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Abstract
The probability that a user will click a search re-
sult depends both on its relevance and its position
on the results page. The position based model ex-
plains this behavior by ascribing to every item an
attraction probability, and to every position an ex-
amination probability. To be clicked, a result must
be both attractive and examined. The probabilities
of an item-position pair being clicked thus form the
entries of a rank-1 matrix. We propose the learn-
ing problem of a Bernoulli rank-1 bandit where at
each step, the learning agent chooses a pair of row
and column arms, and receives the product of their
Bernoulli-distributed values as a reward. This is a
special case of the stochastic rank-1 bandit problem
considered in recent work that proposed an elimina-
tion based algorithm Rank1Elim, and showed that
Rank1Elim’s regret scales linearly with the number
of rows and columns on “benign” instances. These
are the instances where the minimum of the aver-
age row and column rewards µ is bounded away
from zero. The issue with Rank1Elim is that it
fails to be competitive with straightforward ban-
dit strategies as µ → 0. In this paper we pro-
pose Rank1ElimKL, which replaces the crude con-
fidence intervals of Rank1Elim with confidence
intervals based on Kullback-Leibler (KL) diver-
gences. With the help of a novel result concerning
the scaling of KL divergences we prove that with
this change, our algorithm will be competitive no
matter the value of µ. Experiments with synthetic
data confirm that on benign instances the perfor-
mance of Rank1ElimKL is significantly better than
that of even Rank1Elim. Similarly, experiments
with models derived from real-data confirm that the
improvements are significant across the board, re-
gardless of whether the data is benign or not.

1 Introduction
When deciding which search results to present, click logs are
of particular interest. A fundamental problem in click data is
position bias. The probability of an element being clicked de-
pends not only on its relevance, but also on its position on the

results page. The position-based model (PBM), first proposed
by Richardson et al. [2007] and then formalized by Craswell
et al. [2008], models this behavior by associating with each
item a probability of being attractive, and with each position
a probability of being examined. To be clicked, a result must
be both attractive and examined. Given click logs, the attrac-
tion and examination probabilities can be learned using the
maximum-likelihood estimation (MLE) or the expectation-
maximization (EM) algorithms [Chuklin et al., 2015].

An online learning model for this problem is proposed in
Katariya et al. [2017], called stochastic rank-1 bandit. The
objective of the learning agent is to learn the most rewarding
item and position, which is the maximum entry of a rank-1
matrix. At time t, the agent chooses a pair of row and column
arms, and receives the product of their values as a reward.
The goal of the agent is to maximize its expected cumulative
reward, or equivalently to minimize its expected cumulative
regret with respect to the optimal solution, the most reward-
ing pair of row and column arms. This learning problem is
challenging because when the agent receives the reward of
zero, it could mean either that the item was unattractive, or
the position was not examined, or both.

Katariya et al. [2017] also proposed an elimina-
tion algorithm, Rank1Elim, whose regret is O((K +
L)µ−2∆−1 log n), where K is the number of rows, L is the
number of columns, ∆ is the minimum of the row and col-
umn gaps, and µ is the minimum of the average row and
column rewards. When µ is bounded away from zero, the
regret scales linearly with K + L, while it scales inversely
with ∆. This is a significant improvement over using a stan-
dard bandit algorithm that (disregarding the problem struc-
ture) would treat item-position pairs as unrelated arms and
would achieve a regret of O(KL∆−1 log n). The issue is
that as µ gets small, the regret bound worsens significantly.
As we verify in Section 5, this indeed happens on models de-
rived from some real-world problems. To illustrate the sever-
ity of this problem, consider as an example where K = L,
and the row and column rewards are Bernoulli distributed.
Let the mean reward of row 1 and column 1 be ∆, and the
mean reward of all other rows and columns be 0. We re-
fer to this setting as a “needle in a haystack”, because there
is a single rewarding entry out of K2 entries. For this set-
ting, µ = ∆/K, and consequently the regret of Rank1Elim
is O(µ−2∆−1K log n) = O(K3 log n). However, a naive
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bandit algorithm that ignores the rank-1 structure and treats
each row-column pair as unrelated arms has O(K2 log n) re-
gret.1 While a naive bandit algorithm is unable to exploit
the rank-1 structure when µ is large, Rank1Elim is unable to
keep up with a naive algorithm when µ is small. Our goal in
this paper is to design an algorithm that performs well across
all rank-1 problem instances regardless of their parameters.

In this paper we propose that this improvement can be
achieved by replacing the “UCB1 confidence intervals” used
by Rank1Elim by strictly tighter confidence intervals based
on Kullback-Leibler (KL) divergences. This leads to our al-
gorithm that we call Rank1ElimKL. Based on the work of
Garivier and Cappe [2011], we expect this change to lead to
an improved behavior, especially for extreme instances, as
µ → 0. Indeed, in this paper we show that KL divergences
enjoy a peculiar “scaling”. In particular, thanks to this im-
provement, for the “needle in a haystack” problem discussed
above the regret of Rank1ElimKL becomes O(K2 log n).

Our contributions are as follows. First, we propose
a Bernoulli rank-1 bandit, which is a special class of a
stochastic rank-1 bandit where the rewards are Bernoulli
distributed. Second, we modify Rank1Elim for solving
the Bernoulli rank-1 bandit, which we call Rank1ElimKL,
to use KL-UCB intervals. Third, we derive a O((K +
L) (µγ∆)−1 log n) gap-dependent upper bound on the n-step
regret of Rank1ElimKL, where K,L,∆ and µ are as above,
while γ = max {µ, 1− pmax} with pmax being the maxi-
mum of the row and column rewards; effectively replacing
the µ−2 term of the previous regret bound of Rank1Elim
with (µγ)−1. It follows that the new bound is an unilat-
eral improvement over the previous one and is a strict im-
provement when µ < 1 − pmax, which is expected to hap-
pen quite often in practical problems. For the “needle in a
haystack” problem, the new bound essentially matches that of
the naive bandit algorithm, while never worsening the bound
of Rank1Elim. Our final contribution is the experimental val-
idation of Rank1ElimKL, on both synthetic and real-world
problems. The experiments indicate that Rank1ElimKL out-
performs several baselines across almost all problem in-
stances.

We denote random variables by boldface letters and define
[n] = {1, . . . , n}. For any sets A and B, we denote by AB

the set of all vectors whose entries are indexed by B and take
values from A. We let d(p, q) = p log p

q + (1 − p) log 1−p
1−q

denote the KL divergence between the Bernoulli distributions
with means p, q ∈ [0, 1]. As usual, the formula for d(p, q) is
defined through its continuous extension as p, q approach the
boundaries of [0, 1].

2 Setting
The setting of the Bernoulli rank-1 bandit is the same as that
of the stochastic rank-1 bandit [Katariya et al., 2017], with
the additional requirement that the row and column rewards
are Bernoulli distributed. We state the setting for complete-

1Alternatively, the worst-case regret bound for Rank1Elim be-
comes O(Kn2/3 log n), while that of for a naive bandit algorithm
with a naive bound is O(Kn1/2 log n).

ness, and borrow the notation from Katariya et al. [2017] for
the ease of comparison.

An instance of our learning problem is defined by a tu-
ple (K,L, PU, PV), where K is the number of rows, L is the
number of columns, PU is a distribution over {0, 1}K from
which the row rewards are drawn, and PV is a distribution
over {0, 1}L from which the column rewards are drawn.

Let the row and column rewards be

(ut,vt)
i.i.d∼ PU ⊗ PV , t = 1, . . . , n .

In particular, ut and vt are drawn independently at any time
t. At time t, the learning agent chooses a row index it ∈ [K]
and a column index jt ∈ [L], and observes ut(it)v(jt) as its
reward. The indices it and jt chosen by the learning agent are
allowed to depend only on the history of the agent up to time
t.

Let the time horizon be n. The goal of the agent is to maxi-
mize its expected cumulative reward in n steps. This is equiv-
alent to minimizing the expected cumulative regret in n steps

R(n) = E

[
n∑

t=1

R(it, jt,ut,vt)

]
,

where R(it, jt,ut,vt) = ut(i
∗)vt(j

∗) − ut(it)vt(jt) is the
instantaneous stochastic regret of the agent at time t, and

(i∗, j∗) = arg max (i,j)∈[K]×[L] E [u(i)v(j)]

is the optimal solution in hindsight of knowing PU and PV.

3 Rank1ElimKL Algorithm
The pseudocode of our algorithm, Rank1ElimKL, is in

Algorithm 1. As noted earlier this algorithm is based on
Rank1Elim [Katariya et al., 2017] with the difference that
we replace their confidence intervals with KL-based confi-
dence intervals. For the reader’s benefit, we explain the full
algorithm.
Rank1ElimKL is an elimination algorithm that operates in

stages, where the elimination is conducted with KL-UCB con-
fidence intervals. The lengths of the stages quadruple from
one stage to the next, and the algorithm is designed such that
at the end of stage `, it eliminates with high probability any
row and column whose gap scaled by a problem dependent
constant is at least ∆̃` = 2−`. We denote the remaining rows
and columns in stage ` by I` and J`, respectively.

Every stage has an exploration phase and an exploitation
phase. During row-exploration in stage ` (lines 12–16), every
remaining row is played with a randomly chosen remaining
column,

In the exploitation phase, we construct high-probability
KL-UCB [Garivier and Cappe, 2011] confidence intervals
[LU

` (i),UU
` (i)] for row i ∈ I`, and confidence intervals

[LV
` (j),UV

` (j)] for column j ∈ J`. As noted earlier, this is
where we depart from Rank1Elim. The elimination uses row
i` and column j`, where

i` = arg max
i∈I`

LU
` (i) , j` = arg max

j∈J`

LV
` (j) .
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Algorithm 1 Rank1ElimKL for Bernoulli rank-1 bandits.

1: // Initialization
2: t← 1, ∆̃0 ← 1, n−1 ← 0
3: CU

0 ← 0K,L, CV
0 ← 0K,L // Zero matrix with K rows

and L columns
4: hU

0 ← (1, . . . ,K), hV
0 ← (1, . . . , L)

5:
6: for ` = 0, 1, . . . do
7: n` ←

⌈
16∆̃−2

` log n
⌉

8: I` ←
⋃

i∈[K] {hU
` (i)}, J` ←

⋃
j∈[L] {hV

` (j)}
9:

10: // Row and column exploration
11: for n` − n`−1 times do
12: Choose uniformly at random column j ∈ [L]
13: j ← hV

` (j)
14: for all i ∈ I` do
15: CU

` (i, j)← CU
` (i, j) + ut(i)vt(j)

16: t← t+ 1
17: Choose uniformly at random row i ∈ [K]
18: i← hU

` (i)
19: for all j ∈ J` do
20: CV

` (i, j)← CV
` (i, j) + ut(i)vt(j)

21: t← t+ 1
22:
23: // UCBs and LCBs on the expected rewards of all re-

maining rows and columns with divergence constraint
δ` ← log n+ 3 log log n

24:
25: for all i ∈ I` do
26: û`(i)← n−1

`

∑L
j=1 C

U
` (i, j)

27: UU
` (i)← arg max q∈[û`(i),1] {n`d (û`(i), q) ≤ δ`}

28: LU
` (i)← arg min q∈[0,û`(i)] {n`d (û`(i), q) ≤ δ`}

29: for all j ∈ J` do
30: v̂`(j)← n−1

`

∑K
i=1 C

V
` (i, j)

31: UV
` (j) ← arg max q∈[v̂`(j),1] {n`d (v̂`(j), q) ≤ δ`}

32: LV
` (j)← arg min q∈[0,v̂`(j)] {n`d (v̂`(j), q) ≤ δ`}

33:
34: // Row and column elimination
35: i` ← arg max i∈I` L

U
` (i)

36: hU
`+1 ← hU

`
37: for i = 1, . . . ,K do
38: if UU

` (hU
` (i)) ≤ LU

` (i`) then
39: hU

`+1(i)← i`
40:
41: j` ← arg max j∈J`

LV
` (j)

42: hV
`+1 ← hV

`
43: for j = 1, . . . , L do
44: if UV

` (hV
` (j)) ≤ LV

` (j`) then
45: hV

`+1(j)← j`
46:
47: ∆̃`+1 ← ∆̃`/2, CU

`+1 ← CU
` , CV

`+1 ← CV
`

We eliminate any row i and column j such that

UU
` (i) ≤ LU

` (i`) , UV
` (j) ≤ LV

` (j`) .

We also track the remaining rows and columns in stage ` by
hU
` and hV

` , respectively. When row i is eliminated by row i`,
we set hU

` (i) = i`. If row i` is eliminated by row i`′ at a later
stage `′ > `, we update hU

` (i) = i`′ . This is analogous for
columns. The remaining rows I` and columns J` can be then
defined as the unique values in hU

` and hV
` , respectively. The

maps hU
` and hV

` help to guarantee that the row and column
means are non-decreasing.

The KL-UCB confidence intervals in Rank1ElimKL can be
found by solving a one-dimensional convex optimization
problem for every row (lines 27–28) and column (lines 31–
32). They can be found efficiently using binary search be-
cause the Kullback-Leibler divergence d(x, q) is convex in q
as q moves away from x in either direction. The KL-UCB con-
fidence intervals need to be computed only once per stage.
Hence, Rank1ElimKL has to solve at most K + L convex
optimization problems per stage, and hence (K + L) log n
problems overall.

4 Analysis
In this section, we derive a gap-dependent upper bound on the
n-step regret of Rank1ElimKL. The hardness of our learning
problem is measured by two kinds of metrics. The first kind
are gaps. The gaps of row i ∈ [K] and column j ∈ [L] are
defined as

∆U
i = ū(i∗)− ū(i) , ∆V

j = v̄(j∗)− v̄(j) , (1)

respectively; and the minimum row and column gaps are de-
fined as

∆U
min = min

i∈[K]:∆U
i>0

∆U
i , ∆V

min = min
j∈[L]:∆V

j>0
∆V

j , (2)

respectively. Roughly speaking, the smaller the gaps, the
harder the problem. This inverse dependence on gaps is tight
[Katariya et al., 2017].

The second kind of metrics are the extremal parameters

µ = min

 1

K

K∑
i=1

ū(i),
1

L

L∑
j=1

v̄(j)

 , (3)

pmax = max

{
max
i∈[K]

ū(i), max
j∈[L]

v̄(j)

}
. (4)

The first metric, µ, is the minimum of the average of entries
of ū and v̄. This quantity appears in our analysis due to the
averaging character of Rank1ElimKL. The smaller the value
of µ, the larger the regret. The second metric, pmax, is the
maximum entry in ū and v̄. As we shall see the regret scales
inversely with

γ = max {µ, 1− pmax} . (5)

Note that if µ → 0 and pmax → 1 at the same time, then the
row and columns gaps must also approach one. With this we
are ready to state our main result.
Theorem 1. Let C = 6e+ 82 and n ≥ 5. Then the expected
n-step regret of Rank1ElimKL is bounded as

R(n) ≤ 160

µγ

 K∑
i=1

1

∆̄U
i

+
L∑

j=1

1

∆̄V
j

 log n+ C(K + L) ,
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where

∆̄U
i = ∆U

i + 1{∆U
i = 0}∆V

min ,

∆̄V
j = ∆V

j + 1
{

∆V
j = 0

}
∆U

min .

The difference from the main result of Katariya et
al. [2017] is that the first term in our bound scales with
1/(µγ) instead of 1/µ2. Since µ ≤ γ and in fact often
µ � γ, this is a significant improvement. We validate this
empirically in the next section.

Due to the lack of space, we only provide a sketch of the
proof of Theorem 1. At a high level, it follows the steps of
the proof of Katariya et al. [2017]. Focusing on the source
of the improvement, we first state and prove a new lemma,
which allows us to replace one 1/µ in the regret bound with
1/γ. Recall from Section 1 that d denotes the KL divergence
between Bernoulli random variables with means p, q ∈ [0, 1].
Lemma 1. Let c, p, q ∈ [0, 1]. Then

c(1−max {p, q})d(p, q) ≤ d(cp, cq) ≤ cd(p, q) . (6)

In particular,

2cmax(c, 1−max {p, q})(p− q)2 ≤ d(cp, cq) . (7)

Proof. The proof of (6) is based on differentiation. The first
two derivatives of d(cp, cq) with respect to q are

∂

∂q
d(cp, cq) =

c(q − p)
q(1− cq)

,

∂2

∂q2
d(cp, cq) =

c2(q − p)2 + cp(1− cp)
q2(1− cq)2

;

and the first two derivatives of cd(p, q) with respect to q are

∂

∂q
[cd(p, q)] =

c(q − p)
q(1− q)

,

∂2

∂q2
[cd(p, q)] =

c(q − p)2 + cp(1− p)
q2(1− q)2

.

The second derivatives show that both d(cp, cq) and cd(p, q)
are convex in q for any p. The minima are at q = p.

We fix p and c, and prove (6) for any q. The upper bound
is derived as follows. Since

d(cp, cx) = cd(p, x) = 0

when x = p, the upper bound holds if cd(p, x) increases
faster than d(cp, cx) for any p < x ≤ q, and if cd(p, x) de-
creases faster than d(cp, cx) for any q ≤ x < p. This follows
from the definitions of ∂

∂xd(cp, cx) and ∂
∂x [cd(p, x)]. In par-

ticular, both derivatives have the same sign for any x, and
1/(1− cx) ≤ 1/(1− x) for x ∈ [min {p, q} ,max {p, q}].

The lower bound is derived as follows. Note that the ratio
of ∂

∂x [cd(p, x)] and ∂
∂xd(cp, cx) is bounded from above as

∂
∂x [cd(p, x)]
∂
∂xd(cp, cx)

=
1− cx
1− x

≤ 1

1− x
≤ 1

1−max {p, q}

for any x ∈ [min {p, q} ,max {p, q}]. Therefore, we get a
lower bound on d(cp, cq) when we multiply cd(p, q) by 1 −
max {p, q}.

To prove (7) note that by Pinsker’s inequality, for any p, q,
d(p, q) ≥ 2(p−q)2. Hence, on one hand, d(cp, cq) ≥ 2c2(p−
q)2. On the other hand, we have from (6) that d(cp, cq) ≥
2c(1 − max {p, q})(p − q)2. Taking the maximum of the
right-hand sides in these two equations gives (7).

Proof sketch of Theorem 1. We proceed along the lines of
Katariya et al. [2017]. The key step in their analysis is
the upper bound on the expected n-step regret of any sub-
optimal row i ∈ [K]. This bound is proved as follows.
First, Katariya et al. [2017] show that row i is eliminated
with a high probability afterO((µ∆U

i )−2 log n) observations,
for any column elimination strategy. Then they argue that
the amortized per-observation regret before the elimination
is O(∆U

i ). Therefore, the maximum regret due to row i is
O(µ−2(∆U

i )−1 log n). The expected n-step regret of any sub-
optimal column j ∈ [L] is bounded analogously.

We modify the above argument as follows. Roughly speak-
ing, due to the KL-UCB confidence interval, a suboptimal row
i is eliminated with a high probability after

O

(
1

d(µ(ū(i∗)−∆U
i ), µū(i∗))

log n

)
observations. Therefore, the expected n-step regret due to
exploring row i is

O

(
∆U

i

d(µ(ū(i∗)−∆U
i ), µū(i∗))

log n

)
.

Now we apply (7) of Lemma 1 to get that the regret is

O

(
1

µγ∆U
i

log n

)
.

The regret of any suboptimal column j ∈ [L] is bounded anal-
ogously.

5 Experiments
We conduct two experiments. In Section 5.1, we compare our
algorithm to other algorithms in the literature on a synthetic
problem. In Section 5.2, we evaluate the same algorithms on
click models that are trained on a real-world dataset.

5.1 Comparison to Alternative Algorithms
Following Katariya et al. [2017], we consider the “needle in a
haystack” class of problems, where only one item is attractive
and one position is examined. We recall the problem here.
The i-th entry of ut, ut(i), and the j-th entry of vt, vt(j),
are independent Bernoulli variables with means

ū(i) = pU + ∆U1{i = 1} ,
v̄(j) = pV + ∆V1{j = 1} , (8)

for some (pU, pV) ∈ [0, 1]2 and gaps (∆U,∆V) ∈ (0, 1−pU]×
(0, 1 − pV]. Note that arm (1, 1) is optimal with an expected
reward of (pU + ∆U)(pV + ∆V).

The goal of this experiment is to compare Rank1ElimKL
with five other algorithms from the literature and validate that
its regret scales linearly with K and L, which implies that
it exploits the problem structure. In this experiment, we set
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pU=pV=0.25,∆U=∆V=0.5,andK=L,sothatµ=
(1−1/K)0.25+0.75/K=0.25+0.5/K,1−pmax=0.25,
andγ=µ=0.25+0.5/K.
InadditiontocomparingtoRank1Elim,wealsocompare

toUCB1Elim[AuerandOrtner,2010],UCB1[Aueretal.,
2002],KL-UCB[GarivierandCappe,2011],andThompson
sampling[Thompson,1933].UCB1ischosenasabaseline
asithasbeenusedbyKatariyaetal.[2017]intheirexper-
iments.UCB1Elimusesaneliminationapproachsimilarto
Rank1ElimandRank1ElimKL.KL-UCBissimilartoUCB1,
butitusesKL-UCBconfidenceintervals.Thompsonsampling
(TS)isaBayesianalgorithmthatmaximizestheexpectedre-
wardwithrespecttoarandomlydrawnbelief.
Figure1showsthen-stepregretofthealgorithmsde-

scribedaboveasafunctionoftimenforK =L,thelat-
terofwhichdoublesfromoneplottothenext. Weob-
servethattheregretofRank1ElimKLflattensinallthree
problems,whichindicatesthatRank1ElimKLlearnstheop-
timalarm. WealsoseethattheregretofRank1ElimKLdou-
blesasKandLdouble,indicatingthatourboundinTheo-
rem1hastherightscalinginK+L,andthatthealgorithm
leveragestheproblemstructure. Ontheotherhand,there-
gretofUCB1,UCB1Elim,KL-UCBandTSquadrupleswhenK
andLdouble,confirmingthattheirregretisΩ(KL).Next,
weobservethatwhileKL-UCBandTShavesmallerregret
thanRank1ElimKLwhenKandLaresmall,the(K+L)-
scalingofRank1ElimKLenablesittooutperformtheseal-
gorithmsforlargeKandL(Figure1c).Finally,notethat
Rank1ElimKLoutperformsRank1Eliminallthreeexperi-
ments,confirmingtheimportanceoftighterconfidenceinter-

vals.Itisworthnotingthatµ=γforthisproblem,andhence
µ2=µγ. AccordingtoTheorem1,Rank1ElimKLshould
notperformbetterthanRank1Elim.Yetitis4timesbetter
asseeninFigure1a.Thissuggeststhatourupperboundis
loose.

5.2 ModelsBasedonReal-WorldData

Inthisexperiment,wecompareRank1ElimKLtootheralgo-
rithmsonclickmodelsthataretrainedontheYandexdataset
[Yandex,2013],ananonymizedsearchlogof35Msearchses-
sions. Eachsessioncontainsaquery,thelistofdisplayed
documentsatpositions1to10,andtheclicksonthosedocu-
ments. Weselect20mostfrequentqueriesfromthedataset,
andestimatetheparametersofthePBMmodelusingtheEM
algorithm[Markov,2014;Chuklinetal.,2015].
Toillustrateourlearnedmodels,weplottheparameters

oftwoqueries,Queries1and2.Figure2ashowsthesorted
attractionprobabilitiesofitemsinthequeries,andFigure2b
showsthesortedexaminationprobabilitiesofthepositions.
Query1hasL=871itemsandQuery2hasL=807items.
K =10isthenumberofdocumentsdisplayedperquery.
Weillustratetheperformanceonthesequeriesbecausethey
differnotablyintheirµ(3)andpmax(4),sowecanstudythe
performanceofouralgorithmindifferentreal-worldsettings.
Figure2canddshowtheregretofallalgorithmsonQueries
1and2,respectively.
We firstnotethat KL-UCBandTSdobetterthan

Rank1ElimKLonbothqueries. AsseeninSection5.1,
Rank1ElimKLisexpectedtoimproveoverthesebaselinesfor
largeKandL,whichisnotthecasehere. Withrespectto
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Figure3:Theaveragen-stepregretoverall20queriesfromthe
Yandexdataset,with5runsperquery.

otheralgorithms,weseethatRank1ElimKLissignificantly
betterthanRank1ElimandUCB1Elimandnoworsethan
UCB1onQuery1,whileforQuery2,Rank1ElimKLissupe-
riortoallofthem.Notethatpmax=0.85inQuery1ishigher
thanpmax =0.66inQuery2.Also,µ=0.13inQuery1is
lowerthanµ=0.28inQuery2.From(5),γ=0.15in
Query1,whichislowerthanγ=0.34inQuery2.Ourup-
perbound(Theorem1)ontheregretofRank1ElimKLscales
asO((µγ)−1),andsoweexpectRank1ElimKLtoperform
betteronQuery2.Ourresultsconfirmthisexpectation.
InFigure3,weplottheaverageregretoverall20queries,

wherethestandarderroriscomputedbyrepeatingthispro-
cedure5times.Rank1ElimKLhasthelowestregretofall
algorithmsexceptforKL-UCBandTS.Itsregretis10.9per-
centlowerthanthatofUCB1,and79percentlowerthanthat
ofRank1Elim.Thisisexpected.Somereal-worldinstances
haveabenignrank-1structurelikeQuery2,whileothersdo
not,likeQuery1. Hence,weseeareductionintheaver-
agegainsofRank1ElimKLoverUCB1inFigure3ascom-
paredtoFigure2d.ThehighregretofRank1Elim,whichis
alsodesignedtoexploittheproblemstructure,showsthatit
ismoresensitivetounfavorablerank-1structures.Thus,the
goodnewsisthatRank1ElimKLimprovesonthislimitation
ofRank1Elim.However,KL-UCBandTSperformbetteron
average,andwebelievethisisduetothefact14outofour
20querieshaveL<200,andhenceKL<2000.Thisis
inlinewiththeresultsofSection5.1,whichsuggestthatthe
advantageofRank1ElimKLoverKL-UCBandTSwill“kick
in”onlyformuchlargervaluesofKandL.

6 RelatedWork

Ouralgorithmisbasedon Rank1Elimof Katariyaet
al.[2017].Themaindifferenceisthatwereplacethecon-
fidenceintervalsofRank1Elim,whicharebasedonsubgaus-
siantailinequalities,withconfidenceintervalsbasedonKL
divergences.Asdiscussedbeforehand,thisresultsinanuni-
lateralimprovementoftheirregretbound. Thenewalgo-
rithmisstillabletoexploittheproblemstructureofbenign
instances,whileitsregretiscontrolledonprobleminstances
thatare“hard”forRank1Elim.Asdemonstratedinthepre-
vioussection,thenewalgorithmisalsoamajorpractical
improvementoverRank1Elim,whileitremainscompetitive
withalternativesonhardinstances.

Severalotherpapersstudiedbanditswherethepayoffis
givenbyalowrankmatrix. Zhaoetal.[2013]proposed
abanditalgorithmforlow-rankmatrixcompletion,which
approximatestheposterioroverlatentitemfeaturesbya
singlepoint. Theauthorsdonotanalyzethisalgorithm.
Kawaleetal.[2015]proposedabanditalgorithmforlow-
rankmatrixcompletionusingThompsonsamplingwithRao-
Blackwellization.Theyanalyzeavariantoftheiralgorithm
whosen-stepregretforrank-1matricesisO((1/∆2)logn).
Thisissuboptimalcomparedtoouralgorithm. Maillardet
al.[2014]studiedabanditproblemwherethearmsareparti-
tionedintolatentgroups.Inthiswork,wedonotmakeany
suchassumptions,butourresultsarelimitedtorank1.Gen-
tileetal.[2014]proposedanalgorithmthatclustersusers
basedontheirpreferences,undertheassumptionthatthefea-
turesofitemsareknown.Senetal.[2017]proposedanalgo-
rithmforcontextualbanditswithlatentconfounders,which
reducestoamulti-armedbanditproblemwherethereward
matrixislow-rank.TheyuseanNMF-basedapproachand
requirethattherewardmatrixobeysavariantoftherestricted
isometryproperty. Wemakenosuchassumptions.Also,our
learningagentcontrolsboththerowandcolumnwhileinthe
abovepapers,therowsarecontrolledbytheenvironment.
Rank1ElimKLismotivatedbythestructureofthePBM

[Richardsonetal.,2007]. Lagreeetal.[2016]proposed
abanditalgorithmforthismodelbuttheyassumethatthe
examinationprobabilitiesareknown.Rank1ElimKLcanbe
usedtosolvethisproblemwithoutthisassumption.Thecas-
cademodel[Craswelletal.,2008]isanalternativewayofex-
plainingthepositionbiasinclickdata[Chuklinetal.,2015].
Banditalgorithmsforthisclassofmodelshavebeenpro-
posedinseveralrecentpapers[Kvetonetal.,2015a;Combes
etal.,2015;Kvetonetal.,2015b;Katariyaetal.,2016;
Zongetal.,2016;Lietal.,2016].

7 Conclusions
Inthiswork,weproposedRank1ElimKL,aneliminational-
gorithmthatusesKL-UCBconfidenceintervalstofindthe
maximumentryofastochasticrank-1matrixwithBernoulli
rewards. ThealgorithmisamodificationofRank1Elim
[Katariyaetal.,2017],wherethesubgaussianconfidencein-
tervalsarereplacedbytheoneswithKLdivergences.Aswe
demonstratebothempiricallyandanalytically,thischangere-
sultsinasignificantimprovement.Asaresult,weobtainthe
firstalgorithmthatisabletoexploittherank-1structurewith-
outpayingasignificantpenaltyoninstanceswheretherank-1
structurecannotbeexploited.
Wenotethat Rank1ElimKLusestherank-1structureof

theproblemandthattherearenoguaranteesbeyondrank-
1.WhilethedependenceoftheregretofRank1ElimKLon∆
isknowntobetight[Katariyaetal.,2017],thequestionabout
theoptimaldependenceonµisstillopen.Finally,wepoint
outthatTSandKL-UCBperformbetterthanRank1ElimKL
inourexperiments,especiallyforsmallLandK.Thisisbe-
causeRank1ElimKLisaneliminationalgorithm.Elimination
algorithmstendtohavehigherregretinitiallythanUCB-style
algorithmsbecausetheyexploremoreaggressively.Itisnot
inconceivabletohaveTSalgorithmsthatleveragetherank-1
structureinthefuture.
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