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Abstract

The rapid increase of multidimensional data
(a.k.a. tensor) like videos brings new challenges
for low-rank data modeling approaches such as
dynamic data size, complex high-order relations,
and multiplicity of low-rank structures. Resolving
these challenges require a new tensor analysis
method that can perform tensor data analysis
online, which however is still absent. In this
paper, we propose an Online Robust Low-
rank Tensor Modeling (ORLTM) approach to
address these challenges. ORLTM dynamically
explores the high-order correlations across all
tensor modes for low-rank structure modeling. To
analyze mixture data from multiple subspaces,
ORLTM introduces a new dictionary learning
component. ORLTM processes data streamingly
and thus requires quite low memory cost that is
independent of data size. This makes ORLTM
quite suitable for processing large-scale tensor data.
Empirical studies have validated the effectiveness
of the proposed method on both synthetic data
and one practical task, i.e., video background
subtraction. In addition, we provide theoretical
analysis regarding computational complexity and
memory cost, demonstrating the efficiency of
ORLTM rigorously.

1 Introduction
The explosion of multidimensional data raises significant
demand on efficient data analysis techniques. In recent
years, low-rank tensor modeling methods have received
increasing attention [Goldfarb and Qin, 2014; Lu et al.,
2016] as they can discover intrinsic structure of tensors and
provide more transparent and consolidated knowledge of the
data. However, many realistic multi-dimensional data (e.g.,
surveillance videos) are usually generated in a streaming
way from dynamic environments, which poses following new
challenges: (1) how to develop scalable methods that can
process large-scale dynamic tensors efficiently; (2) how to
deal with data contamination such as noise or malicious
outliers in the modeling process.

To handle noisy tensors, two batch robust tensor methods
were developed: High-Order Robust Principal Component
Analysis (HORPCA) [Goldfarb and Qin, 2014] and Tensor
RPCA [Lu et al., 2016]. They both generalize RPCA [Candès
et al., 2011] from matrix cases to tensors, i.e., solving the
tensor RPCA problem minZ,E ‖Z‖∗+‖E‖1 with X = Z+E ,
to learn the inherent low-rank structure. Although they can
handle noisy data, those methods are not scalable to large-
scale data due to their high memory cost which increases
rapidly with the data size, and always seek a static low-
rank component that cannot model dynamics of streaming
data thus providing inferior performance. A proper method
to analyze large-scale noisy tensor data is still absent.

In this work, we propose an Online Robust Low-rank
Tensor Modeling (ORLTM) method for learning low-rank
structures of tensors from streaming noisy tensor data.
Different from batch approaches, ORLTM isolates the low-
rank component into two factors in each mode m, i.e.,
Zm = WmRm where Wm models the low-rank subspace
basis and Rm incorporates the corresponding tensor data
representation coefficients w.r.t. Wm. Here, the basis and
data representations are decoupled. Thus, the basis size is
typically small and can be stored with low memory cost
while data representation can be updated online. In this
way, ORLTM saves the memory cost dramatically without
performance drop.

Existing tensor RPCA approaches generally assume data
reside in a single low-rank subspace. This may not hold for
many realistic tensor data with complex inherent structures,
e.g., those drawn from a union of multiple subspaces.
Previous methods as well as the vanilla ORLTM are
less competent in such circumstances. Hence, we further
introduce a dictionary learning component to ORLTM.
Dictionary provides a more flexible set of basis to represent
the low-rank component of complex tensors. Instead of
seeking a single set of basis, through learning proper
dictionaries, ORLTM can capture sophisticated low-rank
structures (e.g., mixture of multiple low-rank components)
for better tensor modeling.

ORLTM has wide applications in large-scale and dynamic
tensor data analysis. In this paper, we empirically examined
its performance on both synthetic data and video background
subtraction, the results of which have well justified the
effectiveness of ORLTM.
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2 Related Work
Low-rank models are useful for robust data recovery. A
typical one is Robust Principal Component Analysis (RPCA)
[Candès et al., 2011] that decomposes a given matrix into
a low-rank component and a sparse component. Another is
Low-Rank Representation (LRR) [Liu et al., 2013] which
considers the data drawn from a union of multiple subspaces.
To this end, many variants have emerged, e.g., [Liu and Yan,
2011] employed both observed and hidden data to enhance
LRR; [Yin et al., 2015] developed a dual graph regularized
LRR. However, these methods require tremendous memory
to store all the samples. Hence, some online learning methods
were developed, e.g., [Feng et al., 2013] proposed an
Online Robust PCA (ORPCA) via stochastic optimization;
[Zhan et al., 2016] studied online RPCA based on the
recursive projected compressive sensing framework; [Shen
et al., 2016] designed an online LRR implementation with
convergence guarantees. Nevertheless, they fail to exploit the
low-dimensional tensor structures.

Robust tensor models can utilize information across all the
modes. Two principled forms are CANDECOMP/PARAFAC
(CP) decomposition and Tucker decomposition [Sun et
al., 2008]. For example, [Zhou et al., 2016] proposed an
accelerated CP method for dynamic tensors. Based on the
latter, Higher-Order RPCA (HORPCA) was presented in
[Goldfarb and Qin, 2014]. Moreover, [Zhang et al., 2013]
proposed a low-rank three-order tensor recovery method
for rectification and alignment, while [Lu et al., 2016]
proposed one tensor RPCA (TRPCA) method for image
denoising using the framework in [Kilmer and Martin, 2011].
Nonetheless, these methods need large memory for batch
optimization and cannot handle samples sequentially. In
addition, there are rare works concerning robust online tensor
analysis, and the ever-known one is Online Stochastic Tensor
Decomposition (OSTD) [Sobral et al., 2015], which neglects
the data with the mixture structure of multiple subspaces.

3 Notations and Preliminaries
Tensors are denoted by calligraphic letters, e.g., A, matrices
by boldface uppercase letters, e.g., A, vectors by boldface
lowercase letters, e.g., a. The order or mode of a tensor
equals the number of dimensions. For a third-order tensor
X ∈ Rn1×n2×n3 , its (i, j, k)-th entry is xijk, and its fiber is a
column vector X (i, j, :); X (i, :, :) is the i-th horizontal slice;
X (:, j, :) is the j-th lateral slice; X (:, :, k) or Xk is the k-th
frontal slice. For the matrix, Aij denotes the (i, j)-th entry,
Am without bracket denotes a traditional matrix.

Tensor Unfolding [Kolda and Bader, 2009] The mode-
m unfolding of A ∈ Rn1×n2×...×nM , A(m), is obtained
by arranging the mode-m fibers in the matrix columns,
i.e., unfoldm(A) = A(m) ∈ Rnm̄×nm , where nm̄ =∏M
j 6=m,j=1 nj and

∏M
j=1 nj = n1 × n2 × . . .× nM .

Tensor Folding [Kolda and Bader, 2009] Folding the
mode-m unfolding of tensor A is defined as fold(A(m)) =
Am, which returns the corresponding tensor A in mode m.

Tensor Vectorization [Kolda and Bader, 2009] The
vectorization of A is denoted by vec(A), which stacks

the elements in a column vector. For mode-m unfolding,
vec(Am) (a.k.a. vec(A(m))) is done by aligning the columns
of mode-m unfolding into a long column vector.

Mode-m Product [Goldfarb and Qin, 2014] The mode-m
product of tensor A and matrix Um ∈ Rnm×nc on mode m
isA×mU, which is defined as (A×mUm)(m) = A(m)Um.

Tensor Norms [Goldfarb and Qin, 2014] The `1-norm is
‖A‖1 = ‖vec(A)‖1 =

∑
ijk |aijk|, and the Frobenius norm

is ‖A‖F =
√

(vec(A)>vec(A)) =
√
(
∑
ijk a

2
ijk). These

norms can degenerate to the matrix or vector norms.
Tensor Rank [Goldfarb and Qin, 2014] The mode-m rank

of a tensor A denoted by rankm(A) is the column rank of
A(m), and the set of M mode-m ranks is called Tucker-
rank. However, it is an NP-hard problem and one often uses
its convex surrogate CTrank(A) in practice [Hillar and Lim,
2013; Yu et al., 2015]. CTrank sums M nuclear norms of the
mode-m unfoldings, i.e., CTrank(A) :=

∑M
m=1 ‖A(m)‖∗.

4 Online Robust Low-Rank Tensor Modeling
4.1 Formulation of ORLTM
We now introduce the objective formulation by starting with
reviewing the batch-based High-Order RPCA (HORPCA)
[Goldfarb and Qin, 2014]. This method factorizes the input
tensor into a low-rank component plus a sparse noise
component accounting for gross corruption or outliers, and
its slice-wise model is formulated as

min
L,E

M∑
m=1

‖L(m)‖∗ + λ1‖E‖1, s. t. X = L+ E , (1)

where λ1>0, L=fold(L(m)),
∑M
m=1 ‖L(m)‖∗ =

CTrank(L), X ,L, E ∈ Rn1×n2×...×nM are the observed
noisy tensor, its low-rank component and the sparse
component, respectively. On different mode-m unfoldings
X(m), the problem (1) leads to different low-rank
components and sparse components. Thus we adopt the
variable-splitting technique and introduce a set of auxiliary
tensor variables, i.e., {Lm}Mm=1, {Em}Mm=1, for L and E
respectively. So the problem (1) can be reformulated as

min
Lm,Em

m=1,2,··· ,M

M∑
m=1

‖L(m)‖∗ + λ1‖E(m)‖1,

s. t. X(m) = L(m) + E(m),m = 1, . . . ,M,

Lm = fold(L(m)), Em = fold(E(m)),

(2)

where X = fold(X(m)), and each unfolding X(m) in
all modes should return the common tensor X through the
fold(·) operator. The tensorsL and E can be approximated by
average pooling, i.e., L = 1

M

∑M
m=1 Lm, E = 1

M

∑M
m=1 Em.

However, the constraints in (2) enforce the unfolding ma-
trix to reside in a single low-rank subspace, failing to consid-
er the situation where the data are with the mixture structure
of several subspaces. Thus, this strict constraint hardly hold-
s when data are drawn from a union of multiple subspaces,
leading to degenerated performance. Therefore, to better dis-
cover the robust low-rank structure, we introduce a dictionary

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2181



D(m) ∈ Rnm̄×nm . The low-rank property is preserved by en-
forcing nuclear norm on Zm ∈ Rnm×nm , i.e., ‖Zm‖∗. As the
inequality rank(D(m)Zm) ≤ rank(Zm) always holds, min-
imizing the nuclear norm of Zm amounts to bounding the
rank of the clean data L(m) if it suffices to L(m) , D(m)Zm,
hence a low-rank structure. Thus, we can reach the following
function

min
Zm,E(m)

m=1,2,··· ,M

M∑
m=1

‖Zm‖∗ + λ1‖E(m)‖,

s. t. X(m) = D(m)Zm + E(m),m = 1, . . . ,M.

(3)

The product of D(m) and Zm yields the unfolding L(m). To
dynamically handle streaming data, we relax the constrains
for online optimization by treating them as quadratic penalty
terms, leading to

min
Zm,E(m)

m=1,2,··· ,M

1

2

M∑
m=1

‖X(m) −D(m)Zm −E(m)‖2F

+ λ1‖E(m)‖1 + λ2‖Zm‖∗,

(4)

where λ2 > 0 governs the role of the nuclear norm term.
To process samples on the fly, we propose to employ the

bi-factor form Zm = WmRm [Srebro et al., 2004], where
Wm ∈ Rnm×p and Rm ∈ Rp×nm with p � min(nm, nm̄).
Thus the rank of Zm is upper bounded by p. As indicated by
[Fazel et al., 2001; Recht et al., 2010], minimizing ‖Zm‖∗
is equivalent to minimizing ‖Wm‖2F and ‖Rm‖2F simultane-
ously. So the unconstrained function in (4) can be reformulat-
ed as a non-convex optimization problem

min
Wm,Rm,E(m)

m=1,2,...,M

1

2

M∑
m=1

‖X(m) −D(m)WmRm −E(m)‖2F

+ λ1‖E(m)‖1 +
λ2

2
(‖Wm‖2F + ‖Rm‖2F ),

(5)

which is the objective function of ORLTM, and updating the
entries in Zm amounts to sequentially updating the rows of
Wm and the columns of Rm.

The objective function (5) reveals a fact that the sizes
of unfolding matrices increase with nM and the dictionary
D(m) can only be partially accessed in each iteration. Be-
sides, the row vectors of W(m) are coupled together as
being left multiplied by the dictionary. To tackle these is-
sues, we introduce another set of auxiliary variables B(m) =
D(m)Wm ∈ Rnm̄×p, m = 1, 2, . . . ,M , to approximate the
recovery part (X(m)−E(m)) by B(m)Rm. This suggests that
{B(m)}Mm=1 can be treated as Reinforced Basis Dictionar-
ies while {Rm}Mm=1 are the coefficients or low-dimensional
representation. Compared with D(m), the dictionary B(m) is
iteratively strengthened by respecting the two factored low-
rank components of Zm. Therefore, we get an equivalent re-

formulation

min
B(m),Wm,Rm,E(m)

m=1,2,...,M

M∑
m=1

1

2
‖X(m) −B(m)Rm −E(m)‖2F

+λ1‖E(m)‖1 +
λ2

2
(‖Wm‖2F + ‖Rm‖2F )

+
λ3

2
‖B(m) −D(m)Wm‖2F ,

(6)

where λ3 > 0 is used to control the reconstruction quality of
the basis B(m). This formulation is not only more appropriate
for learning from streaming data, but also more informative
since it explicitly models the basis of the union of multiple
subspaces in all modes of tensor data. Thus, it achieves more
accurate tensor subspace recovery and better tensor low-rank
modeling.

4.2 Online Optimization for ORLTM
This section develops an efficient online optimization algo-
rithm for optimizing the objective function in (6). This al-
gorithm employs the stochastic optimization technique. First,
two functions in mode m are defined as

˜̀(xm,B(m), rm, em) ,
1

2
‖xm −B(m)rm − em‖22

+ λ1‖em‖1 +
λ2

2
‖rm‖22,

`(xm,B(m)) = min
rm,em

˜̀(xm,B(m), rm, em),

(7)

h̃(D(m),B(m),Wm) ,
N∑
i=1

λ2

2
‖wm

i ‖22

+
λ3

2
‖B(m) −

N∑
i=1

dmi wm
i ‖2F ,

h(D(m),B(m)) = min
Wm

h̃(D(m),B(m),Wm),

(8)

where xm, em, dm, rm are column vectors of matrices
X(m),E(m),D(m) ∈ Rnm̄×nm , Rm ∈ Rp×nm , respectively,
and wm is the row vector of Wm ∈ Rnm×p. These formula-
tions allow us to rewrite (6) as

min
B(m)

min
E(m),

Wm,Rm

N∑
i=1

˜̀(xmi ,B
(m)
i , rmi , e

m
i ) + h̃(D(m),B(m),Wm), (9)

which amounts to minimizing the empirical loss function:

fN (B(m)) ,
1

N

N∑
i=1

`(xmi ,B
(m)) +

1

N
h(D(m),B(m)).

Now, we describe how to sequentially optimize the vari-
ables in (6), and we adopt the alternating method, i.e., solving
one variable while holding the rest. The whole algorithmic
framework is given in Algorithm 1, which consists of follow-
ing variable updatings at each iteration t.

Computing rmt , emt . Given B
(m)
t−1 in the previous iteration

for mode-m unfolding, we obtain the optimal {rmt , emt } by
solving

min
rm,em

˜̀(xmt ,B
(m)
t−1, r

m, em). (10)
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The above problem has a closed-form solution rmt when em

is fixed, i.e.,

rm = (B
(m)>
t−1 B

(m)
t−1 + λ2Ip)

−1B
(m)>
t (xmt − e), (11)

and w.r.t. fixed rm, the local minimizer of em is given by the
soft-thresholding operator [Hale et al., 2008]:

em = Sλ1
[xmt −B

(m)
t−1rm]. (12)

Both rmt and emt can be optimized by the coordinate descent
algorithm [Wright, 2015] in an efficient way.

Computing wm
t . Define an accumulation matrix G

(m)
t−1 =∑t−1

i=1 dmi wm
i ∈ Rnm̄×p, where Gm

0 = 0, and then we can
figure wm

t out by minimizing
˜̀
2(d

m
t ,B

(m)
t−1,G

(m)
t−1,w

m)

,
λ2

2
‖wm‖22 +

λ3

2
‖B(m)

t−1 −G
(m)
t−1 − dmt wm‖2F ,

(13)

which leads to the solution in closed form:
wm
t = (‖dmt ‖22 + λ2

λ3
)−1dm>t (B

(m)
t−1 −G

(m)
t−1). (14)

While wm
t depends on the entire dictionary D(m), we on-

ly have access to the current atom dmt , which thus desires a
proper estimation to approximately solve each wm

t . The intu-
ition behind the solution is that after observing the t-th atom
dmt , we only update wm

t by keeping others, and each wm
t is

sequentially updated only once after revealing all the atoms.
The strategy is essentially the one-pass block coordinate de-
scent algorithm, and can be flexibly refined as a multiple-pass
version in demanding practical applications.

Computing B
(m)
t . The reinforced basis dictionary can be

updated by minimizing the following surrogate function

ht(B
(m)) ,

1

t

t∑
i=1

˜̀(xmi ,B
(m), rmi , e

m
i )

+
λ2

2t

t∑
i=1

‖wm
i ‖22 +

λ3

2t
‖B(m) −G

(m)
t ‖2F .

(15)

One key to obtain efficient dictionary updates is that the sur-
rogate ht(·) can be summarized by a few sufficient statistics
updated iteratively, i.e., it is possible to describe ht(·) with-
out explicitly storing previous samples [Mensch et al., 2016].
Actually, we can define two accumulation matrices:

Φm
t =

t∑
i=1

rmi rm>i , Θ
(m)
t =

t∑
i=1

(xmi − emi )rm>i .

Then, the solution to (15) is expressed by

B
(m)
t = (Θ

(m)
t + λ3G

(m)
t )(Φm

t + λ3Ip)
−1, (16)

where Φm
t ∈ Rp×p and Θ

(m)
t ∈ Rnm̄×p are independent

of the sample size N . This makes our approach potentially
scalable to large data size.

In summary, the pipeline of our ORLTM method is
described in Algorithm 1. For an M -th order tensor X , nM
indicates the number of unit sub-tensor samples, i.e., one
(M -1)-th order sub-tensor. If the number of unit sub-tensor
samples is n, i.e., the entire tensor size, then the number of
sub-tensor samples is N = n

nM
. At each iteration, ORLTM

admits one sub-tensor, either single unit sub-tensor sample
(nM = 1) or multiple unit sub-tensor samples.

Algorithm 1 Online Robust Low-Rank Tensor Modeling

Input: Observed M -th order tensor X ∈ Rn1×n2×...×n and
pre-given dictionaryD, tradeoff parameters {λ1, λ2, λ3},
target rank p, sub-tensor size nM .

Output: L, B, E , {Wm,Rm}Mm=1.
1: Initialize: Set all entries of {L, E} ∈ Rn1×n2×...×n,

Wm ∈ Rnm×p, Rm ∈ Rp×nm , G
(m)
0 , Θ

(m)
0 , Φm

0 to
zero, initialized B ∈ Rn1×n2×...×p, N = n

nM
.

2: for t = 1 to N do
3: for m = 1 to M do
4: Access the t-th sample xmt by vec(X(m)

t ).
5: Reveal the t-th atom dmt by vec(D(m)

t ).
6: Obtain the coefficients rmt and sparse vectors emt by

optimizing ˜̀(xmt ,B
(m)
t−1, r

m, em) and utilize coordi-
nate descent algorithm for Eqs. (11)(12) to derive
the solutions.

7: Compute the coefficients wm
t by minimizing

˜̀
2(d

m
t ,B

(m)
t−1,G

m
t−1,w

m), leading to Eq. (14).
8: Update the accumulation matrices as

G
(m)
t ← G

(m)
t−1 + dmt wm

t ,

Θ
(m)
t ← Θ

(m)
t−1 + (xmt − emt )rm>t ,

Φm
t ← Φm

t−1 + rmt rmt .

9: Update the dictionary B
(m)
t by Eq. (16).

10: Update low-rank and sparse components by
L

(m)
t ← B

(m)
t rmt and E

(m)
t ← emt , respectively.

11: end for
12: end for
13: Obtain low-rank tensor L, sparse tensor E , reinforced

dictionary tensor B by average pooling on mode-
m foldings, i.e., L = 1

M

∑M
m=1 fold(L

(m)), E =
1
M

∑M
m=1 fold(E

(m)), B = 1
M

∑M
m=1 fold(B

(m)).

4.3 Complexity Analysis

Computational Complexity. There are four variables in
each iteration. First, it is cheap to compute {rmt , emt } as one
may utilize the block coordinate descent method in [Richtárik
and Takáč, 2014] which enjoys linear convergence. Second,
wm
t needs O(nm̄p) to conduct matrix-vector multiplication,

where the rank p � min(nm̄, nm). Besides, the sub-tensor
size nM is usually quite small. Third, it requires O(nm̄p)
to update accumulation matrices G

(m)
t , Θ

(m)
t , Φ

(m)
t . Fourth,

computing Bm
t costs O(nm̄p2). Therefore, the total compu-

tational cost is limited.
Memory Cost. Lower memory cost is a very promising

advantage of ORLTM. On the one hand, we need O(nm̄p) to
load B

(m)
t and xmt to obtain {rmt , emt }, and also O(nm̄p) to

exploit B
(m)
t , G

(m)
t for calculating wm

t . On the other hand,
because the history information of ht(B

(m)
t ) in (15) has been

recorded by the accumulation matrices G
(m)
t , Θ

(m)
t , Φ

(m)
t ,

it only costs at most O(nm̄p). Hence, ORLTM only desires
O(nm̄p) memory cost for every iteration.
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Figure 1: RRSE on different corrupted entries on synthetic data.
Left: RRSE vs Corruption Percentage (H = 1); Right: RRSE vs
Outlier Intervals (2|H| with η = 50%).

5 Experiments

5.1 Synthetic Data

To generate synthetic data with low-rank structure, we
construct an authentic tensor S of size 50× 50× 30 by rank-
3 factor matrices as in [Sobral et al., 2015], e.g., Sm ∈ R50×3

(here m denotes mode). Each factor matrix consists of three
components [sin( 2πmim

50 ), cos( 2πmim
50 ), sgn(sin(0.5πim)],

where im denotes the column element index in mode m,
and the product of two factor matrices yields a frontal
slice of mode-3. We randomly corrupt entries of the
tensor by small noise from distribution N(0, 0.01) and
outliers from uniform distribution U(−|H|, |H|) (H is
interval bound magnitude). For evaluation, we use Root
Relative Square Error (RRSE) as the measure criterion
calculated by ‖Ŝ−S‖F

‖S‖F , where Ŝ is the estimated low-
rank tensor. In all, we evaluate four batch methods, i.e.,
RPCA [Candès et al., 2011], LRR [Liu et al., 2013;
2017], HOSVD [Goldfarb and Qin, 2014], and HORPCA
[Goldfarb and Qin, 2014], and also four online methods
(nM=1), i.e., ORPCA [Feng et al., 2013], OLRSC [Shen
et al., 2016], OSTD [Sobral et al., 2015], and our
ORLTM approach. Note that batch approaches have the
hindsight knowledge of all the streaming data and provides
performance upper bound for online counterparts. For
compared methods, we use the default parameters in their
papers, and the target rank p is set to the ground truth 3. For
ORLTM, λ1 = 0.5/

√
log(n1n2), λ2 = 1, λ3 = λ1

√
log(t).

The comparison results with a varying corruption percentage
η from 0 to 80% and different outlier intervals 2|H| in
[0 : 0.2 : 2] are plotted in Fig. 1. The figure shows that
ORLTM indeed outperforms all online methods no matter
how the corruption percentage and the outlier interval
vary, and is comparable to batch approaches. Besides, our
method is surprisingly better than LRR consistently and
better than RPCA when the corruption exceeds 55%, which
well justifies the superiority of ORLTM by exploiting the
low-rank structure in all tensor modes.

In addition, we provide quantitative analysis with different
sizes (n3) for online methods in Table 1. As seen from the
table, the performance of compared methods is improved by
increasing tensor size, which demonstrates that more robust
tensor recovery could be achieved by taking in more samples
sequentially. Meanwhile, our method still performs the best
no matter how the tense size varies.

Table 1: RRSE of Online Methods with Different Tensor Sizes (η =
50%, H = 1, n1 = 50, n2 = 50).

n3 ORPCA OLRSC OSTD ORLTM
100 0.5456 0.7104 0.1183 0.0667
500 0.6571 0.5685 0.0580 0.0324
1000 0.5220 0.5352 0.0430 0.0234
5000 0.4316 0.4786 0.0224 0.0130

5.2 Video Background Subtraction
An input video is treated as a long third-order tensor,
of which each frontal slice denotes a frame and multiple
frames constitute a sub-tensor. We model the background
(BG, i.e., static information) by the low-rank component L
while the foreground (FG, i.e., moving objects) is pushed
to the sparse component E . We test on the I2R database
[Li et al., 2004] which involves various indoor and outdoor
environments. We use eight video sequences containing over
15,000 frames with sizes ranging from 120×160 to 256×320.
Each sequence provides 20 ground-truth Foreground Mask
(FM) of frames. We compare ORLTM with online methods
including ORPCA [Feng et al., 2013], OLRSC [Shen et
al., 2016], OSTD [Sobral et al., 2015], and batch methods
including RPCA [Candès et al., 2011], LRR [Liu et al.,
2013], HORPCA [Goldfarb and Qin, 2014], for which
parameters are set as indicated in their papers. For our
method, parameters are fixed as λ1 = α/

√
log(n1n2) (α

is 0.02 for Curtain, Lobby, Watersurface; and 0.1 for the
rest), λ2 = 1, λ3 = λ1

√
log(t) (t is the iteration number),

and each sub-tensor size is set to 1. For all methods, the
target rank p is empirically defined as 10, and the foreground
masks are obtained by thresholding the sparse component,
i.e., FMij = 1 if E2

ij/2 ≥ (std(vec(E)))2, and zero
otherwise, where std(·) denotes the standard deviation. For
online methods, all frames are passed two epochs. For batch
methods, they are applied to each small-batch (500 frames)
per time considering limited memory resource. To initialize
B(m) in ORLTM, we adopt the Bilateral Random Projections
(BRP) [Zhou and Tao, 2012]. Concretely, given dense matrix
Γ ∈ Rd×c, its low-rank approximation is built by Γ̃ =
ΓY1(Y

>
2 ΓY1)

−1Y>2 Γ, where Y1 ∈ Rc×r, Y2 ∈ Rd×r
are random matrices, and the rank r ≤ min(d, c). In tests, we
found LRR performs very poorly using the data set itself as
the dictionary, so we use its mean matrix.

For evaluation, we employ F-score [Brutzer et al.,
2011] computed by comparing each sequence with its
available ground-truth frames. The results are recorded
in Table 2. From the table, we observe that ORLTM
has the most encouraging overall performance across all
scenes, about 10% higher than second best RPCA (batch
method). Especially, our method performs much better on
Bootstrap, Curtain, Fountain, Lobby, and Hall, compared
to the rest, and it also does well on the other sequences
as ORLTM can achieve almost the same F-score to the
best ones. The superior performance of ORLTM can be
attributed to two facts: one is dictionary learning in ORLTM
can better model video background despite in noisy and
interrupted environments; the other is that learning the low-
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Table 2: F-score (%) comparisons for background subtraction. Best in boldface and second best underlined.

Methods Bootstrap Campus Curtain Fountain Lobby Shopmall Watersurface Hall Average
RPCA 63.86 59.88 66.33 79.28 72.07 75.87 44.39 53.61 64.41
LRR 55.02 32.75 84.92 62.87 35.47 70.30 61.14 55.60 57.26
HORPCA 60.27 32.58 72.79 31.31 53.12 74.95 43.39 58.02 53.30
ORPCA 55.48 37.26 82.29 56.76 62.20 49.53 89.86 56.53 61.24
OLRSC 44.75 23.01 77.76 26.96 15.54 21.49 79.16 32.53 40.15
OSTD 58.06 60.00 56.11 71.18 40.08 74.47 48.36 61.95 58.78
ORLTM 64.33 59.20 88.85 82.76 77.78 74.40 89.59 65.02 75.24

Figure 2: Sample frame masks for video background subtraction in a variety of scenes. (a) Input frame; (b) ORLTM (Background); (c)
ORLTM (Foreground); (d) ORLTM; (e) OSTD; (f) OLRSC; (g) ORPCA; (h) HORPCA; (i) LRR; (j) RPCA.
Table 3: Speed comparison (fps). The value in the bracket denotes
the acceleration rate of ORLTM compared with others.

Video n1 × n2 × n3 RPCA HORPCA ORLTM
Bootstrap 120×160×3055 0.546 (12.16) 0.352 (18.87) 6.642
Campus 128×160×1439 2.220 (4.82) 0.358 (29.87) 10.694
Curtain 128×160×2964 2.740 (1.96) 0.404 (13.31) 5.379

Fountain 128×160× 523 2.556 (6.31) 0.346 (46.65) 16.140
Lobby 128×160×1551 2.621 (3.45) 0.254 (35.60) 9.042

Shopmall 256×320×1286 0.321 (8.50) 0.101 (27.01) 2.728
Watersurface 128×160× 641 3.456 (2.67) 0.412 (22.37) 9.217

Hall 144×176×3584 1.567 (2.76) 0.289 (14.94) 4.318

rank structures of tensor in all modes can sufficiently exploit
the underlying information of video sequences. Note that
batch methods process 500 frames per time, which might
slightly degenerate its performance.

To examine the efficiency, we also report the Frames Per
Second (fps) of our method and two batch methods in Table 3.
As shown in the table, ORLTM is very efficient, e.g., it is
over 12 times faster than RPCA on Bootstrap and up to 46
times faster than HORPCA on Fountain. This is because
ORLTM as an online method only needs constantly small
memory and its computational cost is low in each iteration.
On the contrary, batch methods have to store all frames in
the memory in advance while they require expensive singular
value decompositions on batch frames. All tests were run with
3.06 GHz Core X5675 processor and 24GB RAM.

In addition, we display the foreground masks of some
randomly selected frames in Fig. 2, showing ORLTM
outperforms others in most scenes, e.g., curtain swinging
(row 2), running fountain (row 3), illumination change

(row 4). This demonstrates our method can well model
background and foreground in a rich variety of scenes.

6 Conclusion
We present an Online Robust Low-rank Tensor Modeling
(ORLTM) method to learn low-rank structures of streaming
noisy tensor data robustly. By developing the equivalent bi-
factor formulation of the nuclear norm, it can process samples
sequentially, thus being scalable to large-scale tensor data.
The objective function is solved by stochastic optimization,
and in each iteration it saves memory cost by a factor of
n compared to batch methods. Synthetic studies suggest
ORLTM outperforms well-established online methods and its
performance is comparable to batch ones when the data are
corrupted by up to 80% gross noise with large magnitude.
In video background subtraction, ORLTM gains the highest
average F-score over 10% higher than the state of the arts,
and is significantly faster than batch methods, up to 46 times
faster than HORPCA.
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