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Abstract

In the last decade, there has been a huge amount
of documents with different types of rich metadata
information, which belongs to the Semi-Structured
Documents (SSDs), appearing in many real appli-
cations. It is an interesting research work to model
this type of text data following the way how hu-
mans understand text with informative metadata. In
the paper, we introduce a Self-paced Compensatory
Deep Boltzmann Machine (SCDBM) architecture
that learns a deep neural network by using metadata
information to learn deep structure layer-wisely for
Semi-Structured Documents (SSDs) embedding in
a self-paced way. Inspired by the way how humans
understand text, the model defines a deep process
of document vector extraction beyond the space of
words by jointing the metadata where each layer
selects different types of metadata. We present ef-
ficient learning and inference algorithms for the
SCDBM model and empirically demonstrate that
using the representation discovered by this model
has better performance on semi-structured docu-
ment classification and retrieval, and tag prediction
comparing with state-of-the-art baselines.

1 Introduction

There have been massive documents in many web applica-
tions with the development of Internet. One kind of docu-
ments, which consists of the plain text and a group of meta-
data, are ubiquitous source of information. This type of docu-
ments can be called the semi-structured documents (SSDs)
[Zhang et al., 2009; Li et al., 2013b; Soto et al., 2015;
Li et al., 2016]. It is an important task to learn a good rep-
resentation for a semi-structured document. The aim of doc-
ument embedding is to generate such representations that are
useful for document classification and retrieval tasks. When
embedding the SSDs, besides the plain text in a document, the
structured metadata such as authors and keywords in a paper
and the director and actors in a film may contain rich informa-
tion and can provide a great help to extract more meaningful
document feature in a similar way to how human understand
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unstructured text. For example, when we are reading a tex-
tual description about a movie “A team of explorers travel
through a wormhole in an attempt to ensure humanity’s sur-
vival.”, we would have no sense about what movie it refers.
Then some keywords (one type of metadata) such as “Father
daughter relationship, Space travel, Time paradox” can tell
us that it is a Sci-Fi and father-daughter emotional movie.
So these metadata would help us to extract more meaningful
features about the text. Moreover, when another type of meta-
data “Christopher Nolan, Matthew McConaughey” is given,
it is easy to know that this movie is “Interstellar (2014)”.
From this example, we can see that people could better un-
derstand unstructured text when provided hierarchical back-
ground knowledge. This is consistent with the behavior of
the brain that people constantly add background knowledge
to more accurately understand what he/she reads. This paced
process shows an effective way to exact latent features for
text, especially when different types of metadata are provided.

Thus, it would be better to utilize the metadata information
when modeling the text. Recently, many models have been
proposed to model the text as well as the metadata, such as
[Li et al., 2013b]. Li et al. propose a method to learn from the
SSDs using directed topic model, where the major drawback
is that it treats all the metadata equally, which ignores the fact
that the metadata may belong to different types, and could
have very different importances and concepts for the docu-
ments. It is obvious that the different types of metadata need
to be considered gradually, which means that the types of
metadata should be modeled into a hierarchical structure, just
like the way of human learning that people would gradually
take advantages of different auxiliary information in reading.
Another challenge is that the order of different types of meta-
data need to be considered when we build this hierarchical
structure. Similarly when reading a document, we may think
of different types of metadata in different concept layers.

Thus, we propose a novel Self-paced Compensatory Deep
Boltzmann Machine (SCDBM) that combines deep learning
models with a latent topic model for semi-structured docu-
ment embedding, in which each type of metadata is selected
in different layers of a deep Boltzmann machine [Salakhut-
dinov and Hinton, 2009a] as compensatory information. The
proposed SCDBM takes the corpus with the metadata as the
input to obtain the documents’ embeddings after an effective
combination of bag-of-word information and the metadata
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through a deep Boltzmann machine. We build the metadata
information as one of teacher networks described in [Hu et
al., 2016], where the metadata can be used as one type of
learning resources.

It has two principal contributions. First, through simulating
the process of understanding text of human, this model can
embed the documents with the benefits of integrating meta-
data information. Second, it provides an automatic method
to handle different types of metadata in a self-paced way to
add them into respective hidden layers in the deep Boltzmann
machine, and has an efficient learning procedure to estimate
the model parameters for each metadata-compensatory hid-
den layer.

In the experiment section, we will present the experimen-
tal results on two corpora, Wikipedia and IMDB, to show the
performance of the proposed model on semi-structured doc-
ument embedding for document classification and retrieval
and tag prediction when comparing with state-of-the-art base-
lines.

2 Related Work

To date, there has been lots of work on developing document
embedding using undirected graphical models or directed
graphical models. As an undirected graphical model, the
Replicated Softmax Model (RSM) [Salakhutdinov and Hin-
ton, 2009b] can be used to model and extract low-dimensional
latent semantic representations from unstructured collection
of documents. Nitish et al. provide a type of deep Boltz-
mann machine, called the over-replicated Softmax model in
[Nitish et al., 2013] to extract distributed semantic represen-
tations from unstructured documents in a different way. Di-
rected graphical models, such as Latent Dirichlet Allocation
(LDA) [Blei et al., 2003], CTM [Blei and Lafferty, 2005]
and RATM [Li erf al., 20171, have been extensively used for
building generative probabilistic models of the bag of words
in a document. Several topic models have been proposed to
take advantage of the metadata given in documents, such as
Tag-Weighted Topic Model (TWTM) [Li e al., 2013b], Tag-
Weighted Dirichlet Allocation (TWDA) [Li ef al., 2013al,
Author Topic Model (ATM) [Rosen-Zvi et al., 2004], Labeled
LDA [Ramage et al., 2009], and so on. These models are use-
ful for modeling sparse count data based on the assumption of
bag-of-words, and provide methods to handle the word count
representations in a document and to extract its latent topics.

Models based on deep neural networks have shown a pow-
erful capability on image processing, speech recognition and
many other areas [Hinton et al., 2006]. Le Roux and Ben-
gio has proved that adding hidden units yields strictly im-
proved modeling power, and that restricted Boltzmann ma-
chines (RBMs) are universal approximators of discrete dis-
tributions to represent any distributions [Le Roux and Ben-
gio, 2008]. Thus, each layer in the hierarchical (deep) archi-
tecture of deep Boltzmann machine (DBM) [Salakhutdinov
and Hinton, 2009a] may provide a particular representation
about the input data. However, there are few works investi-
gated document modeling based on deep neural networks in
semi-structured document embedding. In our paper, we take
advantage of the capability of DBM to get the document rep-
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resentation by adding each selected type of the metadata in-
formation into the DBM architecture level by level.

The curriculum learning [Bengio et al., 2009] provides a
learning paradigm where a model is learned by gradually in-
cluding more complex samples in the training process, which
can be used to select the metadata to integrate the text un-
derstanding process layerwisely. Self-paced learning [Kumar
et al., 2010] [Jiang er al., 2015] present a way to learn the
priority ordering of each data point in the training process,
which just matches the metadata selection process in our
work. Thus, we take advantages of the self-pace learning to
learn the ordering of different types of metadata selected for
each layer.

3 Self-paced Compensatory Deep Boltzmann
Machine

3.1 Notation

Consider a semi-structured ~ corpus D =
{(wi,my),...,(Wg,my)}, where each 2-tuple (w,m) de-
notes a document, where w represents the bag-of-words
representation of the document, and m represents the
metadata in the document. m = (m®”, m?, ..., m®, ..., m®)
where m® denotes the k-th type of the metadata in the
corpus and ¢ is the number of the types of metadata in the
corpus. Similar to deep Boltzmann machine, we define
h = (h'V,h®, .. h®, . .. h®) as the hidden layers in our
model.

3.2 The proposed Model: SCDBM

To form a self-paced compensatory metadata structure, we
gradually add the types of metadata layers as the compen-
satory information into the construction of deep Boltzmann
machine layer by layer. Figure 1, left panel, shows an ex-
ample of the proposed model with three hidden layers h =
(hD,h® h®) and three types of metadata considered in a
corpus where m = (m',m? m?). We build a deep multi-
layers Boltzmann machine first, and then combine each hid-
den layer with metadata by learning a joint RBM. As shown
in the left panel, Figure 1, we first select one type of meta-
data m' as the compensatory metadata layer, then combine
the input layer w to form an RBM with h), where the com-
pensatory metadata set (m) = {m'} . For the next level, we
select another type of metadata to add to the compensatory
metadata layer, where the set (m) = {m', m?}, to combine
with h®, h® to form an RBM. For the last level, the remain-
ing type of metadata is added to compensatory metadata layer
m, where the set (m) = {m', m?, m?}, and then we learn an
RBM to get the final hidden layer h® as the embedding of
(w, m).

Clearly, we need to build a t-layer of deep structure
if there are r types of metadata in the corpus. Con-
sider a r-layer SCDBM model. The energy of the state
{w,m', ..,m’ h®¥ . h®} is defined as (ignoring bias terms
on the hidden units for clarity):

E(w,m',...m’, h", ... h®;0) =

2 1
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Figure 1: Left : A simple three-layer SCDBM with three types of metadata, in which the shadow nodes represent the observed variables:
words and metadata in a document. Right : The graphical models of SCDBM by embedding words count vectors with latent topic model

(LDA) and embedding metadata with RBMs.

where [m|’ = m'|m?|.../m’ means we concatenate the types
of metadata as the compensatory metadata layer. In the above
equation, 8 = {W', ..., W', W', ..., W'} are the model param-
eters: W! and W' are w-to-h'V and h“=V-to-h® symmetric
interaction terms, and W' is symmetric matrices of weights
associated with the connections between hidden layers and
compensatory metadata layers. The probability that the model
assigns to word data w and metadata (m',...,m") is:

pw,m!, ... m';6) = p(w,m!,...,m’,h?", . h®)
B, ko
1 2
= — exp(—E(w,m', ..., m',h", _ h";9)),
Z(g) h(),._ h®

where Z(6) is the partition function.

3.3 Self-paced Metadata Selection and Pretraining

As described above, the SCDBM selects the types of meta-
data layer-wisely to add into the deep structure. Then how to
define the order of the types of metadata selected needs to be
considered. The sequence of gradually added training sam-
ples, or other data, such as types of metadata can be called a
curriculum mentioned in [Bengio et al., 2009]. A straight for-
ward way to select the sequence of metadata is to use meta-
heuristic measurements [Spitkovsky et al., 2009]. While as
described in [Kumar er al., 2010], self-paced learning is a re-
cently proposed learning regime inspired by the learning pro-
cess of humans and animals that gradually incorporates data
into training process. Actually, the proposed compensatory
deep Boltzmann machine can be treated as one special self-
paced learning problem where the main difference lies in the
training data. Self-paced learning defines the order of training
samples, and in our proposed model, the training samples are
naturally separated into different data types, such as different
types of metadata (the words in a semi-structured document
can also be treated as one special type of metadata). More-
over, in the proposed model, we only consider the sequence
of the different types of metadata where the number of types
could be very small. The benefit is that we can easily learn
the sequence through defining a problem-specific self-paced
learning process. Thus, in the following, we introduce a tai-

lored self-paced metadata selection process during pretrain-
ing layer-wisely.

We take advantage of a greedy layer-wise training process
[Bengio et al., 2007] based on learning a stack of “modified”
RBMs using Contrastive Divergence (CD) algorithm [Hin-
ton, 2002] for model pretraining and self-paced metadata se-
lection. For the k-th layer, the input layer in the “modified”
RBM consists of by two parts: the hidden layer h®) and the
compensatory metadata layer m**1 where the m**! con-
tains k + 1 selected types of metadata (m)jeceq. The output
layer is h®**D and the candidate types of metadata set is de-
noted by (m);, ;.

In order to select one type of metadata from (m);;, we
train the “modified” RBM with all the types of metadata
from (m);.;, with m**D and h¥), and the goal is to jointly
learn the model parameters # and a latent weight variable
vV = [V1,...,Vi—k—1] by maximizing the Pseudolikelihood of
this “modified” compensatory RBM:

néagx L(h(k)s h(k+l)a <m>xelect('ds <m>left; v, 9)

t—k-1 1—k—1 3)
= Z V,‘L(h(k), h(kH)s <m>S('l('(.‘t€da m;eft) +4 Z Vi,
i i

where A is the parameter of learning pace and we set it to
a constant here. We define v as an indicator vector that only
one dimension equals 1, because we need to select one type of
metadata. Unfortunately, jointly training the “modified” com-
pensatory RBM with all the types of metadata involved using
Eq. (3) would be very slow. Note that with the assumption of
v as an indicator vector, the training process can be simpli-
fied, since we can search the space of v to find the solution,
especially when the dimension of v is small in real. Thus,
maximizing the Pseudolikelihood of this “modified” compen-
satory RBM is equivalent to maximizing the decision func-
tion:

arg max L(h, WD, (m) eiecred. M, ,)- )

m/€<m>le/1
For the first layer, we use the w as the input layer and se-
lect one type of metadata as the compensatory layer by the
above decision function. Note that, we only choose one type
of metadata to add into the compensatory metadata set (m)
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for each layer, so the depth of the proposed model is deter-
mined by the semi-structured corpus, where k types of meta-
data determine k layers of our model. The intuitive explana-
tion is that the selection process is greedy, and the metadata
which have more contribution to model the words in a docu-
ment would be selected prior to that having less contribution.
This process could mimic the human learning process that the
human gradually take advantages of different auxiliary infor-
mation when learning.

To train the “modified” compensatory RBM with each can-
didate type of metadata, the conditional distributions over
h®_ (m)eecrea, K D and the candidate m® can be easily de-
rived as follows:

b = 1Y, (m,m)) = g(" WehP + > Woim,ml,), s
p q

(k) _ (k+1)y — k 1 (k+1)
p(h,” = 1jh ) =g( % Wy, (6)
(- (k+1)y — A7k 1, (k+1)
p(m,m|; = 1]n™7) = g( % Wohi ™), )

where jm, m¢| = m!|m?|....m*lm¢, and g(x) = 1/(1 +exp(—x))
is the logistic function. We can also use rectified linear units
described in [Nair and Hinton, 2010].

Metadata Embedding

In many applications, different types of metadata in one
semi-structured corpus come from different kinds of infor-
mation, such as the discrete and sparse category information,
the real-valued and dense image pixel or timestamp infor-
mation. This would make it difficult to learn the SCDBM
model directly with the various forms of the metadata infor-
mation without any preprocessing. Thus, we embed different
kinds of metadata using RBMs (or their generalizations to
exponential family models which have powerful representa-
tion as shown in [Le Roux and Bengio, 2008] and [Welling
et al., 2004]) as shown in Figure 1, right panel. We let m
denote the embedding of metadata. In particular, the tradi-
tional restricted Boltzmann machine could map the discrete
and sparse data into low-dimensional representation, and the
Gaussian RBM can be used to handle the real-valued data
(e.g. image patches).

The main purpose that we do the metadata embedding is to
reduce the dimensions of the metadata. When one type meta-
data is noisy, this would degrade the performance of the pro-
posed model. Moreover, the observed metadata is typically
high-dimensional in many applications, and if we use the ob-
served metadata directly, the high-dimensional representation
of m would make the model learning slowly. Another in-
tuition behind the metadata embedding is that each type of
metadata may have very different statistical properties that
make it difficult to directly combine with hidden layers as
compensatory information. The way of metadata embedding
is to learn latent representations of metadata to remove such
type-specific property so that the metadata information can
be compensated to the corresponding hidden layers. On the
other side, the metadata can be treated as one type of instance
learning resources, or the simple rules that guide the build-
ing process of the network as shown in [Hu et al., 2016]. The
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metadata embedding process may enhance the benefits of the
metadata for performance improvement of text embedding.

Similar to the metadata, instead of directly using the word-
count vectors of documents as input of the deep network, we
use latent topic models (such as LDA or RSM) to extract the
latent topic vectors before SCDBM learning. As shown in the
right panel of Figure 1, w represents the latent topic distribu-
tion obtained via a LDA or RSM, and then we use w as the
input of the first layer in SCDBM.

3.4 Approximate Learning and Inference

Exact maximum likelihood learning in this model is in-
tractable. Thus, we carry out an efficient approximate learn-
ing process using the mean-field inference to estimate data-
dependent expectations. [Salakhutdinov and Hinton, 2009a]
describes a mean-field inference to estimate data-dependent
expectations in DBM and an MCMC based stochastic ap-
proximation procedure to approximate the DBM’s expected
sufficient statistics. In this work, we use the same procedure
for SCDBM model learning. Specifically the true posterior
p(hlw, m; 0) with a fully factorized approximating distribu-
tion over the 7 sets of hidden units is approximated as:

q(b[W, ;1) = (]_[ q(h"W, iﬁ))(]—[ a(hw, iﬁ)) e (]—[ (W, iﬁ))
i 1 1 (8)

where u = {uV, ..., u} are the mean-field parameters with
q(hf.’) =1) = ,ul(.’) for j = 1,...,t. Thus, the variational lower
bound on the log-probability of the data can be formulated as
follows:

log P(W,m; 6) > wW'u® + [m/®" W!u®

t
o ©
+ DWW+ m (O W ~ og Z(6) + H(g),

i=1

where H(g) is entropy of the variational distribution and |171|(’)

denotes the #-th layer’s metadata concatenation. The learn-
ing process is as follows. First, we find the value of x4 which
maximizes the lower bound log P(w, m; 6) given the current
value of model parameters 6. Then, given the variational pa-
rameters u, we can update the model parameters 6 to max-
imize the variational bound using stochastic approximation
[Salakhutdinov and Hinton, 2009a; Tieleman, 2008]. Actu-
ally, the number of types of metadata would be very small
in real applications, and the training process is very efficient,
especially after metadata embedding.

3.5 Metadata Prediction

After training the SCDBM model, we can infer the type of
metadata compensated at the each level of the structure. For
example, when we need to predict the metadata at layer i
which means the i + 1 type of metadata in the compensatory
sequence is missing, m'*! we first infer the values of the hid-
den variables h with w and the metadata sets (m)®, then we
can perform alternating Gibbs sampling using the following
conditional distributions until convergence:

p(* VRO, m)O, m*") = gWh® + W;m® + Wim™"), (10)

p(@hTD) = g(Wh D), (an
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where W' is the weight matrix between h® and h™*D, and
W! is the weight matrix between h®™" and m™". We use

the distribution of p(m*![h@D) to sample m™*'. The sample
m@*D can then be propagated back to generate a distribution
over the vector space of metadata m%D, which can be used
to sample the real metadata.

For the self-paced metadata selection process when pre-
training, the complexity is same as a traditional RBM in each
layer for one type of metadata selection. Thus, the total com-
plexity in self-paced metadata selection process is ¢ times for
a traditional RBM, where ¢ is the number of type of meta-
data (both the depth of the network). For approximate learn-
ing process, the complexity is same as a traditional DBM,
since the compensatory metadata for each layer has fixed.

4 Experiments

4.1 Description of Datasets

In the experiments, we used two semi-structured corpora. The
first dataset is from Wikipedia. The Wikipedia corpus used
in our experiment contains D = 213,600 articles, with W =
70,061 words in the vocabulary by removing the stop words.
Each article contains two types of metadata. The first type
of the metadata m! is the entity information observed in the
abstract of the article with the hyper links. The m? is the cat-
egory information normally found at the bottom of an article
page. There are 974 categories in the category dictionary and
10,208 entities after removed low-frequency items. Each ar-
ticle belongs to one of 18 classes, such as history, education,
technology, art and so on. The second corpus is the data from
Internet Movie Database (IMDB). The data set we used in-
cludes 106,432 movie story lines, and 15,703 words after re-
moving the stop words and low frequency words. Each movie
contains three types of metadata. a) m', the crew of the movie
including the director, the writers and the actors. b) m?, alist
of keywords. ¢) m?, the movie information including rating,
production, country, language, the length of duration, sound
mix and date. For m®, we simply used a 6 dimension real-
value vector to represent. There are 5,192 persons appeared
in all the movie by removing the persons appeared less than
5 times, and 5,773 keywords in the keyword dictionary. Each
movie belongs to one of 29 genres.

4.2 Experimental Setting

We compared the SCDBM with LDA, Replicated Softmax
Model (RSM), and TWTM [Li et al., 2013b]. Because LDA
Models Models

DBM+M DBM-+M
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Figure 2: Classification results on the Wikipedia (a) and IMDB (b)
for RSM, LDA, TWTM and SCDBM with 5-fold cross-validation.
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and RSM are the models handling the unstructured docu-
ments without the metadata information, so we treated the
given metadata as word features for them. For the Wikipedia,
we treated all the metadata, including entities and categories,
as the words to train LDA and RSM, which are called LDA-
EC and RSM-EC, respectively. Likewise, we also trained
LDA and RSM on the IMDB with the metadata as the words
features, and we called the models LDA-M and RSM-M. For
the RSM model, we subdivided datasets into minibatches, and
each contains 100 training cases, and updated the parame-
ters after each minibatches to speed-up learning in the same
way as RSM. Moreover, we choose the 2,500 most frequent
words as the feature representations in the training dataset.
With the three models, we embedded the documents into 300-
dimensional latent representations.

When training the proposed SCDBM, we first embedded
the metadata of the two corpora into low dimension using
RBMs. For Wikipedia, we let Lo = 300, and Lge = 300.
For IMDB, we let Lﬁ(l) = 300, L;ﬁm = 300 and L;ﬁu) = 6.
To model the word count vector, we trained LDAs with 300
topics on the two corpora, and treated the latent topic distri-
butions as w at the bottom level of our model. The dropout
rate is set to 0.5 as described in [Srivastava et al., 2014] when
training our model.

Since the number of types of metadata in each corpus is
small, the starting value of v is becomes critical. Thus, af-
ter tried some methods to initialize the v, we use a logarith-
mic scheme to initialize the v as shown as in [Jiang er al.,
2015] to get the best results. After pretraining and selection
for the types of metadata to be added into the compensatory
metadata set, we obtained the following sequence for each
corpora. For Wikipedia, we built a two-layer network with
(m"HD_ (m' m?)@ as the compensatory metadata layers, and
let Ly = Lye = 300. For IMDB, we built a three-layer net-
work with (m?)®, (m2, m"?, (m?, m!, m*)® as the com-
pensatory metadata layers, and let Ly = Lye = Ly = 300.

4.3 Document Classification and Retrieval

In our first set of experiments, we evaluated the single-class
classification performance utilizing feature sets generated by
SCDBM and other baselines on the Wikipedia and IMDB. As
we have mentioned, we used the latent features of the semi-
structured documents dataset embedded by SCDBM to train
a classifier based on LIBSVM with the Gaussian kernel and
the default parameters. Figure 2 shows the classification re-
sults on the two corpora with mean square errors. Intuitively,
SCDBM takes full advantage of metadata, especially with the
depth increases. In order to test the way of adding the differ-
ent types of metadata into different hidden layers respectively,
we also trained a variant model with adding all the metadata
into the lowest level of a DBM, which we called DBM+M,
compared with the self-paced metadata-compensatory way
proposed in this paper. These comparisons indicate that the
way of self-paced metadata-compensatory could bring the
performance improvement. The main reasons are following.
First, different types of metadata would have different con-
cept properties, the way of self-paced selection in our model
is just to find a better way to take advantages of this metadata.
Second, under the setting of SCDBM, the metadata which is
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Table 1: Some examples of the predictive categories generated by SCDBM on Wikipedia, where Column 2 is the real categories appeared in
the test pages, and Column 3 in red is the highly correlated categories generated by SCDBM.

Article Titles

The categories predicted by SCDBM

screenwriters

“Bubble Bobble” Mobile games, Amiga games, Apple Il | Video games, Video games graphics, Game boy advance
games, Platform games

“Andrew Wiles” MacArthur Fellows, Living people, 21st- | People from London, Science, Fellows of the American
century mathematicians Academy of Arts and Sciences

“Leigh Brackett” 20th-century women writers, American | Films based on novels, Fantasy films, American science fiction

horror films, Science fiction films

“Furman University”

Educational institutions established in

Fellows of the American Academy of Arts and Sciences, Sci-

players

1826 ence, Education
“NCAA football” College football Middle States Association of Colleges and Schools, Sports,
American football quarterbacks, Education in the United
States, American football running backs
“David Beckham” English footballers, UEFA Euro 2004 | FIFA World Cup players, Scottish footballers, American films,

National Football League announcers, Footballers in Italy

selected in the first layer could influence the structure to the
last layer, which means that the different types of metadata
have different weights during the training.

We also used IMDB to evaluate the performance on a doc-
ument retrieval task. To decide whether a retrieved document
is relevant to the query document, we just check whether they
have the same class label. In order to do retrieval, we repre-
sent each document w using the latent vector representation
generated by SCDBM and other models in comparison. The
corpus was randomly divided into two part: 80% the database
documents and 20% the query documents. For each query,
documents in the database were ranked by using the cosine
distance as the similarity metric. We averaged the results of
all the queries by using the F-Measure (F1-score). As shown
in Figure 3(a), the SCDBM outperforms other models on F1-
score. We also show the performances of different models
on document retrieval by drawing the precision-recall curves.
Figure 3(b) shows the results, from which the SCDBM also
has a better performance than other baselines, particularly
when retrieving the top few documents.

4.4 Results on Metadata Prediction

In this experiment, we show the generative aspect of our
model qualitatively. We randomly selected 1,360 documents
from the Wikipedia dataset as the test set, and treated the
left 10,000 documents as the training set. Before training,
we embedded the entities and categories of each document
into low-dimensional space using the RBMs. When inferring
a document, we only used the words (w) and entities (mD)
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Figure 3: (a) F1-Score for document retrieval on IMDB. (b)
Precision-Recall curves for document retrieval on IMDB.
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of the document to generate the vector h, then generated
the distribution m® by the method which we mentioned in
Section 3. Since the value of the unit in m® is the distribu-
tion of p(m® = 1), We simply ranked the values in m® and
selected the top 20 as the predictive categories generated by
SCDBM. Table 1 shows some examples of the predictive cat-
egories generated by the SCDBM for a group of pages in the
test set. The first column shows the articles in test set we in-
ferred, and columns 2 and 3 are the categories predicted by
our model; Column 2 is the real categories appeared in the
test pages, and Column 3 (red) is the highly correlated cate-
gories generated by SCDBM. By taking the entity of “David
Beckham” for an example, the categories of “English foot-
ballers” and “UEFA Euro 2004 players” are generated by our
model, which are the real categories given in the article of
“David Beckham”. The categories (red) in Table 1 are highly
correlated with the input article, even though some of them
are wrong in fact. In other words, the SCDBM may have the
capability of learning the internal relations among the meta-
data items, as well as capturing relation between words and
metadata.

5 Conclusion

We proposed a self-paced compensatory deep Boltzmann ma-
chine to model documents by combining the word features
and metadata information by simulating the process of people
understanding text. The model fused the word count vector
and metadata into a jointly hidden representation, and pro-
vided improved capability in terms of classification and doc-
ument retrieval compared to state-of-the-art models. Besides,
the model has demonstrated the ability to predict the missing
metadata in some applications.

Acknowledgments

This work was supported in part by the National Key Re-
search and Development Program of China under Grant
2016YFB0201900. Also, this work was supported in part by
NSF of China under Grant 61672548, U1611461, and the
Guangzhou Science and Technology Program, China, under
Grant 201510010165. We thank the support of Key Labora-
tory of Machine Intelligence and Advanced Computing (Sun
Yat-sen University), Ministry of Education, China.



Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

[Bengio et al., 2007] Yoshua Bengio, Pascal Lamblin, Dan
Popovici, and Hugo Larochelle. Greedy layer-wise train-
ing of deep networks. In NIPS, 2007.

[Bengio et al., 2009] Yoshua Bengio, Jérome Louradour,
Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international con-
ference on machine learning. ACM, 2009.

[Blei and Lafferty, 2005] David M. Blei and John D. Laf-
ferty. Correlated topic models. In NIPS, 2005.

[Blei er al., 2003] David M. Blei, Andrew Y. Ng, and
Michael 1. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 2003.

[Hinton et al., 2006] Geoffrey E Hinton, Simon Osindero,
and Yee-Whye Teh. A fast learning algorithm for deep
belief nets. Neural computation, 2006.

[Hinton, 2002] Geoffrey E Hinton. Training products of ex-
perts by minimizing contrastive divergence. Neural com-
putation, 2002.

[Hu et al., 2016] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu,
Eduard Hovy, and Eric Xing. Harnessing deep neural net-
works with logic rules. arXiv:1603.06318,2016.

Jiang et al., 2015] Lu Jiang, Deyu Meng, Qian Zhao,
Shiguang Shan, and Alexander G Hauptmann. Self-paced
curriculum learning. In Tiventy-Ninth AAAI Conference on
Artificial Intelligence, 2015.

[Kumar ez al., 2010] M Pawan Kumar, Benjamin Packer, and
Daphne Koller. Self-paced learning for latent variable
models. In NIPS, 2010.

[Le Roux and Bengio, 2008] Nicolas Le Roux and Yoshua
Bengio. Representational power of restricted boltzmann
machines and deep belief networks. Neural Computation,
2008.

[Li et al., 2013a] Shuangyin Li, Guan Huang, Ruiyang Tan,
and Rong Pan. Tag-weighted dirichlet allocation. In
2013 IEEE 13th International Conference on Data Min-
ing (ICDM), pages 438-447,2013.

[Li er al.,2013b] Shuangyin Li, Jiefei Li, and Rong Pan.
Tag-weighted topic model for mining semi-structured doc-
uments. In Proceedings of the Twenty-Third international
Jjoint conference on Artificial Intelligence (IJCAI), 2013.

[Lief al.,2016] Shuangyin Li, Rong Pan, Yu Zhang, and
Qiang Yang. Correlated tag learning in topic model. In
Proceedings of the Thirty-Second Conference on Uncer-
tainty in Artificial Intelligence, pages 457-466, 2016.

[Liet al.,2017] Shuangyin Li, Yu Zhang, Rong Pan,
Mingzhi Mao, and Yang Yang. Recurrent attentional topic
model. In Proceedings of the Thirty-First AAAI Confer-
ence on Artificial Intelligence (AAAI-17),2017.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E. Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th International Confer-
ence on Machine Learning, 2010.

2193

[Nitish et al., 2013] Srivastava Nitish, Ruslan Salakhutdi-
nov, and Geoffrey E Hinton. Modeling documents with
a deep boltzmann machine. In Uncertainty in Artificial
Intelligence, 2013.

[Ramage et al., 2009] Daniel Ramage, David Hall, Ramesh
Nallapati, and Christopher D. Manning. Labeled lda: A su-
pervised topic model for credit attribution in multi-labeled
corpora. In EMNLP, 2009.

[Rosen-Zvi et al., 2004] Michal Rosen-Zvi, Thomas L. Grif-
fiths, Mark Steyvers, and Padhraic Smyth. The author-
topic model for authors and documents. In UAZ, 2004.

[Salakhutdinov and Hinton, 2009a] Ruslan  Salakhutdinov
and Geoffrey E Hinton. Deep boltzmann machines. In
International Conference on Artificial Intelligence and
Statistics, 2009.

[Salakhutdinov and Hinton, 2009b] Ruslan  Salakhutdinov
and Geoffrey E Hinton. Replicated softmax: an undirected
topic model. In NIPS, 2009.

[Soto er al., 2015] Axel J Soto, Ryan Kiros, Vlado Keselj,
and Evangelos Milios.  Exploratory visual analysis
and interactive pattern extraction from semi-structured

data. ACM Transactions on Interactive Intelligent Systems
(TiiS), 2015.

[Spitkovsky et al., 2009] Valentin 1. Spitkovsky, Hiyan Al-
shawi, and Daniel Jurafsky. Baby steps: How ”less is
more” in unsupervised dependency parsing. Nips Gram-
mar Induction Representation of Language and Language
Learning, 2009.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning Re-
search, 2014.

[Tieleman, 2008] Tijmen Tieleman.  Training restricted
boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th international
conference on Machine learning. ACM, 2008.

[Welling er al., 2004] Max Welling, Michal Rosen-Zvi, and
Geoffrey E Hinton. Exponential family harmoniums with
an application to information retrieval. In NIPS, 2004.

[Zhang et al., 2009] Duo Zhang, Chengxiang Zhai, and Ji-
awei Han. Topic cube: Topic modeling for olap on mul-
tidimensional text databases. In Proceedings of the SIAM
International Conference on Data Mining, 2009.



