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Abstract
In multi-class support vector machine (MSVM) for
classification, one core issue is to regularize the co-
efficient vectors to reduce overfitting. Various regu-
larizers have been proposed such as `2, `1, and trace
norm. In this paper, we introduce a new type of reg-
ularization approach – angular regularization, that
encourages the coefficient vectors to have larger an-
gles such that class regions can be widen to flexi-
bly accommodate unseen samples. We propose a
novel angular regularizer based on the singular val-
ues of the coefficient matrix, where the uniformity
of singular values reduces the correlation among
different classes and drives the angles between co-
efficient vectors to increase. In generalization error
analysis, we show that decreasing this regularizer
effectively reduces generalization error bound. On
various datasets, we demonstrate the efficacy of the
regularizer in reducing overfitting.

1 Introduction
Multi-class classification, which classifies a data sample x
into one of K > 2 classes, is a fundamental task in machine
learning. Among the various methods developed to accom-
plish this task, multi-class support vector machine (MSVM)
[Weston and Watkins, 1998; Crammer and Singer, 2001;
Shalev-Shwartz et al., 2011; Kumar et al., 2012] is a pre-
mier model that possesses both empirical efficacy and sound
theoretical properties. At the core of MSVM is the principle
of maximum margin learning [Crammer and Singer, 2001],
encouraging the margin – which in the multi-class case is de-
fined as the difference between the classification score w>y x
corresponding to the true label y and the largest score of other
classes maxy′ 6=yw>y′x – to be large, such that different classes
can be well discriminated.

In training multi-class classification models, one typical
problem is overfitting where the model performs well on
training data but poorly on testing data. To improve the gen-
eralization performance on unseen samples, a number of reg-
ularization methods have been studied, such as `2-norm [Vap-
nik and Vapnik, 1998] encouraging large margin, `1-norm
[Bradley and Mangasarian, 1998; Wang and Shen, 2012] pro-
moting sparsity and trace norm [Amit et al., 2007] encourag-

Table 1: Classification Accuracy of MSVM-`2

Dataset Yeast Usps YaleB
Dim. of Features 8 256 1024

Train Accuracy (%) 57.23 97.31 97.70
Test Accuracy (%) 52.00 90.48 93.25
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C3

(a) Unregularized MSVM

C1

C2

C3

(b) Angular regularized MSVM

Figure 1: (a) Without angular regularization, the small angle be-
tween the green and blue lines narrows the decision region C3,
which is consequently unable to accommodate unseen samples; (b)
with angular regularization, the angle between the two lines is en-
larged, which subsequently widens C3, that is more flexible to ac-
commodate unseen data.

ing low-rankness. While their effectiveness have been widely
demonstrated, there is still much room for improvement. As
an example, Table 1 shows the classification accuracy of `2-
regularized MSVM on several datasets, where the gap be-
tween training and testing accuracy are still substantial.

In this paper, we study a new type of regularizer that
encourages the coefficient vectors (equivalently, the hyper-
planes parameterized by them) in MSVM to have large an-
gles, for the purpose to control overfitting. Fig. 1 illustrates
the idea. Without regularization (Fig. 1(a)), the two hyper-
planes denoted by the green and blue lines share a small an-
gle, generating a narrow decision region C3 which is sup-
posed to accommodate data samples of class 3 (denoted by
triangles). While C3 successfully accommodates most train-
ing samples (denoted by filled triangles), many test samples
(denoted by void triangles) fall out of C3 and get misclas-
sified due to the narrowness of this region, incurring severe
overfitting. To alleviate this problem, an angular regularizer
can be applied to enlarge the angle between these two hy-
perplanes, which consequently widens C3, enabling it to suc-
cessfully accommodate unseen samples. Previously, angle-
based regularizers have been studied in other contexts, such
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as ensemble learning [Guo, 2016] and latent variable model-
ing [Xie et al., 2015a; Xie, 2015]. To our best knowledge,
our work represents the first one introducing angular regu-
larization into multi-class SVM. While the existing angular
regularizers have shown promising results, they bear certain
limitations, for instance, not amenable for theoretical analysis
or optimization. We define a new angular regularizer based on
the singular values of the coefficient matrix. These singular
values are encouraged to approach uniformity, which reduces
the correlation among different classes. Decreasing this regu-
larizer can effectively enlarge the angles between coefficient
vectors. In analysis, it is proved that decreasing the regular-
izer can reduce generalization error. In experiments on var-
ious datasets, we demonstrate the efficacy of this regularizer
in preventing overfitting.

The major contributions of this paper are:

• We introduce the angular regularization into MSVM to
improve its generalization performance.
• We propose a new angular regularizer that is amenable

for optimization and theoretical analysis.
• Theoretically, we analyze how the angular regularizer

affects the generalization performance.
• Empirically, we evaluate the effectiveness of the regular-

izer in control overfitting on various datasets.

The rest of this paper is organized as follows. Section 2 in-
troduce the angular regularizer, which is applied to MSVM.
Section 3 and 4 present the theoretical analysis and experi-
mental results. Section 5 reviews related works and Section 6
concludes the paper.

2 Methods
In this section, we develop a new angular regularizer and ap-
ply it to regularize MSVM.

2.1 Multi-class Support Vector Machine (MSVM)
MSVM [Crammer and Singer, 2001; Weston and Watkins,
1998; Guermeur and Monfrini, 2011] is a well-established
method for K-class classification. Given a set of training
samples S = {(x1, y1), . . . , (xm, ym)}, each represented
with a feature vector x ∈ RD and a class label y ∈ Y =
{1, . . . ,K}, MSVM aims to learn a coefficient vector w for
each class to separate the K classes apart. At the core of
MSVM is the large margin principle [Crammer and Singer,
2001]: given a sample (x, y), the classification score w>y x
of the true label y is preferred to be larger than the scores of
other classes with a certain margin (typically set to 1), namely

w>y x−w>r x ≥ 1, (1)

where r = argmaxk∈Y,k 6=yw
>
k x. Let W ∈ RD×K denote

the coefficient matrix where the k-th column vector belongs
to class k, MSVM solves the following optimization problem

min
W

1

m

m∑
i=1

max(0, 1 + w>rixi −w>yixi) +
λ

2
‖W‖22, (2)

where the first term is a hinge loss encouraging large margin
and the second term is an `2 regularizer.

2.2 A New Angular Regularizer
We propose to use an angular regularization to improve the
generalization performance of MSVM. Previous angular reg-
ularizers [Yu et al., 2011; Bao et al., 2013; Xie et al., 2015a]
either are not amenable for optimization or do not facilitate
theoretical analysis. In this section, we aim to define a new
angular regularizer that overcomes these limitations.

GivenK coefficient vectors {wk}Kk=1, we first measure the
pairwise angles between them:

θij = arccos(
|w>i wj |

‖wi‖2‖wj‖2 ). (3)

Similar to [Xie et al., 2015a], we place an absolute value over
w>i wj to make θij insensitive to vector flip (from w to −w).
Then a straightforward angular regularizerR(W) can be de-
fined as the negative of the minimum angle

R(W) = −mini6=jθij . (4)

Minimizing R(W) encourages these coefficient vectors to
have larger angles. As will be discussed later, this definition
facilitates theoretical analysis. However, it is not amenable
for optimization since it is non-smooth. To address this issue,
we use a smooth function R̂(W) to approximate R(W) and
perform optimization over R̂(W) instead.

A Decorrelation Regularizer To define R̂(W), we begin
with interpreting the angles from a statistical perspective. For
the ease of presentation, we impose a constraint over W:

W>1 = 0 (5)

where 1 ∈ RD is a vector whose elements are all 1. This
constraint ensures the row vectors of W sum to 0. We will
remove this constraint later on. Given two classes i and j,
together with their coefficient vectors wi and wj , we can treat
i and j as two random variables and {win}Dn=1, {wjn}Dn=1 as
samples drawn from them. The empirical correlation of these
two random variables are defined as

ρij =
∑D
n=1(win−w̄i)(wjn−w̄j)√∑D

n=1(win−w̄i)2
∑D
n=1(wjn−w̄j)2

, (6)

where w̄i = 1
n

∑D
n=1 win and w̄j = 1

n

∑D
n=1 wjn. Accord-

ing to the constraint in Eq.(5), we have w̄i = 0 and w̄j = 0,
then ρij = cos(θij), which indicates that to encourage the an-
gle to be larger, we can equivalently suppress the correlation.

Based on this idea, we define a regularizer R̂(W) that en-
courages small correlation. First we compute the K × K
Gram matrix G = W>W, where Gij = w>i wj . Suppose
W is a column full-rank matrix and K < D, then G is a
full-rank matrix with rank K. Let G =

∑K
i=1 λiuiu

>
i be the

eigen-decomposition where λi is an eigenvalue and ui is the
associated eigenvector. To understand the geometry mean-
ings of these eigenvalues and eigenvectors, we can take a row
view (Fig. 2) of W. Different from the column view where
each column vector is a D-dimensional coefficient vector, in
the row view, each row vector can be treated as a sample of
a K-dimensional random vector by regarding the classes as
random variables. According to Eq.(5), these samples have
zero mean.
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Figure 2: (a) Column view of W; (b) Row view of W.

(a)  λ1 > λ2 (b)  λ1   λ2
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Figure 3: The geometry meanings of eigenvalue λi.

Under this view, G can be thought of as an empirical co-
variance matrix of the random vector. Consider a point cloud
formed by the D samples in the K-dimensional space, as is
well known in Principle Component Analysis [Jolliffe, 2002],
an eigenvector ui of G represents a principal direction of the
point cloud and the associated eigenvalue λi tells the vari-
ability of points along that direction. As shown in Fig. 3, the
larger λi is, the more spread out the points along the direc-
tion ui. The level of disparity among eigenvalues indicates
the level of correlations among the K dimensions. The more
different the eigenvalues are, the higher the correlation is. In
Fig. 3(a), the two eigenvalues have a large discrepancy and
the two dimensions are strongly correlated. In contrast, in
Fig. 3(b) where λ1 and λ2 are close, the correlation between
the two dimensions is minimal. To reduce correlation, we
encourage the eigenvalues to be uniform. We first transform
the eigenvalues {λi}Ki=1 into a probability distribution p(X)
through normalization

p(X = i) = λi∑K
j=1 λj

, (7)

then encourage p(X) to be close to a uniform distribution
q(X = i) = 1

K , where the “closeness” is measured using
Kullback-Leibler divergence

KL(q||p) =
∑K
i=1

1
K log 1/K

λi/
∑K
j=1 λj

= log
∑K
j=1 λj −

1
K

∑K
i=1 log λi − logK

.

(8)
Note that the i-th eigenvalue λi of W>W is the square of
the i-th singular value of W. Hence, KL(q||p) is essentially
defined over the singular values of W. Using the two facts

tr(G) =
∑K
j=1 λj , det(G) =

∏K
i=1 λi

we have

KL(q||p) = log tr(W>W)− 1
K log det(W>W)− logK.

Dropping the constant, we define a decorrelation regularizer

R̂(W) = log tr(W>W)− 1
K log det(W>W). (9)

subject to W>1 = 0. From now on, we drop this constraint,
which does not affect theoretical results given in next section.
R̂(W) is a smooth function that is much easier to optimize
than R(W). Next, we show that R̂(W) can achieve similar
effect asR(W): enlarging angles between vectors in W.

Connection between R̂(W) and R(W) The following
theorem states that R̂(W) is closely aligned withR(W).

Theorem 1. Let ∇R̂ be the gradient of R̂(W) w.r.t W.
∃κ > 0, such that ∀ η ∈ (0, κ),R(W − η∇R̂) ≤ R(W).

Proof Due to space limit, we present the proof sketch of The-
orem 1, and the following lemma is needed.

Lemma 1. (Extension of Lemma 2 in [Xie et al., 2015a]) Let
the weight vector wk of hyperplane k be decomposed into
wk = xk + lkek, where xk =

∑K
j=1,j 6=k αjwj lies in the

subspace L spanned by {w1, . . . ,wK}\{wk}, ek is in the
orthogonal complement of L, ‖ek‖ = 1, ek · wk > 0, lk
is a positive scalar. Then the gradient of R̂(W) w.r.t wk is
pkxk + qkek, where pk is a positive scalar .

Some of the proof techniques are borrowed from [Xie et
al., 2015a]. Let s(W) = cos(−R(W)) = cos(θi∗j∗).
If s(W) = 0, then s(W − η∇R̂) − s(W) = |(pi∗ +
pj∗)s(W) + o(η)|[1 + f(η) + o(η)] = o(η), such that

limη→0
s(W−η∇R̂)−s(W)

η = 0. Otherwise, if s(W) 6= 0,

then s(W−η∇R̂)
s(W) = 1 + ψi∗j∗η + o(η), where ψi∗j∗ =

−[
pi∗l

2
i∗−qi∗li∗
‖wi∗‖2 +

pj∗l
2
j∗−qj∗lj∗
‖wj∗‖2 ]. We have pi∗l

2
i∗−qi∗li∗
‖wi∗‖2 =

li∗
K(ei∗·wi∗)‖wi∗‖2 > 0 and

pj∗l
2
j∗−qj∗lj∗
‖wj∗‖2 > 0, so

ψi∗j∗ < 0. Thus, limη→0
s(W−η∇R̂)−s(W)

η = s(W) ·

limη→0

s(W−η∇R̂)
s(W)

−1

η = s(W)ψi∗j∗ < 0. Overall, ∃κ > 0,

such that ∀η ∈ (0, κ), we have s(W−η∇R̂)−s(W)
η ≤ 0, i.e.

R(W − η∇R̂) ≤ R(W). �
From Theorem 1, we can see the negative gradient of

R̂(W) is a descent direction ofR(W). Hence these two reg-
ularizers have closely-aligned shape and the same local opti-
mal points. R̂(W) can be utilized as a close approximation
of R(W). Decreasing R̂(W) effectively decreases R(W),
which enlarges the angles.

MSVM with Angular Regularization Given R̂(W), we
can utilize it to enlarge the angles between coefficient vectors
in MSVM, for the sake of reducing overfitting. An angle-
regularized MSVM (AR-MSVM) problem can be defined as:

min
W

1

m

m∑
i=1

max(0, 1+w>rixi−w
>
yixi)+

λ

2
‖W‖22+

β

2
R̂(W),

(10)
where β is the regularization parameter. We use a stochastic
sub-gradient method [Shalev-Shwartz et al., 2011; Wang et
al., 2010] to solve the AR-MSVM problem. The gradient of
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R̂(W) is

∇R̂ = 2W
tr(W>W)

− 2
KW(W>W)−1. (11)

The subgradient of the hinge loss L = max(0, 1 + w>rixi −
w>yixi) is a zero matrix if w>yi −w>rixi > 1. Otherwise, the
k-th column vector of the sub-gradient matrix is xi if k 6= yi
and is −xi if k = yi.

3 Analysis
In this section, we analyze how the angular regularizerR(W)
affects the generalization performance of MSVM. We be-
gin with a recap of basic terminologies. Let L(h) =
E(x,y)∼D[l(x, y)] be the true risk of a hypothesis h, where
D represents the true distribution and l(x, y) is the loss func-
tion. Let L̂(h) = 1

m

∑m
i=1 l(xi, yi) denote the empirical risk.

Let h∗ ∈ argminh∈H L(h) and ĥ ∈ argminh∈H L̂(h) be the
true and empirical risk minimizer respectively. The general-
ization error is defined as L(ĥ)−L(h∗) which measures how
well the hypothesis ĥ learned on the training data generalizes
on the unseen data.

In the analysis of AR-MSVM, the hypothesis set is de-
fined as H = {h|h(x, y) = w>y x, x ∈ RD, y ∈
Y = {1, . . . ,K}}. Let H1 be the best-case hypothe-
sis set where different classes can be perfectly separated:
∀(x, y), r ∈ Y\{y},w>y x ≥ w>r x. For each hypothe-
sis h ∈ H , its multi-class margin for the input-output pair
(x, y) is ρh(x, y) = h(x, y)−maxk 6=y h(x, k). And the loss
set is defined as A = {l|l(x, y) = Φp(ρh(x, y))} , where
Φp(x) = max(0, 1− x/p) is a p-margin hinge loss. In addi-
tion, we assume ‖x‖2 ≤ C1 and ‖w‖2 ≤ C2.

The generalization error bound of AR-MSVM is given in
the following theorem.
Theorem 2. Fix p > 0. Then, for any δ > 0, with proba-
bility at least 1 − δ, the following multi-class classification
genralization bound holds for all h ∈ H  H1:

L(ĥ)− L(h∗) ≤ 8K2C1C2
p
√
m

+ 2√
m

+ ( 1
p

√
(1− 1

K
)(cos(−R(W)) + K+1

K−1
)C1C2 + 1)

√
2 log(2/δ)

m
.

With the objective function in Eq.(10) decreasing, the max-
imum margin principle encourages H approaching H1. As
can be seen, the generalization error bound is an increasing
function of the angular regularizerR(W). Hence decreasing
R(W) can reduce the error bound and improve the general-
ization performance.

3.1 Proof Sketch
Inspired by [Xie et al., 2015b], we bound L(ĥ)−L(h∗) using
Rademacher complexity Rm(A) = E[supl∈A

1
m

∑m
i=1 σi ·

l(xi, yi)] , where σi is uniform over {−1, 1}.
Lemma 2. [Percy, 2015] Fix p > 0. Then, for any δ > 0,
with probability at least 1− δ

L(ĥ)− L(h∗) ≤ 4Rm(A) +B

√
2 log(2/δ)

m (12)

for B ≥ supx,y,l |l(x, y)|.

Table 2: Statistics of Datasets
Dataset #Classes #Train #Test #Features
YaleB 38 1500 914 1024

ImageNet-50 50 30K 10K 128
Covtype 7 100K 40K 54
Shuttle 7 30450 14500 9

New-thyroid 3 108 107 5
Yeast 10 1134 350 8

Dermatology 6 323 35 33
Page-Blocks 5 4924 548 10

Wine-Quality-Red 6 1439 160 11
Zoo 7 89 12 16

Then we bound Rm(A). Let H̃ = {z = (x, y) 7→
ρh(x, y)} be an auxiliary hypothesis set, we have
Lemma 3. For a fixed p > 0, we have

Rm(A) ≤ 1
2R
‖
m(l ◦ H̃) ≤ 8K2C1C2

p
√
m

+ 2√
m
. (13)

The R‖m(A) denotes Rm(A)’s absolute form [Bartlett and
Mendelson, 2002]. The second inequality is from the fol-
lowing proposition and the Lipschitz condition of p-margin
hinge loss.
Proposition 1. (Extension of Theorem 1 in [Cortes et al.,
2013]) For any fixed y ∈ Y , HX only takes x into consid-
eration. From H̃ , the empirical Rademacher complexity has

R‖m(H̃) ≤ K2R‖m(HX ). (14)

Next we bound B with the same Lipschitz condition and
analyze ρh(x, y)’s distribution w.r.t H . The key step is mak-
ing use ofR(W) to upper bound ‖W‖op (operator norm).
Lemma 4. Fix p > 0. Then, for any hypothesis set H ,
|l(x, y)| can be bounded as |l(x, y)| ≤ 2

pC1C2 + 1.
When H  H1, a tighter bound is acquired

|l(x, y)| ≤ 1
p

√
(1− 1

K
)(cos(−R(W)) + K+1

K−1
)C1C2 + 1. (15)

Putting the pieces together1, we can obtain Theorem 2.

4 Experiments
In this section, we present experimental results.

4.1 Experimental Setup
We evaluated our method on ten datasets. Table 2 sum-
maries their statistics. The regularization parameters λ and
β are tuned in the range [2−20, 2−19, . . . , 220] via 5-fold
cross validations. In the stochastic sub-gradient descent al-
gorithm, the mini-batch size and number of epochs are set
to 20 and 50 respectively. The learning rate is set accord-
ing to ADADELTA [Zeiler, 2012] in all methods. All the
experiments are conducted over 10 random train/test splits
and the results are averaged over the 10 runs. We com-
pare AR-MSVM with the following baselines: (1) C-SVC
[Chang and Lin, 2011]: performing multi-class classifica-
tion using an one-against-one strategy. (2) AMM [Wang
et al., 2011]: a multi-class classification method based on
adaptive multi-hyperplanes; (3) MSVM-`1 [Shalev-Shwartz
and Tewari, 2011]: `1-regularized MSVM; (4) CS-MSVM:

1For more details, please refer to the complementary document
at http://act.buaa.edu.cn/ lijx/pubs/ ijcai17-2077-supply.pdf .
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Table 3: Classification results (%) on six multi-class datasets

Dataset Metric C-SVC AMM MSVM-`1 CS-MSVM IC-MSVM Div-MSVM MSVM-Struct MSVM-`2 AR-MSVM

YaleB
Acc 55.31 ±0.1 83.32 ±2.5 85.12 ±4.4 94.13 ±1.6 89.38 ±0.9 94.25 ±0.4 91.50 ±0.0 93.90 ±0.5 94.55 ±0.8

F 54.74 ±1.0 86.88 ±1.8 87.11 ±2.6 93.71 ±1.3 90.54 ±1.4 93.87 ±0.3 91.39 ±0.0 93.51 ±0.5 94.38 ±0.7

ImageNet-50
Acc 91.59 ±0.4 92.27 ±0.1 91.23 ±0.0 92.86 ±0.1 92.96 ±0.1 92.93 ±0.1 89.36 ±0.0 92.32 ±0.1 93.12 ±0.1

F 91.70 ±0.4 92.31 ±0.1 91.38 ±0.0 92.90 ±0.1 92.98 ±0.1 92.97 ±0.1 89.65 ±0.0 92.35 ±0.0 93.17 ±0.1

Covtype
Acc 71.35 ±0.5 70.21 ±0.3 56.12 ±0.4 70.29 ±1.1 70.82 ±0.2 70.70 ±0.1 65.84 ±0.1 69.45 ±0.2 71.75 ±0.1

F 50.97 ±3.1 49.84 ±2.4 37.03 ±3.5 50.67 ±2.1 50.82 ±0.1 50.53 ±0.5 36.80 ±0.1 45.64 ±1.8 51.31 ±0.9

Shuttle
Acc 98.86 ±0.3 93.81 ±0.3 79.41 ±0.4 96.02 ±0.0 96.22 ±0.1 94.74 ±0.2 66.57 ±0.0 92.83 ±0.1 97.08 ±0.3

F 52.94 ±2.1 54.12 ±0.3 24.90 ±0.0 57.20 ±0.1 57.57 ±0.1 55.61 ±0.2 33.66 ±0.0 53.55 ±0.2 58.53 ±0.3

New-thyroid
Acc 76.92 ±0.9 86.77 ±1.8 86.15 ±0.0 78.46 ±10.9 78.69 ±3.3 91.54 ±0.8 89.23 ±0.0 90.87 ±0.0 92.15 ±0.5

F 58.73 ±1.0 83.66 ±2.4 87.50 ±0.0 75.32 ±1.4 78.46 ±2.1 90.08 ±1.1 87.50 ±0.0 89.24 ±0.0 90.91 ±0.7

Yeast
Acc 59.71 ±1.5 48.63 ±5.3 53.71 ±2.4 53.61 ±6.2 54.14 ±0.2 53.14 ±2.5 49.93 ±0.1 51.86 ±3.8 54.80 ±1.1

F 61.81 ±2.0 44.87 ±5.1 48.63 ±4.8 52.80 ±4.1 52.07 ±2.0 52.64 ±3.7 37.09 ±0.1 49.45 ±3.1 54.65 ±4.3

Table 4: Classification accuracy (%) on four imbalance datasets

Dataset Metric Global-CS CS Static-SMT SL-SMT AdaB.NC MSVM-`2 AR-MSVM ∆
Dermatology Acc 95.78 95.44 95.60 94.30 97.08 84.29 ± 8.959 94.57 ± 1.622 +10.28
Page-Blocks Acc 91.67 89.32 69.04 89.34 88.29 88.93 ± 2.237 92.27 ± 1.019 +3.34
Wine-Quality-Red Acc 39.33 37.82 30.74 37.93 37.22 49.94 ± 5.064 52.94 ± 1.793 +3.00
Zoo Acc 95.02 93.02 95.35 93.02 95.02 93.28 ± 2.500 95.38 ± 1.510 +2.10

MSVM regularized by a cosine similarity regularizer [Yu et
al., 2011]; (5) IC-MSVM: MSVM regularized by an incoher-
ence regularizer [Bao et al., 2013]; (6) Div-MSVM: MSVM
regularized by a diversity-promoting regularizer [Xie et al.,
2015a]; (7) MSVM-Struct [Tsochantaridis et al., 2004]: `2-
regularized MSVM solved with a cutting plane algorithm; (8)
MSVM-`2 [Wang et al., 2010]: `2-regularized MSVM solved
with a stochastic gradient descent algorithm; Two metrics are
used for evaluation: accuracy (Acc) and F-measure (F).

4.2 Results
Table 3 shows the classification results on six datasets,
from which we observe that: (1) AR-MSVM greatly im-
proves upon vanilla MSVM methods, including MSVM-`2
and MSVM-Struct. Comparing the last two columns, we can
see AR-MSVM outperforms MSVM-`2 (which works bet-
ter than MSVM-Struct) on all the datasets. This demon-
strates that the angular regularizer can effectively improve
the generalization performance on test data. (2) AR-MSVM
achieves better performance than CS-MSVM, IC-MSVM and
Div-MSVM. These three methods use previously proposed
regularizers to encourage large angles as well. But the inco-
herence (IC) regularizer and diversity-promoting (Div) reg-
ularizer are non-smooth, bringing in difficulty for optimiza-
tion, which we conjecture is the major reason being inferior
to the angular regularizer proposed in this paper. The cosine
similarity (CS) regularizer can encourage the sum of angles
to increase, but cannot guarantee each individual angle is in-
creased. The AR regularizer we proposed strictly increases
the minimal angle, hence ensuring all angles are increased.
(3) AR-MSVM outperforms MSVM-`1, demonstrating that
angular regularization is more effective in control overfit-
ting than `1 regularization. (4) AR-MSVM outperforms two
non-MSVM methods: C-SVC and AMM, demonstrating its
competitive performance in solving multi-class classification
problems. (5) AR-MSVM achieves better improvement on F-
measure than on accuracy. Accuracy is biased toward classes
with larger number of samples. F-measure aims to reduce
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Figure 4: (a) AR enlarges the minimal angle; (b) Sensitivity to the
regularization parameter.

this bias and is more suitable to measure the performance on
small-sample classes. This indicates AR-MSVM’s ability to
better classify small-sample classes.

To verify the ability of AR in enlarging angles, we plot
how the minimal angle changes as the algorithm proceeds.
Fig. 4(a) shows the curve on the New-thyroid dataset with
β ≈ 0.02. It can be seen that the minimal angle consistently
increases, which demonstrates that AR is able to drive the
angles to become large.

4.3 Parameter Sensitivity
We study the sensitivity of AR-MSVM to the regularization
parameter β. Fig. 4(b) shows how accuracy varies as β in-
creases on the New-thyroid dataset. Initially, increasing β
improves accuracy, because a larger β results in larger angles
that help prevent overfitting. However, further increasing β
causes the accuracy to drop. That is because, if β is too large,
the regularizer dominates the hinge loss and impairs the large-
margin learning.

4.4 Imbalanced Classification
Inspired by the study in [Xie et al., 2015a] that large-angle
regularizer can effectively capture infrequent patterns when
the frequency of patterns is imbalanced, we are interested in
how the AR helps with imbalanced classification [Wang and
Yao, 2012] where the number of samples of different classes
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Table 5: Acc (%) on each class in the Page-Blocks dataset

Class 1 2 3 4 5 sum
#Train 4421 296 25 79 103 4924
#Test 492 33 3 8 12 548
MSVM-`2 96.75 21.21 66.67 12.50 16.67 89.05
AR-MSVM 95.93 54.55 66.67 50.00 75.00 92.15
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Figure 5: Runtime on the Covtype dataset.

is imbalanced. In Table 4, we compare with state-of-the-
art methods dealing with class imbalance, including Global-
CS, CS, Static-SMT, SL-SMT and AdaB.NC (summarized in
[FernáNdez et al., 2013]). As can be seen, on three datasets,
our method achieves the best accuracy, demonstraing its abil-
ity to handle imbalanced classification. To further verify this,
we measure the per-class accuracy on the Page-Blocks dataset
in Table 5. On small classes (2-5), AR-MSVM performs
much better than MSVM. On large class (1), they are com-
parable. This indicates that AR-MSVM is able to improve
the performance on small classes without sacrificing that on
large classes.

4.5 Computational Time
We evaluate how much extra time is incurred after adding
the angular regularizer to MSVM. The algorithms were im-
plemented in MATLAB and the experiments were run on a
Linux machine with a 2.00GHz Xeon CPU and 256G mem-
ory. A comparison of runtime is shown in Fig. 5. As can be
seen, the runtime of AR-MSVM is close to MSVM. The extra
time cost is moderate.

5 Related Work
5.1 Multi-class Classification
Many works [Lee et al., 2004; Guermeur and Monfrini, 2011]
have been proposed for multi-class classification. A detailed
comparison is provided in [Wang and Xue, 2014]. Wang
et al. [2011] proposed an Adaptive Multi-hyperplane Ma-
chine (AMM) algorithm that consists of a set of hyperplanes
(weights), each assigned to one of the multiple classes, and
predicts based on the associated class of the weight that pro-
vides the largest prediction. Lapin et al. [2015] proposed a
top-k multiclass SVM that directly optimizes the top-k per-
formance in image classification, to deal with class ambigu-
ity. This method generalizes multiclass SVM based on a tight
convex upper bound of the top-k error.

To avoid overfitting, several regularizers have been pro-
posed. The `2-norm [Vapnik and Vapnik, 1998] penal-

izes the magnitude of coefficients while encouraging large
margin. The `1-norm [Bradley and Mangasarian, 1998;
Wang and Shen, 2012], which promotes sparsity, can effec-
tively control overfitting in high dimensional feature spaces.
Amit et al. [2007] uses trace norm to encourage low-rankness
on the coefficient matrix, for the sake of capturing common
structure shared by different classes. Guo [2016] proposed an
angle-based regularization method in the ensemble learning
of multiple binary SVMs.

5.2 Angular Regularizers
Several regularizers have been proposed to control the an-
gles (equivalently, the cosine similarity) between vectors, in
the context of ensemble learning, latent variable modeling
and deep learning. Yu et al. [2011] computes the pair-
wise cosine similarity sij between K vectors and defines
the regularizer as

∑
1≤i<j≤K(1 − sij). Similarly, Bao et

al. [2013] aggregates the cosine similarity scores into a reg-
ularizer − log( 1

K(K−1)

∑
1≤i<j≤K β|sij |)

1
β where β > 0.

In [Xie et al., 2015a], the regularizer is defined as mean of
arccos(|sij |) minus the variance of arccos(|sij |). The vari-
ance term is utilized to encourage the vectors to evenly spread
out to different directions. These regularizers have two limi-
tations. First, they are not amenable for theoretical analysis.
Second, some of them are non-smooth functions that present
great challenges for optimization.

Another closely related regularizer is Determinantal
Point Process (DPP) [Kulesza et al., 2012]. Given K
vectors {wi}Ki=1, DPP defines a probability distribution
p({wi}Ki=1) ∝ det(G). G is a K × K kernel matrix where
Gij = k(ai,aj) with k(·, ·) as a kernel function. det(·) de-
notes the determinant of a matrix. Under a linear kernel, the
DPP regularizer is analogous to R̂(W) in Eq.(9). The short-
coming of DPP is that it is sensitive to vector scaling, which
can be overcome by the log tr(W>W) term in R̂(W).

6 Conclusion
In this paper, we introduce a new regularization method – an-
gular regularization – into multi-class SVM, to improve its
generalization performance. This regularizer encourages the
coefficient vectors to have larger angles such that the decision
regions can be widen to flexibly accommodate unseen data.
We define a novel angular regularizer by encouraging the sin-
gular values of the coefficient matrix to approach evenness
and prove its effectiveness. We analyze how this regularizer
influences the generalization performance of MSVM and the
results indicate that decreasing the regularizer can reduce the
generalization error bound. The evaluation on a number of
datasets demonstrate the capability of this regularizer in re-
ducing overfitting.
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