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Abstract

Network representation is the basis of many appli-
cations and of extensive interest in various fields,
such as information retrieval, social network anal-
ysis, and recommendation systems. Most previous
methods for network representation only consider
the incomplete aspects of a problem, including link
structure, node information, and partial integration.
The present study proposes a deep network repre-
sentation model that seamlessly integrates the text
information and structure of a network. Our model
captures highly non-linear relationships between
nodes and complex features of a network by ex-
ploiting the variational autoencoder (VAE), which
is a deep unsupervised generation algorithm. We
also merge the representation learned with a para-
graph vector model and that learned with the VAE
to obtain the network representation that preserves
both structure and text information. We conduct
comprehensive empirical experiments on bench-
mark datasets and find our model performs better
than state-of-the-art techniques by a large margin.

1 Introduction

Information network representation is an important research
issue because it is the basis of many applications, such as doc-
ument classification in citation networks, functional label pre-
diction in protein-protein interaction networks, and potential
friend recommendations in social networks. Although there
are not a few recent work proposed to study the issue [Belkin
and Niyogi, 2003; Tenenbaum et al., 2001; Cao et al., 2015;
Tian er al., 2014; Cao, 20161, it is still far from satisfactory
because of the intrinsic difficulty. In essence, the rich and
complex information (i.e., link structure and node contents)
embedded in information networks poses a significant chal-
lenge in the effective representation of networks.

For an example on the scenario of paper classification, a
reference relationship exists between papers, and each paper
has its own title. Papers with similar titles are likely to be sim-
ilar in terms of contents and topic, and papers tend to be close
if they have a citation link. Through representation learning,
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the network can be mapped to a low-dimensional space for
classification.

Network-distributed representation learning can be viewed
as a problem using low-dimensional vectors to represent
nodes in a network. Most network representation meth-
ods are based on a network structure. The traditional
representation is based on matrix decomposition and uses
eigenvectors as representation [Belkin and Niyogi, 2003;
Roweis and Saul, 2000b; Tenenbaum et al., 2001]. Fur-
thermore, they extend to high-order information [Cao et al.,
2015]. However, these methods are not applicable to large-
scale networks, and although many approximate approaches
have been developed to solve this problem, they are not ef-
fective enough. Some methods are based on optimization
objective functions [Tang er al., 2015; Pan et al., 2016;
Yang et al., 2015]. Although they are suitable for large-
scale network data, they adopt shallow models that are lim-
ited in terms of performance and are difficult to use to obtain
highly non-linear relationships that are vital to the preserva-
tion of network structure. Inspired by deep learning tech-
niques in natural language processing, [Perozzi et al., 2014;
Grover and Leskovec, 2016] adopted several stunted random
walks in networks to generate node sequences serving as sen-
tence corpus and then applied the skip-gram model to these
sequences to learn node representation. However, they cannot
easily handle additional information during random walks in
a network.

To capture highly non-linear structures for large-scale net-
works, [Tian et al., 2014; Cao, 2016] introduced an au-
toencoder to model training instead of using a sampling
based method to generate linear sequences. Motivated by
this model, we develop the variational autoencoder (VAE)
[Kingma and Welling, 2014], which is a deep generation
model, instead of a basic autoencoder. Most previous stud-
ies utilized only one type of information in networks. The
work in [Le and Mikolov, 2014] focused on node content,
and others [Grover and Leskovec, 2016; Perozzi et al., 2014]
explored link structure. Although a few previous models [Pan
et al., 2016; Yang et al., 2015] combined both text informa-
tion and network structure, they did not preserve the complete
network structure and only partially utilized node content. A
straightforward method is to learn a node vector by using
DeepWalk for network structure and learn a text vector via
Paragraph Vectors model [Le and Mikolov, 2014] (the state-
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of-the art model to embed text into a vector space), and then
concatenate these two vectors into a unified representation.
However this simple combination is suboptimal.

To address the above issues, we propose a deep generative
model to learn network representation by modeling both node
content information and network structure comprehensively.
First, we obtain representation based on node content through
the paragraph vector model. Then, we feed the network ad-
jacency matrix and representation obtained into a deep gen-
erative model, the building block of which is the VAE. Af-
ter stacking several layers of the VAE, we choose the result
of the first layer before decoding as the final representation.
Intuitively, we can obtain the representation containing both
content information and structure in a d-dimensional feature
space. The experimental evaluation demonstrates the superior
performance of our model on the benchmark datasets.

Overall, our paper makes the following contributions:

e We propose a model to learn social information network
representation. The model can obtain highly non-linear
relationships in network structures. To the best of our
knowledge, this work is among the first to use generative
models to learn network representations.

e We explore the application of the VAE as an unsuper-
vised architecture, which simultaneously integrates node
content and network structure.

e We extensively evaluate the proposed method and
demonstrate that our model is significantly better than
state-of-the-art techniques.

2 Related Work

Distributed representation learning is the basis of many ap-
plications, and it has been studied extensively in recent
years. The aim of representation learning is to seek a low-
dimensional vector to describe an objective. Our goal is to
extract enough features in a social information network.
Traditional dimensionality reduction techniques [Belkin
and Niyogi, 2001; Roweis and Saul, 2000a] typically con-
struct the affinity network using the feature vectors of the
vertexes and then compute the eigenvectors of the affinity net-
work. Network representation was first proposed by [Hoff
et al., 2002], and it was later followed by numerous meth-
ods [Belkin and Niyogi, 2003; Roweis and Saul, 2000b;
Tenenbaum et al., 2001] based on matrix factorization, which
treats eigenvectors as representations. Furthermore, they ex-
tend to high-order information [Cao et al., 2015], while they
adopt shallow models and the complex structure can not be
capture. [Tian et al., 2014; Cao, 2016] introduced basic au-
toencoder to extract complex features and model non-linear
structure of the network. SDNE [Wang e al., 2016] is a semi-
supervised deep model that captures the non-linear structural
information over the network. The source code of SDNE is
not available, so this method cannot be reproduced and com-
pared to ours. Recently, DeepWalk [Perozzi er al., 2014] ex-
ploit the classical model with natural language processing to
learn network representation, that can effectively solve the
sparse problem of data. DeepWalk adopt random walk to gen-
erate the standard input sequence at first, and then used Skip-
Gram [Mikolov et al., 2013] to model the network. Inspired
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by DeepWalk, Walklets [Perozzi et al., 2016] focus on multi-
scale vertex relationships, Node2vec [Grover and Leskovec,
2016] design a biased random walk procedure which effi-
ciently explores diverse neighborhoods, LINE [Tang et al.,
2015] optimizes a designed objective function that preserves
first-order and second-order proximity structures. However,
all the above method learning network representation are
structure-based, they ignore the node content information,
which is a significant feature of the network.

Early text representation models, such as bag-of-words
approaches (e.g., TF-IDF) are designed for discrete forms
of words, and they do not consider the context of words.
Word2vec [Mikolov et al., 2013] is an effective method that
projects a word into a continuous vector space based on a sta-
tistical language model and it has become the basis for most
natural language processing tasks. Mikolov explored similar
methods to learn document representation(e.g. Doc2vec [Le
and Mikolov, 2014]), many of which are carried out on
Word2vec.  [Socher er al., 2013; Socher, 2013] applied
word vectors to recursive neural networks to describe sen-
tences. Convolutional neural networks(CNN) [Kim, 2014]
and LSTM-based [Kiros et al., 2015] methods were devel-
oped to capture text information. However, in terms of social
information network, the text among networks cannot repre-
sent all information, and the structure is significant.

As the first to consider both node structure and text infor-
mation, TADW [Yang et al., 2015] find out that DeepWalk
is equivalent to matrix factorization so they incorporated the
text features of vertices into network representation learning
under the framework of matrix factorization. TriDNR [Pan er
al., 2016] used information from node structures, node text,
and node labels to jointly learn network representation; their
model combines DeepWalk and Doc2vec. However, these
models are both shallow and can not capture highly non-
linear structures. Moreover, the content information they use
is not comprehensive (e.g., the abstract of a paper in a citation
network).

3 Preliminary

Notation: Let G = (V,E,C, L) denote a given network,
where V' = {v;},_;  is the node set and E = {e;;} is the
edge set that indicates the relation of nodes. If a direct link
exists between v; and v; then e;; = 1; otherwise, ¢;; = 0
when network is unweighted. C' = {¢;} is the set of content
information; ¢; can be regarded as a word. L = {l;} is the
set of class labels. let A denote the adjacency matrix for a
network, and let z = {e; , ..., en i } be an adjacency vector.
Our goal is to seek a low-dimensional vector i; for each
node v; of a given network.

Autoencoder: We first provide a brief description of a basic
autoencoder and the VAE. The basic autoencoder first com-
presses the input into a small form and then transforms it back
into an approximation of the input. The encoding part aims to
find the compression representation z of a given data x, and
the decoding part is a reflection of the encoder used to recon-
struct the original input z. The VAE [Kingma and Welling,
2014] imposes a prior distribution on the hidden layer vector
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of the autoencoder and re-parameterizes the network accord-
ing to the parameters of the prior distribution. Through the
parameterization process, the means and variance values of
the input data can be learned. We extended VAE to generate
two means and variances of input data, which can be consid-
ered correspond to the content and structure respectively.

4 Model Description

The architecture of the proposed model is shown in Fig. 1.
The whole architecture consists of two main modules,
namely, the content2vec module and the union training mod-
ule. For an information network, such as a paper citation net-
work, we can obtain the node link and content information
(e.g., paper abstract). We learn an effective feature repre-
sentation vector that preserves both structure information and
node content information and can thus be applied to many
tasks (e.g., paper classification).

4.1 Content2vec Module

We employ the state-of-the-art approach called doc2vec [Le
and Mikolov, 2014], which utilizes text information to learn
vector representations for each documents, as our con-
tent2vec module. Specifically, if one node contains other
information (e.g., author name), we treat it as a word and
merge it into the comprehensive text information (e.g., the
abstract of the paper in the citation network) as the content of
the node. A representation u; that includes the node content
information is obtained from this module. Therefore, we can
maximize the following objective:

N
0= Zlog P(w_yp : wp|v;) €))
i=1
where w is a word in the text information of node v;, b is the
window size of word sequence. After optimizing this objec-
tive, we can obtain the representation u; for v;.

4.2 Union-training Module

The union training module is the core part of our model, in
which content information and structure information are inte-
grated. The details are shown in Fig 1. The VAE is adopted
as the main block. Given a network, the adjacency matrix A
can be obtained. A is able to describe the relationship among
the nodes and reflect the overall structure of the network. We
extract each adjacency vector a; and concatenate it with the
corresponding u; as the input x; of our model. Therefore, the
content and structure information is able to be learned simul-
taneously.

During the encoding phase, we adapt several fully con-
nected layers composed of multiple nonlinear mapping func-
tions to map the input data to a highly nonlinear latent space.
Therefore, given the input x;, the output h* for the k*" layer
is shown as follow:

ht = x(Wle; +0')
F—n(WrRE £ 08) kb =1,2..K

where 7 is the nonlinear activation function of each layer. The
value of K varies with the data.

@)
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In the last layer of encoder, we obtain four output: 11, 01
Wio and o;2. They can be treated as the means and variances
of the distribution of content information and structure infor-
mation respectively. Furthermore, we sample two values ¢;;
and g;0 from two previous distributions (e.g., Gaussian dis-
tribution). Then we can obtain the re-parameterized z;1 and
z21. Through concatenate z;1 and 2,1, content and structure
information can be integrated together, y; is the representa-
tion of the network. Nonlinear operations are not performed
in this phase. Thus, the gradient descent method can be safely
applied in optimization. The operations can be expressed as
follows:

Zite = f(Wik, Oin, €:), k = 1,2
= Merge[z;1, zi2)

3)

where f is a linear function that can re-parameterize y;,
M erge concatenate the two vectors together directly.

The joint-input x; of our model includes the content in-
formation wu; and structure information a;. We consider that
separating the two kinds of latent representations is necessary
because each of them has its own meaning and individual ef-
fect.

Algorithm 1 Training Algorithm for Our Model

Input: Adjacency matrix A ,content information C
Output: Network representations Y and parameters W, B
1: Train a paragraph vector model based on C, obtain the
representations U
X = Merge[A,U]
repeated:
Feed x; into encoder, obtain o1, 09, 41, [4i2
Sample ¢;1 and g, from two Gaussian distributions
ziv = f(oi, pirs €in), ziz = f(0iz, piz, €i2)
= Merge|z;1, zia]
Decode y; to obtain ;
Based on Eq. 4 update W, B
until convergence
Obtain the network representations Y = {y; }

T2YRXIUNAE LY

—_ —

The decoding phase is a reflection of the encoder; its output
2; should be close to the input x;. The loss function of this
module that should be minimized is as follows:

Llwi) = =Y KL(a(zalzo)|lp(zin)) + H(zi ) @)

k=1

where KL is the KL divergence which is always used as a
measure of the distinction between two distributions, H is a
cross-entropy function that is applied to measure the differ-
ence between z; and @;. Finally, We choose the output of the
layer y; as the final representation of each node.

The full algorithm is presented in Algorithm 1.

4.3 Analysis and Discussion

In terms of the content2vec module, one intuitive ap-
proach to optimize Eq.(1) is to use the stochastic gradi-
ent ascent, although computing the gradient is expensive.
To solve this problem, we apply the hierarchical soft-max
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Figure 1: Architecture of our model. w; can be viewed as a word of the content information, v; is a node in the network, u; is a representation
vector learned by the Content2Vec Module, x; is a vector of the adjacency matrix. The input of the union-training module is combination of
x; and u;, the encoder and decoder are stack full-connected layer, o;1, 02, (i1, fi2 can be seen the mean and variance of the distribution of
the content and structure data, respectively. €;1 and €;2 are the sample data from two Gaussian distributions.

method [Mikolov et al., 2013], which reduces the time com-
plexity to O(Rlog(W) 4+ Nlog(N)), where R is the total
number of words in the content. For the union training mod-
ule, we can easily infer that the VAE used in our model
involves a low time complexity following previous analy-
sis [Tian et al., 2014]. Time complexity is related to the
number of nodes n, degree network layer k, and number of
iterations I; thus, it is approximate to O(nkI).

One of the advantages of our model is that when handling
new nodes, we do not need to re-train the union training mod-
ule. When we obtain the adjacency vector x, we can feed it
into our model and obtain the representation at a complex-
ity of O(1). If no link exists between the new node and the
network, we can exploit its content information.

5 Experiments
5.1 Datasets

Paper citation networks is a classical social information net-
work. To evaluate the quality of the proposed model, we
conduct three important tasks on two benchmark citation net-
work datasets:(1) CiteseerM10!. It contains 10 distinct cat-
egories with 10,310 papers and 77,218 citations. Titles are
treated as the text information because no more text informa-
tion is available. (2) DBLP dataset>. We treat abstracts as
text information and choose 4 research areas with the same
setting as that of [Pan ez al., 2016], which are database (SIG-
MOD, ICDE, VLDB, EDBT, PODS, ICDT, DASFAA, SS-
DBM, CIKM), data mining (KDD, ICDM, SDM, PKDD,

Uhttp://citeseerx.ist.psu.edu/
*http://arnetminer.org/citation (V4 version is used)
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PAKDD), artificial intelligent (IJCAI, AAAI, NIPS, ICML,
ECML, ACML, IICNN, UAI ECAI, COLT, ACL, KR), com-
puter vision (CVPR, ICCV, ECCV, ACCV, MM, ICPR, ICIP,
ICME). Therefore we get a network contains 30,422 nodes
and 41,206 edges.

5.2 Performance on Node Classification

In terms of node classification task, we compare our ap-
proach 3 with the following methods:

e One-Hot uses adjacency matrix, which carries the struc-
ture information as the high-dimension representation,
and directly feed into the classifier.

e DeepWalk [Perozzi et al., 2014] is exploited by statis-
tical models, which employs truncated random walks to
learns nodes embedding by treating walk as the equiva-
lent of sentences.

o Node2vec [Grover and Leskovec, 2016] learns the net-
work representation by designing a biased random walk
procedure which efficiently explores diverse neighbor-
hoods.

e Doc2vec [Le and Mikolov, 2014] is the Paragraph Vector
model that learns document representation by predicting
the words appeared.

e DW+D2V is simply to concatenate the representation
result learned by DeepWalk and Doc2vec.

e TADW [Yang et al., 2015] is text-based DeepWalk,
which incorporates text information into network struc-
ture by matrix factorization.

*https://github.com/Algorithm216/RIN/
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Table 1: Macro-F1 score on Citeseer-M 10 Network

%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours
10% 0.254 0.297 0.314 0.503 0.526 0.475 0.683 0.889
30% 0.321 0.334 0.331 0.536 0.615 0.488 0.744 0.913
50% 0.352 0.346 0.346 0.547 0.633 0.495 0.760 0.924
70% 0.363 0.344 0.339 0.534 0.630 0.495 0.773 0.940
Table 2: Macro-F1 score on DBLP Network
%p One-Hot Deepwalk Node2vec Doc2vec DW+D2V TADW TriDNR Ours
10% 0.328 0.379 0.448 0.574 0.495 0.660 0.724 0.751
30% 0.362 0.454 0.473 0.598 0.586 0.687 0.742 0.753
50% 0.371 0.459 0.475 0.604 0.614 0.697 0.747 0.762
70% 0.372 0.461 0.476 0.605 0.628 0.699 0.748 0.763
e TriDNR [Pan et al., 2016] uses node text, label, and M10 Network dataset).

structure to jointly learn node representation.

We conduct the paper classification task on two benchmark
citation networks to evaluate the performance of our method.
To reduce the influence of the differences between classifiers,
a common linear SVM is employed by all the methods. The
results are shown in Table 1 and Table 2, respectively. The re-
ported parameters for our model are set: dimension d=100 on
CiteseerM 10 and d=300 on DBLP. The dimension for other
algorithms is the same as ours, and the other parameters are
set as their papers report, i.e., window size b=10 in Deep-
Walk and Node2vec, in-out parameter ¢=2 in Node2vec, text
weight 0=0.8 in TADW and TriDNR.

For the classification task, we use Macro-F1 which is the
same as that adopted by other algorithms to measure the clas-
sification performance.

The experiments are independently conducted 10 times for
each setting, and the average values are reported. The propor-
tion of training data with labels is range from 10% to 70%.

Our model is evaluated by comparing it with seven ap-
proaches. One-Hot uses the original structure data, and its
performance is poor because it is discrete and the context re-
lation of nodes can not be captured. DeepWalk and Node2vec
are structure-based methods that exhibit inferior performance
mainly because they only use the shallow structure informa-
tion and the network is rather sparse, while the information
of the complex non-linear structure cannot be employed. The
performance of Doc2vec is not as good as ours which demon-
strates the effectiveness of our proposed model. TADW and
TriDNR are inferior to our approach, although these two
methods also consider the text and structure. Nevertheless,
they cannot capture the complex non-linear structure.

In Table 1(Citeseer-M10), the improvement margin of our
method over the baselines is more obvious when the train-
ing percentage range from 10% to 70%. It demonstrates that
our method can achieve a more significant improvement than
baselines when the labelled data is limited. Such an advan-
tage is especially important for real-world applications be-
cause the labelled data is usually scarce.

Our model exhibits consistent superior performance, and
is up to 16% better than the state-of-the-art methods (i.e., the
Macro-F1 score of our model is 94% when the proportion of
training data with labels is 70% conducted on the Citeseer-

5.3 Parameter Setting

A significant hyperparameter in our model is the dimension
d. The performance of different methods with varying dimen-
sions has been evaluated. The result is illustrated in Fig.2. We
obtain very good performance on the Citeseer-M10 dataset,
i.e., the Macro-F1 score is 94% and the performance tends to
be stable as b becomes larger. It validates the effectiveness of
our algorithm and the reason is due to the ability of our model
that can capture the complex network structure and the text
information. From Fig.2, we can see that the performance
gets better when d increases from 100 to 600. Intuitively,
the main reason is that more information can be preserved in
higher dimensional space of the datasets.

5.4 Case Study

To demonstrate the advantage of our method intuitively, we
present an example in Citeseer-M 10 dataset. With regard to a
given query paper, we use the vector representation generated
by different algorithms to determine the five most similar pa-
pers. The value of the cosine similarity between vectors is
adopted as the metric.

Table 3 illustrates the concrete example. A query is con-
ducted on three representative methods, DeepWalk, Doc2Vec
and TriDNR, which represents the structure-based methods,
the content-based methods and the combined methods, re-
spectively.

The title of the target paper is “Redistribution of Slurry
Components as Influenced by Injection Method, Soil, and
Slurry Properties”. Its class label is “agriculture”. The pa-
per focuses on the impact of livestocks slurry on soil. It is
published on Journal of Environmental Quality. As shown in
Table 3, the class value O indicates “agriculture” and 1 indi-
cates “archeology”.

We observe that the five papers obtained by our method ex-
actly have the same class label as the target paper. However,
for the other three methods, they all have 2 out of the 5 papers
that do not match with the query paper. Those papers focus
on archeology instead of agriculture.

Doc2vec merely use the text information to learn the node
representation, and it tends to simply consider that papers
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Figure 2: Performance of each strategy on different training proportion p
Table 3: Top-5 Similar Node Search, class 0 and 1 represent the which have similar titles are more proximate. The paper

category agriculture and archaeology respectively

Paper

Class

Query: Redistribution of Slurry Components as Influ-
enced by Injection Method, Soil, and Slurry Properties

Our Mode:

1.KLUM: A Simple Model of Global Agricultural Land
Use as A Coupling tool of Economy and Vegetation
2.Harvests and Business Cycles in Nineteenth-Century
America Joseph H. Davis, Vanguard Group

3.Faculty of Civil Eng. and Geodetic Sci.

4.Acidic Deposition, Ecosystem Processes, And Ni-
trogen Saturation In A High Elevation Southern Ap-
palachian Watershed

5.Trends and Contributing Factors Enhanced Output
Traits and Market Coordination Issue

Deepwalk:

1.Symposium no.16 Paper no.2231 Presentation: poster
2231-1

2.Mesolithic Hunter-Gatherers in the Northwestern Part
of the Great Hungarian Plain

3.An FAO Type Crop Factor Modification to SWB for
Inclusion of Crops with Limited Data: Examples for
Vegetable Crops

4.Discrepancies in the Radiocarbon Dating Area of the
Turin Shroud

5.Use Caution When Harvesting and Feeding Ditch Hay

Doc2vec:

1.Laser Scanner Survey of An Archaeological Site-
Scala Di Furno (Lecce, Italy)

2.Faculty of Civil Eng. and Geodetic Sci.
3.Description of Map Units

4.Heavy Metals Transport in the Soil Profiles under the
Application of Sludge and Wastewater

5.Vegetated Treatment of Vehicle Wash Sediments:
Mathematical Modeling of Groundwater and Solute
Transport

SO = O

TriDNR:

1.Printed in U.S.A Rapid Water Flow and Transport of
Inorganic and Organic Nitrogen in A Highly Aggre-
gated Tropical Soil

2.Water Quality in Drainage Ditches Influenced by
Agricultural Subsurface Drainage

3.Description of Map Units

4.By

5.New Constraints on Northern Hemisphere Growing
Season Net Flux
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“Laser Scanner Survey of An Archaeological Site - Scala Di
Furno (Lecce, Italy)” found by Doc2vec is obviously an ar-
chaeological survey, which is not related to the query paper.
Doc2vec may extract the incorrect papers because of the cor-
relation between the titles of the papers.

Deepwalk measures the similarity between papers mainly
depending on their citation relationship. The paper “Discrep-
ancies in the Radiocarbon Dating Area of the Turin Shroud”
found by Deepwalk is also an archaeological one. Since the
query paper is widely cited among several research areas such
as chemistry and biology, it may have some citation relation-
ship with this wrong paper. Deepwalk deems it as a similar
paper to the query paper by mistake.

For TriDNR, it performs well for most of the tasks because
it integrates both the text and the structure information. How-
ever, it still perform poor in some specific cases. For instance,
the inappropriate paper “By” found by it has a partially miss-
ing title. Since it has a weakness that it only utilizes the shal-
low structure information of nodes and it relies heavily on the
text information. On the contrary, our method extracts the
highly non-linear relationship between the nodes by exploit-
ing Variational Autoencoder so that we achieve good results.

6 Conclusions

In this paper, we have introduced an effective network rep-
resentation model, which comprehensively integrates the text
information and the network structure. We introduced Para-
graph Model as a preliminary module. Furthermore, we have
exploited Variational Autoencoder as the main block of our
model, that could capture highly non-linear structure of the
network. The comprehensive experimental evaluation on two
benchmark datasets has demonstrated the effectiveness of our
model.
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