¢) with respect to g are

9 c(¢—p)
a_ Cd ) = T N\
8q[ (,q)] 0=
0? c(q —p)* +cp(1l —p)
d = .
8q2 [C (paq)] q2(1 _q)g

The second derivatives show that both d(cp, ¢q) and cd(p, q)
are convex in ¢ for any p. The minima are at ¢ = p.

We fix p and ¢, and prove (6) for any ¢q. The upper bound
is derived as follows. Since

d(ep, cx) = cd(p,x) = 0

when © = p, the upper bound holds if c¢d(p, x) increases
faster than d(cp, cx) for any p < < ¢, and if cd(p, ) de-
creases faster than d(cp, cx) for any ¢ < x < p. This follows
from the definitions of -2d(cp, cx) and 2 [cd(p, z)]. In par-
ticular, both derivatives have the same sign for any z, and
1/(1 —cx) <1/(1 — ) for z € [min{p, ¢} , max {p, ¢}].
The lower bound is derived as follows. Note that the ratio
of % [cd(p, x)] and %d(cp, cz) is bounded from above as

E
a[cd(p,a?)]il—cx< 1 < 1

%d(cp, cx) B 1 —max {p, ¢}

l—2z " 1—2 —

for any € [min{p, ¢}, max{p,q}]. Therefore, we get a
lower bound on d(cp, ¢q) when we multiply cd(p, q) by 1 —
max {p, ¢}.
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To prove (7) note that by Pinsker’s inequality, for any p, g,
d(p,q) > 2(p—q)?. Hence, on one hand, d(cp, cq) > 2¢2(p—
q)?. On the other hand, we have from (6) that d(cp, cq) >
2¢(1 — max {p,q})(p — ¢q)%. Taking the maximum of the
right-hand sides in these two equations gives (7). m

Proof sketch of Theorem 1. We proceed along the lines of
Katariya et al. [2017]. The key step in their analysis is
the upper bound on the expected n-step regret of any sub-
optimal row ¢ € [K]. This bound is proved as follows.
First, Katariya et al. [2017] show that row 4 is eliminated
with a high probability after O((pAY) =2 log n) observations,
for any column elimination strategy. Then they argue that
the amortized per-observation regret before the elimination
is O(AY). Therefore, the maximum regret due to row ¢ is
O(n=2(AY)~1logn). The expected n-step regret of any sub-
optimal column j € [L] is bounded analogously.

We modify the above argument as follows. Roughly speak-
ing, due to the KL-UCB confidence interval, a suboptimal row
1 is eliminated with a high probability after

X <d(u(U(i*) SN ">

observations. Therefore, the expected n-step regret due to
exploring row 1 is

¢ <d(u(U(i*) S ZEMU(@'*)) log”) |

Now we apply (7) of Lemma 1 to get that the regret is

1
0] <M’7AE logn> .

The regret of any suboptimal column j € [L] is bounded anal-
ogously. m

S Experiments

We conduct two experiments. In Section 5.1, we compare our
algorithm to other algorithms in the literature on a synthetic
problem. In Section 5.2, we evaluate the same algorithms on
click models that are trained on a real-world dataset.

5.1 Comparison to Alternative Algorithms

Following Katariya et al. [2017], we consider the “needle in a
haystack” class of problems, where only one item is attractive
and one position is examined. We recall the problem here.
The i-th entry of us, us(i), and the j-th entry of vy, vi(j),
are independent Bernoulli variables with means

(i) = pu + Agl{i = 1},
@(]) =pv+ Av]l{j = 1}7

for some (py, py) € [0,1]% and gaps (Ay, Ay) € (0,1—py] ¥
(0,1 — py]. Note that arm (1, 1) is optimal with an expected
reward of (py + Ay)(pv + Ay).

The goal of this experiment is to compare Rank1E1imKL
with five other algorithms from the literature and validate that
its regret scales linearly with K and L, which implies that
it exploits the problem structure. In this experiment, we set

(®)
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Figure 1: The n-step regret of Rank1E1imKL, UCB1E]lim, Rank1E1lim and UCB1 on problem (8) for (a) K = L = 32 (b) K = L = 64 (c)

K = L = 128. The results are averaged over 20 runs.
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Figure 2: (a) The sorted attraction probabilities of the items from 2 queries from the Yandex dataset. (b) The sorted examination probabilities
of the positions for the same 2 queries. (c) The n-step regret in Query 1. (d) The n-step regret in Query 2. The results are averaged over 5

runs.

puv=py =0.25Ay = Ay =0.5,and K = L, sothat p =
(1-1/K)0.254+0.75/K = 0.2540.5/K, 1 — pmax = 0.25,
and y = p =0.25+05/K.

In addition to comparing to Rank1Elim, we also compare
to UCB1Elim [Auer and Ortner, 20101, UCB1 [Auer et al.,
2002], KL-UCB [Garivier and Cappe, 20111, and Thompson
sampling [Thompson, 1933]. UCB1 is chosen as a baseline
as it has been used by Katariya et al. [2017] in their exper-
iments. UCB1Elim uses an elimination approach similar to
Rank1Elim and Rank1ElimKL. KL-UCB is similar to UCB1,
but it uses KL-UCB confidence intervals. Thompson sampling
(TS) is a Bayesian algorithm that maximizes the expected re-
ward with respect to a randomly drawn belief.

Figure 1 shows the n-step regret of the algorithms de-
scribed above as a function of time n for K = L, the lat-
ter of which doubles from one plot to the next. We ob-
serve that the regret of Rank1E1imKL flattens in all three
problems, which indicates that Rank1E1imKL learns the op-
timal arm. We also see that the regret of Rank1E1imKL dou-
bles as K and L double, indicating that our bound in Theo-
rem 1 has the right scaling in K + L, and that the algorithm
leverages the problem structure. On the other hand, the re-
gret of UCB1, UCB1Elim, KL-UCB and TS quadruples when K
and L double, confirming that their regret is (K L). Next,
we observe that while KL-UCB and TS have smaller regret
than Rank1E1imKL when K and L are small, the (K + L)-
scaling of Rank1E1imKL enables it to outperform these al-
gorithms for large K and L (Figure 1c). Finally, note that
Rank1ElimKL outperforms Rank1Elim in all three experi-
ments, confirming the importance of tighter confidence inter-

vals. It is worth noting that p = -y for this problem, and hence
u? = py. According to Theorem 1, Rank1E1limKL should
not perform better than Rank1Elim. Yet it is 4 times better
as seen in Figure la. This suggests that our upper bound is
loose.

5.2 Models Based on Real-World Data

In this experiment, we compare Rank1E1imKL to other algo-
rithms on click models that are trained on the Yandex dataset
[Yandex, 20131, an anonymized search log of 35M search ses-
sions. Each session contains a query, the list of displayed
documents at positions 1 to 10, and the clicks on those docu-
ments. We select 20 most frequent queries from the dataset,
and estimate the parameters of the PBM model using the EM
algorithm [Markov, 2014; Chuklin et al., 2015].

To illustrate our learned models, we plot the parameters
of two queries, Queries 1 and 2. Figure 2a shows the sorted
attraction probabilities of items in the queries, and Figure 2b
shows the sorted examination probabilities of the positions.
Query 1 has L = 871 items and Query 2 has L = 807 items.
K = 10 is the number of documents displayed per query.
We illustrate the performance on these queries because they
differ notably in their g (3) and pmax (4), so we can study the
performance of our algorithm in different real-world settings.
Figure 2c and d show the regret of all algorithms on Queries
1 and 2, respectively.

We first note that KL-UCB and TS do better than
Rank1ElimKL on both queries. As seen in Section 5.1,
Rank1E1imKL is expected to improve over these baselines for
large K and L, which is not the case here. With respect to

2005
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Figure 3: The average n-step regret over all 20 queries from the
Yandex dataset, with 5 runs per query.

other algorithms, we see that Rank1E1imKL is significantly
better than Rank1Elim and UCB1Elim and no worse than
UCB1 on Query 1, while for Query 2, Rank1E1imKL is supe-
rior to all of them. Note that pmax = 0.85 in Query 1 is higher
than ppax = 0.66 in Query 2. Also, p = 0.13 in Query 1 is
lower than p = 0.28 in Query 2. From (5), v = 0.15 in
Query 1, which is lower than v = 0.34 in Query 2. Our up-
per bound (Theorem 1) on the regret of Rank1E1imKL scales
as O((py)~1), and so we expect Rank1E1imKL to perform
better on Query 2. Our results confirm this expectation.

In Figure 3, we plot the average regret over all 20 queries,
where the standard error is computed by repeating this pro-
cedure 5 times. Rank1ElimKL has the lowest regret of all
algorithms except for KL-UCB and TS. Its regret is 10.9 per-
cent lower than that of UCB1, and 79 percent lower than that
of Rank1Elim. This is expected. Some real-world instances
have a benign rank-1 structure like Query 2, while others do
not, like Query 1. Hence, we see a reduction in the aver-
age gains of Rank1E1imKL over UCB1 in Figure 3 as com-
pared to Figure 2d. The high regret of Rank1Elim, which is
also designed to exploit the problem structure, shows that it
is more sensitive to unfavorable rank-1 structures. Thus, the
good news is that Rank1E1imKL improves on this limitation
of Rank1Elim. However, KL-UCB and TS perform better on
average, and we believe this is due to the fact 14 out of our
20 queries have L < 200, and hence KL < 2000. This is
in line with the results of Section 5.1, which suggest that the
advantage of Rank1E1imKL over KL-UCB and TS will “kick
in” only for much larger values of K and L.

6 Related Work

Our algorithm is based on Rank1Elim of Katariya et
al. [2017]. The main difference is that we replace the con-
fidence intervals of Rank1Elim, which are based on subgaus-
sian tail inequalities, with confidence intervals based on KL
divergences. As discussed beforehand, this results in an uni-
lateral improvement of their regret bound. The new algo-
rithm is still able to exploit the problem structure of benign
instances, while its regret is controlled on problem instances
that are “hard” for Rank1Elim. As demonstrated in the pre-
vious section, the new algorithm is also a major practical
improvement over Rank1Elim, while it remains competitive
with alternatives on hard instances.

2006

Several other papers studied bandits where the payoff is
given by a low rank matrix. Zhao et al [2013] proposed
a bandit algorithm for low-rank matrix completion, which
approximates the posterior over latent item features by a
single point. The authors do not analyze this algorithm.
Kawale et al. [2015] proposed a bandit algorithm for low-
rank matrix completion using Thompson sampling with Rao-
Blackwellization. They analyze a variant of their algorithm
whose n-step regret for rank-1 matrices is O((1/A2%)logn).
This is suboptimal compared to our algorithm. Maillard et
al. [2014] studied a bandit problem where the arms are parti-
tioned into latent groups. In this work, we do not make any
such assumptions, but our results are limited to rank 1. Gen-
tile et al. [2014] proposed an algorithm that clusters users
based on their preferences, under the assumption that the fea-
tures of items are known. Sen er al. [2017] proposed an algo-
rithm for contextual bandits with latent confounders, which
reduces to a multi-armed bandit problem where the reward
matrix is low-rank. They use an NMF-based approach and
require that the reward matrix obeys a variant of the restricted
isometry property. We make no such assumptions. Also, our
learning agent controls both the row and column while in the
above papers, the rows are controlled by the environment.

Rank1ElimKL is motivated by the structure of the PBM
[Richardson er al., 2007]. Lagree et al. [2016] proposed
a bandit algorithm for this model but they assume that the
examination probabilities are known. Rank1ElimKL can be
used to solve this problem without this assumption. The cas-
cade model [Craswell er al., 2008] is an alternative way of ex-
plaining the position bias in click data [Chuklin er al., 2015].
Bandit algorithms for this class of models have been pro-
posed in several recent papers [Kveton et al., 2015a; Combes
et al., 2015; Kveton et al., 2015b; Katariya et al., 2016;
Zong et al., 2016; Li et al., 2016].

7 Conclusions

In this work, we proposed Rank1E1imKL, an elimination al-
gorithm that uses KL-UCB confidence intervals to find the
maximum entry of a stochastic rank-1 matrix with Bernoulli
rewards. The algorithm is a modification of Ranki1Elim
[Katariya et al., 20171, where the subgaussian confidence in-
tervals are replaced by the ones with KL divergences. As we
demonstrate both empirically and analytically, this change re-
sults in a significant improvement. As a result, we obtain the
first algorithm that is able to exploit the rank-1 structure with-
out paying a significant penalty on instances where the rank-1
structure cannot be exploited.

We note that Rank1E1imKL uses the rank-1 structure of
the problem and that there are no guarantees beyond rank-
1. While the dependence of the regret of Rank1E1imKL on A
is known to be tight [Katariya et al., 20171, the question about
the optimal dependence on g is still open. Finally, we point
out that TS and KL-UCB perform better than Rank1E1imKL
in our experiments, especially for small L and K. This is be-
cause Rank1E1imKL is an elimination algorithm. Elimination
algorithms tend to have higher regret initially than UCB-style
algorithms because they explore more aggressively. It is not
inconceivable to have TS algorithms that leverage the rank-1
structure in the future.
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