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Abstract
Attributed networks are pervasive in different do-
mains, ranging from social networks, gene regu-
latory networks to financial transaction networks.
This kind of rich network representation presents
challenges for anomaly detection due to the hetero-
geneity of two data representations. A vast major-
ity of existing algorithms assume certain properties
of anomalies are given a prior. Since various types
of anomalies in real-world attributed networks co-
exist, the assumption that priori knowledge regard-
ing anomalies is available does not hold. In this pa-
per, we investigate the problem of anomaly detec-
tion in attributed networks generally from a resid-
ual analysis perspective, which has been shown to
be effective in traditional anomaly detection prob-
lems. However, it is a non-trivial task in attributed
networks as interactions among instances compli-
cate the residual modeling process. Methodologi-
cally, we propose a learning framework to charac-
terize the residuals of attribute information and its
coherence with network information for anomaly
detection. By learning and analyzing the residu-
als, we detect anomalies whose behaviors are sin-
gularly different from the majority. Experiments on
real datasets show the effectiveness and generality
of the proposed framework.

1 Introduction
Networks are widely used to represent various types of in-
formation systems where nodes represent entities such as
users, web pages, genes and edges represent interactions be-
tween entities such as friendships, hyperlinks, gene interac-
tions [Chen et al., 2015; He et al., 2017; Wang et al., 2017;
Li et al., 2017]. In many network representations, each node
is also associated with a rich set of attributes or features.
For example, in social networks, users have a set of user in-
terests; in paper citation networks, papers are on different
topics. These types of networks are called attributed net-
works [Huang et al., 2017a; 2017b].

Anomaly detection (a.k.a. outlier detection) [Chandola et
al., 2009; Aggarwal, 2015] aims to discover rare instances
that do not conform to the patterns of majority. Recently,
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Figure 1: A toy example to illustrate various types of anomalies in a
specific context.

there is a growing interest to perform anomaly detection in
attributed networks [Gao et al., 2010; Sánchez et al., 2014;
Perozzi et al., 2014; Perozzi and Akoglu, 2016; Liu et al.,
2017]. A straightforward way is to assume that some prop-
erties of anomalies are known in advance. For example, a
vast majority of methods rely on some pre-defined measures
to identify anomalies in a specific context, such as structural
anomaly, contextual anomaly and community anomaly. Fig-
ure 1 shows a toy example of these three types of anomalies
using different contexts. When only considering the network
information, node 12 is considered as a structural anomaly as
it does not belong to any communities. On the other hand,
if only attribute information is available, node 7 is taken as a
contextual anomaly since its second attribute (f2) value, de-
viates significantly from the other nodes. Considering both
network and attribute information, node 2 is anomalous. Al-
though its attribute values on f1, f2 and f3 are normal over
the entire dataset, its attribute value on f1 is relatively higher
than the other nodes in the same community (node 1, 3, 4 and
5), therefore, it is referred as a community anomaly.

In many cases, the widely used assumption that some prop-
erties of anomalies are known in advance might not be true.
In real-world attributed networks, different types of anoma-
lies are often mixed together, it is hard to identify all of them
when we have no prior knowledge of data. Besides, people
can always develop a new type of anomaly as long as some
natures of data are exploited. Therefore, it is beneficial and
desirable to explore and spot anomalies in a general sense.

Residual analysis [She and Owen, 2011], which is initiated
to study the residuals between true data and estimated data for
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regression problems, is able to help us understand anomalies
generally. Instances with large residual errors are more likely
to be anomalies, since their behaviors do not conform to the
patterns of majority reference instances. Although it provides
a general way to find anomalies, it is a non-trivial task in at-
tributed networks: (1) we have heterogeneous data sources
in attributed networks, it is insufficient to consider residuals
from a only single data source; (2) instances in attributed net-
works are not independent and identically distributed (i.i.d.),
the interactions among them further complicate the residual
modeling process.

Therefore, in this paper, we provide a principled way to
identify and detect anomalies via residual analysis. In partic-
ular, we investigate: (1) how to characterize the residuals of
attribute information to spot anomalies when there is no prior
knowledge of anomalies; and (2) how to exploit coherence
between attribute residuals and network information to iden-
tify anomalies in a general way. The main contributions of
this work are as follows:

• Providing a principled learning framework to model the
residuals of attribute information and its coherence with
network information for anomaly detection;
• Proposing a novel anomaly detection framework radar

for attributed networks by analyzing the residuals
(residual analysis for anomaly detection in attributed
networks);
• Evaluating the effectiveness of the proposed radar

framework on real-world datasets.

2 Anomaly Detection in Attributed Networks
In this section, we first give some notations and formally de-
fine the problem of anomaly detection in attributed networks.
Then we introduce how to model attribute information and
network information to detect anomalies generally from a
residual analysis perspective.

2.1 Problem Statement
We first summarize some notations used in this paper. Fol-
lowing the standard notation, we use bold uppercase charac-
ters for matrices (e.g., A), bold lowercase characters for vec-
tors (e.g., b), normal lowercase characters for scalars (e.g., c),
calligraphic fonts for sets (e.g., F ). Also, we follow the con-
vention of Matlab to represent i-th row of matrix A as A(i, :),
j-th column as A(:, j), (i, j)-th entry as A(i, j), transpose of
A as A′, trace of A as tr(A) if it is a square matrix. The
`2-norm of a vector a ∈ Rn is ||a||2 =

√
a′a. The `2,1-norm

a matrix A ∈ Rn×d is ||A||2,1 =
∑n

i=1

√∑d
j=1 A(i, j)2, its

`2,0-norm is the number of nonzero rows in A, and the Frobe-

nius norm is defined as ||A||F =
√∑n

i=1

∑d
j=1 A(i, j)2.

Let U = {u1, u2, ..., un} denote a set of n instances, these
n instances are interconnected with each other to form a net-
work, we use the adjacency matrix A ∈ Rn×n to represent
their link relationships. Each instance is associated with a set
of d-dimensional attributes (features) F = {f1, f2, ..., fd},
and we use X ∈ Rn×d to denote the attribute information of
all n instances.

With these notations, the task of anomaly detection in at-
tributed networks can be summarized as follows: given the
attribute information X and network information A of all n
instances, find a set of instances that are rare and differ sin-
gularly from the majority reference instances.

2.2 Modeling Attribute Information
We start from the situation when only attribute information
are available. Let X̃ denotes the estimated attribute informa-
tion, then the approximation error X − X̃, i.e, residuals, can
be exploited to determine contextual anomaly as content pat-
terns of anomalies deviate significantly from majority normal
instances [Tong and Lin, 2011]. One natural way to build X̃ is
by using some representative instances [Yu et al., 2006]. For
a certain instance, if its attribute information can be approx-
imated by some representative instances, it is of low proba-
bility to be anomalous. On the opposite side, if the instance
cannot be well represented by some representative instances,
its attribute information do not conform to the patterns of ma-
jority reference instances. In other words, we would like to
use the attribute information of some representative instances
to reconstruct X. Mathematically, it is formulated as:

min
W
||X−W′X||2F + α||W||2,0, (1)

where W ∈ Rn×n is a coefficient matrix such that the at-
tribute information of each instance (a row of X) can be re-
constructed by a linear combination of other instances; the
row sparsity constraint ||W||2,0 ensures that only the attribute
information of a few representative instances are employed to
reconstruct X, α is a parameter to control the row sparsity.
However, the problem in Eq. (1) is NP-hard due to the `2,0-
norm term. ||W||2,1 is the minimum convex hull of ||W||2,0
and we can minimize ||W||2,1 to obtain the same results as
||W||2,0, and it is also widely used in other learning tasks
such as feature selection [Jian et al., 2016]. In this way, we
reformulate Eq. (1) as:

min
W
||X−W′X||2F + α||W||2,1. (2)

Let Θ = X −W′X −R be a random error matrix. Θ is
usually assumed to follow a multi-dimensional normal distri-
bution. R is the residual matrix from the reconstruction pro-
cess in Eq. (2). The residual matrix R can be used to deter-
mine anomalies since the attribute patterns of anomalous in-
stances and normal instances are quite different, a large norm
of R(i, :) indicates the instance has a higher probability to be
an anomaly [Tang and Liu, 2013]. In addition, in many ap-
plications like rumor detection [Wu et al., 2017], malicious
URL detection [Sahoo et al., 2017] and rare category detec-
tion [Zhou et al., 2015], the number of anomalies is much
smaller than the number of normal instances, therefore we
add a ||R||2,1 regularization term on the basis of Eq. (2) to
achieve row sparsity to constrain the number of abnormal in-
stances. The objective function can be reformulated as:

min
W,R

||X−W′X−R||2F + α||W||2,1 + β||R||2,1. (3)

where β controls the row sparsity of residual matrix R.
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2.3 Modeling Network Information
We model the residuals of attribute information to spot
anomalies in Eq. (3). However, in attributed networks, some
types of anomalies are not solely described at a contextual
level. Therefore, we need to exploit the correlation between
attribute and network information to detect anomalies in a
more general way. According to well-received social sci-
ence theories such as Homophily [McPherson et al., 2001],
instances with similar patterns are more likely to be linked
together in attributed networks. Similarly, when we recon-
struct X by the attribute information of some representative
instances, the homophily effect should also hold. It indicates
that if two instances are linked together in the network, after
attribute reconstruction by representative (normal) instances,
their attribute patterns in the residual matrix R should also be
similar. If the attributed network is an undirected network, it
can be mathematically formulated by minimizing the follow-
ing term:

1

2

n∑
i=1

n∑
j=1

(R(i, :)−R(j, :))2A(i, j)

= tr(R′(D−A)R) = tr(R′LR),

(4)

where D is a diagonal matrix with D(i, i) =
∑n

j=1 A(i, j),
L is a Laplacian matrix. If the attributed network is a directed
network, the graph regularization term in Eq. (4) cannot be
used directly since the adjacency matrix A is not symmetric.
To model the network information on directed networks, we
follow [Li et al., 2016b] to use A = max(A,A′). Then
the Laplacian matrix is in the same form as the undirected
networks.

2.4 Anomaly Detection Framework: Radar
The objective function in Eq. (3) is based on a strong assump-
tion that instances are independent and identically distributed
(i.i.d.). However, it is not the case in networks such that in-
stances are interconnected with each other, the interactions
among instances also complicate the residual modeling pro-
cess. Therefore, we propose to integrate the network model-
ing term in Eq. (4) on the basis of Eq. (3) to capture the co-
herence between attribute residual information and network
information, the objective function of the radar framework
can be formulated as follows:

min
W,R
||X−W′X−R||2F + α||W||2,1 + β||R||2,1

+γtr(R′LR).
(5)

where γ is a parameter to balance the contribution of attribute
reconstruction and network modeling.

It can be observed that without any prior knowledge about
anomalies, we build a general learning framework (Eq. (5))
to detect anomalous instances generally by exploiting both
attribute and network information as well as their correla-
tions. By learning and analyzing the residual matrix R, it
enables the ranking of anomalies according to their residual
values. Different from making a binary decision of anoma-
lies, anomaly ranking is easier to be interpreted. It makes fur-
ther exploration possible as decision markers can check the
degrees of deviation manually.

3 Optimization Algorithm
In this section, we first introduce the optimization algorithm
for the radar framework. Then we will give a convergence
analysis and a time complexity analysis of the proposed opti-
mization process.

The objective function in Eq. (5) is not convex in terms of
both W and R simultaneously. Besides, it is also not smooth
due the existence of `2,1-norm regularization term. We use an
alternating way to optimize this problem.

Update R
When W is fixed, Eq. (5) is convex w.r.t. R. Therefore, we
first fix W to update R, and we remove the terms that are
irrelevant to R, then the objective function in Eq. (5) can be
reformulated as:

min
R
J (R) = ||X−W′X−R||2F +β||R||2,1 +γtr(R′LR).

(6)
We take the derivative of J (R) w.r.t. R and set it to zero,

then we have:

W′X−X + R + βDRR + γLR = 0, (7)

where DR is a diagonal matrix with the i-th diagonal ele-
ment as DR(i, i) = 1

2||R(i,:)||2
1. The Laplacian matrix L is

a positive semidefinite matrix; I and βDR are two diagonal
matrices with positive diagonal entries, they are both posi-
tive semidefinite. Therefore, the summation of three positive
semidefinite matrices I+βDR+γL is also a positive semidef-
inite matrix. Hence, R has a closed form solution:

R = (I + βDR + γL)−1(X−W′X). (8)

Update W
When R is fixed, Eq. (5) is convex w.r.t. W. Next, we fix R
to update W. We remove the terms that are irrelevant to W,
the objective function in Eq. (5) is formulated as:

min
W
J (W) = ||X−W′X−R||2F + α||W||2,1. (9)

Similarly, we set the derivative of J (W) w.r.t. W to zero
and we have:

(XX′ + αDW)W = XX′ −XR′, (10)

where DW is a diagonal matrix with the i-th diagonal ele-
ment as DW(i, i) = 1

2||W(i,:)||2 . XX′ is a positive semidefi-
nite matrix, αDW is a diagonal matrix with positive entries, it
is also positive semidefinite. Their summation XX′ + αDW

is also positive semidefinite. W has a closed form solution,
which is:

W = (XX′ + αDW)−1(XX′ −XR′). (11)

Based on Eq. (8) and Eq. (11), the detailed radar frame-
work that detects anomalies in attributed networks via resid-
ual analysis is presented in Algorithm 1. We first initial-
ize DR, DW to be identity matrix and initialize R to be

1In practice, ||R(i, :)||2 and ||W(i, :)||2 could be very close to
zero but not zero. However, it could be zero theoretically. Therefore,
we define DR(i, i) = 1

2||R(i,:)||2+ε
and DW(i, i) = 1

2||W(i,:)||2+ε
,

respectively, where ε is a very small constant.
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(I + βDR + γL)−1X (line 2-3). Then we fix R to update
W (line 5) and fix W to update R (line 7) iteratively until
the objective function in Eq. (5) converges. After the itera-
tion terminates, we compute the anomaly score for each in-
stance according to its norm in the residual matrix R, i.e.,
||R(i, :)||2 (line 10). Instances with large anomaly scores are
more likely to be abnormal. We then sort these instances by
their anomaly scores in a descending order and return the top
m ranked instances which are considered to be the most ab-
normal instances (line 11).

Algorithm 1 Anomaly detection in attributed networks via
residual analysis (radar)
Input: Attribute matrix X, adjacency matrix A, parameters

α, β, γ.
Output: Top m instances with the highest anomaly scores.

1: Build Laplacian matrix L from the adjacency matrix A;
2: Initialize DR and DW to be identity matrix;
3: Initialize R = (I + βDR + γL)−1X;
4: while objective function in Eq. (5) not converge do
5: Update W by Eq. (11);
6: Update DW by setting DW(i, i) = 1

2||W(i,:)||2 ;
7: Update R by Eq. (8);
8: Update DR by setting DR(i, i) = 1

2||R(i,:)||2 ;
9: end while

10: Calculate the anomaly score for the i-th instance as
||R(i, :)||2;

11: Return top m instances with the highest anomaly score.

3.1 Convergence Analysis
We show the alternating way to update R and W in Algo-
rithm 1 decreases the objective function value in Eq. (5) each
iteration monotonically and the objective function value is
guaranteed to converge. In practice, our experimental results
show that the iteration process usually converges within 50
iterations for all datasets used in this paper.

Lemma 1. The following inequality holds if Wt(i, :) and
Wt+1(i, :) are non-zero vectors [Nie et al., 2010]:

||Wt+1||2,1 −
∑
i

||Wt+1(i, :)||22
2||Wt(i, :)||2

≤||Wt||2,1 −
∑
i

||Wt(i, :)||22
2||Wt(i, :)||2

,

(12)

where Wt denotes the update of W at the t-th iteration.

Theorem 1. The alternating procedure to update W and R
iteratively will monotonically decrease the objective function
value of Eq. (5) at each iteration.

Proof. When Rt is fixed, we update Wt+1 according to
Eq. (11), Wt+1 is the solution of the following objective
function:

min
W
||X−W′X−R||2F + α||W||2,1. (13)

Therefore, the following inequality holds:

||X−W′
t+1X−Rt||2F + αtr(Wt+1DWWt+1)

≤||X−W′
tX−Rt||2F + αtr(WtDWWt).

(14)

It is also equivalent to:

||X−W′
t+1X−Rt||2F + α||Wt+1||2,1

−α(||Wt+1||2,1 −
∑
i

||Wt+1(i, :)||22
2||Wt(i, :)||2

)

≤||X−W′
tX−Rt||2F + α||Wt||2,1

−α(||Wt||2,1 −
∑
i

||Wt(i, :)||22
2||Wt(i, :)||2

).

(15)

Integrating the inequality condition in Lemma 1, we have:

||X−W′
t+1X−Rt||2F + α||Wt+1||2,1

≤||X−W′
tX−Rt||2F + α||Wt||2,1.

⇒J (Wt+1,Rt) ≤ J (Wt,Rt).

(16)

Similarly, we can prove that J (Wt+1,Rt+1) ≤
J (Wt+1,Rt). Therefore, we have J (Wt+1,Rt+1) ≤
J (Wt+1,Rt) ≤ J (Wt,Rt), it indicates the alternating
update rule in Algorithm 1 decreases the objective function
at each iteration and it finally converges.

3.2 Time Complexity Analysis
At each iteration, we update R and W iteratively, the most
cost operation are the matrix inverse operations (I + βDR +
γL)−1 and (XX′ + αDW)−1 which both require O(n3).
However, we can speed up the update of R by solving the
following linear equation system: (I+βDR +γL)R = X−
W′X, which only needs O(n2d) (d is usually smaller than
n). Therefore, the total time complexity is #iterations ∗
(O(n2d) +O(n3)).

4 Experiments
In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed framework radar. In particular,
we investigate the following two questions: (1) How is the
anomaly detection performance of the proposed radar frame-
work when measured against other representative anomaly
detection methods? (2) Does the utilization of coherence be-
tween attribute residuals and network information help find
anomalous instances otherwise remain undiscovered? Before
discussing about details of the experiments, we first introduce
the datasets and the experimental settings.

4.1 Datasets
We use three real-world attributed network datasets for
the evaluation of the proposed anomaly detection method.
Among them, Disney dataset and Books dataset2 come from
Amazon co-purchase networks. Disney is a co-purchase net-
work of movies, the attributes include prices, ratings, number
of reviews, etc. The ground truth (anomalies) are manually

2http://www.ipd.kit.edu/˜muellere/consub/
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Disney Books Enron
# of Nodes 124 1,418 13,533
# of Edges 334 3,695 176,987

# of Attributes 28 28 20
ratio of anomalies 0.048 0.020 0.004

Table 1: Detailed information of the datasets.

labeled by high school students. The second dataset, Books,
is a co-purchase network of books, it has similar attributes
as Disney dataset. The ground truth (anomalies) are obtained
by amazonfail tag information. Enron3 is an email network
dataset, spam messages are taken as ground truth. The statis-
tics of these datasets are listed in Table 1.

4.2 Experimental Settings

The criteria of AUC (Area Under ROC Curve) is applied
to evaluate the performance of anomaly detection algo-
rithms. According to the ground truth and the results by
anomaly detection algorithms, there are four possible out-
comes: anomaly is recognized as anomaly (TP), anomaly is
recognized as normal (FN), normal is recognized as anomaly
(FP), and normal is recognized as normal (TN). Therefore,
the detection rate (dr) and false alarm rate (flr) are defined as:
dr = TP

TP+FN , f lr = FP
FP+TN . Then the ROC curve is a

plot of detection rate (dr) vs. false alarm rate (flr). From the
statistical perspective, AUC value represents the probability
that a randomly chosen abnormal instance is ranked higher
than a normal instance. If the AUC value approaches 1, the
method is of high quality.

We compare the proposed radar framework with four base-
line methods which perform anomaly detection when some
characteristics of anomalies are known in advance.

• LOF [Breunig et al., 2000]: LOF detects anomalies in a
contextual level and only uses attribute information.
• SCAN [Xu et al., 2007]: SCAN detects anomalies in a

structural level and only considers network information.
• CODA [Gao et al., 2010]: CODA detects anomalies

within the context of communities where these instances
deviate significantly from other community members.
• ConSub+CODA [Sánchez et al., 2013]: It performs

subspace selection as a pre-processing step and then ap-
plies CODA to detect subspace community anomalies.

Among them, LOF, SCAN, CODA covers three types of
widely defined anomalies in attributed networks (contextual
anomaly, structural anomaly and community anomaly). Con-
sub+CODA is able to find subspace community anomalies by
taking subspace selection as a pre-processing step. The pa-
rameter settings of these baseline methods follow the settings
of [Sánchez et al., 2013]. The proposed radar framework
has three different regularization parameters, for a fair com-
parison, we tune these parameters by a “grid-search” strategy
from {10−3, 10−2, ..., 102, 103}. Details about the effects of
these parameters will be investigated later.

Datasets
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Figure 2: Anomaly detection results by different methods.

4.3 Performance Comparison
The experimental results in terms of AUC values are pre-
sented in Figure 2. By comparing the performance of differ-
ent methods, we can observe that the proposed radar frame-
work always obtains the best anomaly detection performance.
The reason is that in real-world attributed networks, nodes are
annotated as anomalies due to a variety of reasons. Our radar
algorithm provides a general way to detect anomalies glob-
ally and does not depend on specific properties of anomalies.
We also perform one tailed t-test between radar and other
baseline methods and the test results show that radar is sig-
nificantly better (with a 0.05 significance level).

Therefore, we can get an answer for the first question that
the proposed radar framework outperforms other representa-
tive anomaly detection algorithms for attributed networks.

4.4 Coherence Between Attribute Residuals and
Network Information

In this subsection, we study the second question to investigate
how the coherence between attribute residuals and network
information affects anomaly detection results. We compare
radar with the following methods by varying γ:

• Residual-based method: We set the parameter γ to be
zero, therefore, only residuals of attribute information is
taken into consideration. The detected anomalies can be
considered as contextual anomalies.
• Network-based method: We set the parameter γ to be a

large number, therefore, the contribution from attribute
residuals can be ignored. The detected anomalies can be
considered as structural anomalies.

First, we compare the anomaly detection results by the pro-
posed radar, the residual-based method and the network-
based method on Disney dataset, the AUC values are 87.1%,
77.68%, 74.29%, respectively. It indicates that by exploit-
ing the correlation between attribute residuals and network
information, the anomaly detection performance indeed im-
proves. We only present the comparison results on Dis-
ney dataset as we have the similar observations on the other
two datasets. Second, we compare the overlap of detected

3https://www.cs.cmu.edu/˜./enron/
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Figure 3: Anomalies overlap comparison.

anomalies by each pair of method (radar and residual-based
method, radar and network-based method, residual-based
method and network-based method) in Figure 3. As can
be observed, when we vary the number of detected anoma-
lies, the overlap of anomalies between radar and residual-
based method, radar and network-based method are always
larger than the overlap between residual-based method and
network-based method. This phenomenon shows that by ex-
ploiting the correlation between attribute residuals and net-
work structure, we can find anomalies otherwise undiscov-
ered by a single source of information. It also shows the po-
tential to detect anomalies generally via residual analysis.

4.5 Effects of Parameters
There are three parameters in the proposed framework.
Among them, β and γ are relatively more important. The
parameter β controls the number of anomalies, while γ bal-
ances the contribution of attribute information and network
information for anomaly detection. Due to space limit, we
only investigate how these two parameters affect the anomaly
detection results on Disney dataset. The performance vari-
ance result is shown in Figure 4 (α is fixed to be 0.5). We
observe that when β is small, the AUC values are relatively
low, the anomaly detection performance is not sensitive to
the parameters when β and γ are in the range of 0.1 to 1000,
and 0.001 to 10, respectively. The anomaly detection perfor-
mance is the best when both β and γ are around 0.2.

Figure 4: Effects of parameter β and γ.

5 Related Work

Anomaly detection methods in attributed networks can be
grouped into: 1) Structure-based methods 2) Community-
based methods [Akoglu et al., 2014]. Structure-based meth-
ods aim to find substructures or subgraphs that are rare or
infrequent and classify them as anomalies [Noble and Cook,
2003]. Whereas, community-based methods aim to find the
group of nodes which deviate significantly from other nodes
in the graph. Therefore, community-based methods are more
related to our work. To detect anomalous instances, LOF
uses density functions to obtain “outlierness” score of each
instance [Breunig et al., 2000]. SOF and RPLOF both use the
subset of attributes associated with instances to detect anoma-
lies [Aggarwal and Yu, 2001; Lazarevic and Kumar, 2005].
However, these methods are designed for flat attribute data
while link information among instances are ignored. SCAN
is one of the first methods that target to find structural anoma-
lies in networks [Xu et al., 2007]. CODA adopts a generative
model to simultaneously find community and anomalies us-
ing Markov random fields [Gao et al., 2010]. Recently, re-
searchers proposed to integrate subspace selection and com-
munity anomaly detection together which proves to achieve
good anomaly detection performance [Sánchez et al., 2013;
Muller et al., 2013; Sánchez et al., 2014]. A focused clus-
tering and outlier detection algorithm which allows users to
steer graph clustering and anomaly detection results accord-
ing to their preferences is also proposed [Perozzi et al., 2014].
A widely used assumption of above methods is that some
properties of anomalies are known in advance. Afterwards,
they rely on some pre-defined ad-hoc measures to find these
anomalies. However, in real-world networks, properties of
anomalies are usually not known in advance. Our method
leverages residual analysis to detect anomalies in a general
sense without prior knowledge of anomalies.

6 Conclusions and Future Work

In this paper, we propose a novel anomaly detection frame-
work radar for attributed networks. Methodologically, we
propose a learning framework to characterize attribute recon-
struction residuals and its correlation with network informa-
tion to detect anomalies. Through learning and probing the
residuals of the reconstruction process, we are able to spot
anomalies in a global view when properties of anomalies are
unknown. Experiments on real-world datasets show that our
framework yields better AUC values compared to baseline
methods which define anomalies in a specific context. Be-
sides, the coherence between attribute residuals and network
structure can help uncover anomalies otherwise undiscovered
by a single source of information. Future work can be fo-
cused on extending the radar framework to perform anomaly
detection for dynamic attributed networks [Li et al., 2016a].
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