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Abstract
With the explosive growth of images containing
faces, scalable face image retrieval has attracted in-
creasing attention. Due to the amazing effective-
ness, deep hashing has become a popular hash-
ing method recently. In this work, we propose a
new Discriminative Deep Hashing (DDH) network
to learn discriminative and compact hash codes
for large-scale face image retrieval. The proposed
network incorporates the end-to-end learning, the
divide-and-encode module and the desired discrete
code learning into a unified framework. Specifical-
ly, a network with a stack of convolution-pooling
layers is proposed to extract multi-scale and robust
features by merging the outputs of the third max
pooling layer and the fourth convolutional layer. To
reduce the redundancy among hash codes and the
network parameters simultaneously, a divide-and-
encode module to generate compact hash codes.
Moreover, a loss function is introduced to minimize
the prediction errors of the learned hash codes,
which can lead to discriminative hash codes. Ex-
tensive experiments on two datasets demonstrate
that the proposed method achieves superior perfor-
mance compared with some state-of-the-art hash-
ing methods.

1 Introduction
With the growing popularity of social networking on intelli-
gent mobile services, the number of images containing faces
has witnessed an explosive increase in recent years. Conse-
quently, face image retrieval, which aims to identify images
containing the person in the given face image, has become an
attractive research area. The main challenges of face image
retrieval are large intra-class variations and the cost of com-
puting time and storage. Therefore, it is necessary to develop
effective face image retrieval methods to address the above
two problems.
To tackle the first problem, previous methods mainly focus

on how to find better hand-crafted visual descriptors, such
as LBP [Ojala et al., 2002], to represent visual contents of
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face images. Recently, deep learning, such as Convolutional
Neural Network (CNN), has shown its amazing performance
in many computer vision tasks, such as image classification
[Krizhevsky et al., 2012; Li et al., 2015] and face recognition
[Sun et al., 2014a]. CNN features learned from images are
more robust and well capture the potential semantic structure
of images. And many methods have been proposed to use
the CNN features for vision tasks [Sun et al., 2014b]. How-
ever, for large-scale face image retrieval, methods based on
CNN features are still high dimensional and inefficient for
the retrieval task. As a consequence, hashing methods, es-
pecially deep hashing methods, have been widely studied to
map high-dimensional face representations to compact bina-
ry codes. Due to the powerful ability of deep features and
retrieval effectiveness, deep hashing methods have attracted
much attention recently.
Deep hashing methods have been proposed for image re-

trieval [Xia et al., 2014; Liu et al., 2016; Lai et al., 2015;
Dong et al., 2016; Tang et al., 2017]. These methods mainly
take the supervised information encoded in pairs or triplet-
s of images as training inputs. Some deep hashing methods
learn hash codes and hash functions separately, such as C-
NNH [Xia et al., 2014]. CNNH first learns hash codes by
preserving the supervised pairwise similarity, and then learn-
s hash functions based on the learned hash codes using a
deep convolutional network. To incorporate the hash learning
and the deep network into an end-to-end system, some other
deep hashing methods have been proposed [Liu et al., 2016;
Lai et al., 2015]. DSH [Liu et al., 2016] learns hash codes
based on a CNN architecture by preserving the similarity en-
coded in the input pairs of images (similar/dissimilar). NINH
[Lai et al., 2015] learns hash codes by minimizing the triplet
ranking loss based on the “network in network” network [Lin
et al., 2013]. In [Dong et al., 2016], the low-rank hashing
first pre-learns hash functions based on the CNN features and
introduces the fine-tuning procedure based on the triplet rank-
ing loss. These methods mainly preserve the pairwise simi-
larity or the triplet rank. It is expensive and time-consuming
to obtain these pairs or triplets. And the optimization com-
plexity of models would greatly increase and the learned hash
codes cannot guarantee to be discriminative. Moreover, the
redundancy among hash codes is not explored.
Towards this end, we propose a new Discriminative Deep

Hashing (DDH) method to learn discriminative and compact
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Figure 1: Illustration of the proposed DDH framework for large-scale face image retrieval.

hash codes for scalable face image retrieval, as shown in Fig-
ure 1. The proposed method is an end-to-end system by in-
corporating the feature extraction and hash learning into a u-
nified framework. Specifically, a sub-network with a stack of
convolution-pooling layers is built to take face images asso-
ciated with labels as inputs and extract features for each face
image. To obtain multi-scale and robust facial features, the
outputs of the third max pooling layer and the fourth con-
volutional layer are merged. Second, a divide-and-encode
module is introduced to reduce the redundancy among hash
codes and network parameters simultaneously. To make the
learned hash codes discriminative, the discrete hash codes are
required to directly predict the labels of face images. To
well solve the proposed optimization formulation, the dis-
crete hash codes are relaxed to be continuous and a regulariz-
er is introduced to approximate the desired discrete values. To
validate the effectiveness of the proposed DDH method, ex-
tensive experiments are conducted on two face image dataset-
s. Experimental results compared with some state-of-the-art
hashing methods show the promising performance of the pro-
posed method.
The remainder of the paper is organized as follows. In Sec-

tion 2, we review the related works about deep hashing meth-
ods and face-related tasks via deep learning network. Section
3 elaborates the proposed DDH method for large-scale face
image retrieval. Then, we conduct experiments to show the
effectiveness of the proposed deep hashing method in Section
4. Finally, Section 5 concludes this work.

2 Related Work
In this section, we overview previous related works about
deep hashing methods and face-related tasks via deep learn-
ing network.

2.1 Deep Hashing Methods
Existing learning-based hashing methods can be divided in-
to three categories: supervised hashing [Xia et al., 2014;
Shen et al., 2015; Liu et al., 2016; Tang et al., 2017], semi-
supervised hashing, unsupervised hashing [Andoni and In-
dyk, 2006; Weiss et al., 2008; Tang et al., 2015]. Most ex-
isting deep hashing methods belong to supervised hashing

methods. In the pipe-lines of these methods, they project the
high-dimensional feature space to the low-dimensional Ham-
ming space by a deep network. And additional appropriate
constraints such as point-wised constraints [Lin et al., 2015],
pair-wised constraints [Lai et al., 2015; Liu et al., 2016;
Zhu et al., 2016], ranking-wised constraints [Zhao et al.,
2015], are imposed on the networks to generate discrimina-
tive binary hash codes.
Some deep hashing methods learn hash codes and hash

functions separately, such as CNNH [Xia et al., 2014]. They
do not belong to the end-to-end methods. CNNH uses two
stages to learn hash codes and hash functions. It first learns
hash codes by preserving the supervised pairwise similari-
ty, and then learns hash functions based on the learned hash
codes using a deep convolutional network. To build an end-
to-end deep learning system, some other deep hashing meth-
ods have been proposed [Zhao et al., 2015; Liu et al., 2016;
Lai et al., 2015]. In [Zhao et al., 2015], hash functions
are learned for multi-label image retrieval by exploring the
multilevel semantic ranking supervised information under a
deep CNN architecture. In [Lai et al., 2015], NINH is pro-
posed to improve CNNH by fusing the hash learning into the
deep structure. NINH learns hash codes by minimizing the
triplet ranking loss based on the “network in network” net-
work [Lin et al., 2013]. DSH [Liu et al., 2016] learns hash
codes by preserving the similarity encoded in the input pairs
of images (similar/dissimilar) based on a CNN architecture.
DHN [Zhu et al., 2016] learns image representation tailored
to hash coding by using a pairwise crossentropy loss layer
for similarity-preserving learning. In [Dong et al., 2016], the
low-rank hashing first pre-learns hash functions based on the
CNN features and introduces the fine-tuning procedure based
on the triplet ranking loss. These methods mainly take the
supervised pairs or triplets as training inputs. However, It is
expensive and time-consuming to obtain these pairs or triplet-
s. And the optimization complexity of models would greatly
increase and the learned hash codes cannot guarantee to be
discriminative. Moreover, the redundancy among hash codes
is not explored.
Different from the above deep hashing methods, we pro-

pose a novel deep hashing method by taking face images as-
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sociated with labels as training inputs. Feature extraction and
hash learning are integrated into a unified deep architecture.
The learned hash codes are expected to well predict the la-
bels of face images. To reduce the redundancy among hash
codes and network parameters simultaneously, the proposed
deep framework leverages a divide-and-encode module.

2.2 Face-related Tasks via Deep Learning Network
Recently, inspired from the advancement of deep learning,
numerous face-related tasks choose to employ deep learning
networks and achieve significant results. In [Taigman et al.,
2014], the 3D model is utilized to align faces before training,
and several locally connected layers without weight sharing
are used to improve the precision instead of the standard con-
volutional layers. DeepID is proposed to extract multi-scale
facial features from different face regions through a deep net-
work, and indeed achieves terrific face verification accuracy
on the LFW dataset [Sun et al., 2014a]. In [Schroff et al.,
2015], the triplet loss instead of the softmax loss is introduced
to minimize the distance between an anchor and a positive da-
ta point, and maximize the distance between an anchor and a
negative data point. A new loss function, named center loss,
is proposed to minimize the intra-class distances based on the
deep features [Wen et al., 2016]. The center loss is more con-
venient and can save more space and time than the contrastive
loss and triplet loss. Similar to [Sun et al., 2014b], we utilize
the deep network architecture as shown in Figure 1 to extract
robust and multi-scale facial features.

3 The Proposed DDH Approach
In this section, we will introduce the proposed DDH method
in details. The motivation of this work is first introduced and
then the proposed model is elaborated.

3.1 Motivation
The essential problem of hashing is how to learn discrimina-
tive and compact hash codes, which can significantly improve
the performance of image retrieval. Due to the powerful a-
bility of CNN for learning data representations, we focus on
proposing a deep hashing method by guaranteeing that the
hash learning is optimally compatible with the feature repre-
sentation learning, as shown in Figure 1.
To extract facial features hierarchically, a deep network is

developed based on the CNN architecture with convolutional
layers and max-pooling layers. The first three full-connected
convolutional layers mainly extract mid-level representations
from the original pixels, such as simple edges and textures
[Taigman et al., 2014]. The outputs of convolution networks
become more robust to local translations by introducing max-
pooling layers. More global and high-level features are grad-
ually formed in the top layers, and the local stability assump-
tion of the convolution does not exist. Thus, the fourth layer is
instead locally connected [Sun et al., 2014b] and the weights
of the fourth convolutional layer are totally unshared. To ex-
tract robust and multi-scale facial representations, the outputs
of the third max-pooling layer and the fourth convolutional
layer are merged into the Merged Layer, and a full-connected
convolutional layer, i.e., the Face Feature layer, is introduced
as shown in Figure 1.

The ideal hash codes should be directly learned by the deep
network. Thus, the outputs of the proposed deep network are
the desired discrete hash codes. To make the hash codes dis-
criminative, the learned hash codes are required to enable to
well predict the labels of face images. On the other hand, the
learned hash codes should be compact. To reduce the redun-
dancy among hash codes, the proposed deep network lever-
ages a divide-and-encode module. The divide-and-encode
module can also decrease the number of the network param-
eters, which can reduce the computing cost.

3.2 The Proposed Formulation
The goal of hash learning is to learn a hash function h : R 7→
{−1, 1} that map images into the Hamming space.
Suppose we haveN training face images {xi}Ni=1 associat-

ed with its label vector yi ∈ RM , whereM denotes the num-
ber of class labels. And Y = [y1, · · · ,yN ] ∈ RM×N de-
notes the label matrix. If xi belongs to the j-th class, Yji = 1
and 0 otherwise. The goal of the proposed DDH method is
to learn discrete hash codes bi ∈ {−1, 1}K for each face im-
age xi where K denotes the length of the hash codes. And
the learned hash codes bi are discriminative to well predict
its label. To this end, we propose to learn hash codes by an
end-to-end deep network as shown in Figure 1.
In the developed deep network, a sub-network with a s-

tack of convolution-pooling layers extracts multi-scale and
robust facial features. The first three full-connected convolu-
tional layers associated with max-pooling layers mainly ex-
tract mid-level representations from the original pixels, such
as simple edges and textures. The fourth convolutional lay-
er can obtain more global and high-level features. To obtain
robust and multi-scale facial representations, the outputs of
the third max-pooling layer and the fourth convolutional lay-
er are merged into the Merged Layer. And then a Face Fea-
ture layer is introduced by fully connecting the outputs of the
Merged Layer. To reduce the number of network parameters
and the redundancy among the desired hash codes simulta-
neously, a divide-and-encode module is introduced similar to
[Lai et al., 2015]. It equally splits the intermediate features
obtained from the Face Feature layer intoK groups. Then we
map each group to one real value by a full-connected layer.
Finally, we merge all K real values into a Hash layer. The
outputs of the Hash layer is the desired discrete hash codes
B ∈ {−1,+1}K×N .

B = g(X) ∈ {−1,+1}K×N (1)

Here X is the data matrix containing N face images and g(·)
denotes the transformations of the deep network. The pro-
posed deep hashing network adopts an end-to-end learning
framework to jointly learn good representations and compact
binary hash codes.
To enhance the discriminative ability of the learned hash

codes in the supervised case, it is necessary to introduce loss
functions to measure the predictive power of the learned hash
codes. Some methods use the contrastive loss [Sun et al.,
2014a] and triplet ranking loss [Schroff et al., 2015]. For
the contrastive loss, sufficient pairs of images should be con-
structed, which easily leads to the imbalanced problem of
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positive and negative pairs. The triplet ranking loss needs
complex sampling strategies to obtain suitable triplets and re-
sults in a more difficult optimization problem. They can also
result in bigger computing cost including time and space. D-
ifferent from them, we take the face images with their class la-
bels as training inputs. To guarantee the discriminative power
of the hash codes, the learned hash codes are expected to well
predict the corresponding class labels. For simplicity, we em-
ploy the softmax function as the prediction function, which is
the generalization of the logistic function.

p(Yij = 1|xi) =
ew

T
j bi∑M

k=1 e
wT

k bi
(2)

Here wk is the linear prediction function for the k-th class.
The loss function over all the training images is as follows.

ℓS =
N∑
i=1

M∑
j=1

−Yij log p(Yij = 1|xi) +
α

2
∥W∥2F

=
N∑
i=1

M∑
j=1

−Yij log
ew

T
j bi∑M

k=1 e
wT

k bi
+

α

2
∥W∥2F (3)

To avoid overfitting and enhance the generalization abili-
ty, we introduce a regularization term into the above loss
function. W = [w1, · · · ,wM ], α is a nonnegative hyper-
parameter, and ∥·∥2 is the Frobenius norm of a matrix. Con-
sequently, the proposed formulation is obtained.

min
N∑
i=1

M∑
j=1

−Yij log
ew

T
j bi∑M

k=1 e
wT

k bi
+

α

2
(∥W∥2F +Ω)

s.t. bi ∈ {−1,+1}K (4)

To enhance the generalization ability of the network, the reg-
ularizer Ω of all the parameters is also introduced.
If we can directly solve the optimization problem (Eqn. 4),

it would be perfect to obtain the discrete hash codes and hash
functions. Unfortunately, the above problem (Eqn. 4) is dif-
ficult to be optimized due to the discrete constraints. Inspired
from [Liu et al., 2016], we relax B to be continuous and uti-
lize the tanh function to to limit the output values within the
range (-1,1). Besides, we impose a regularizer on the contin-
uous values to approach the desired discrete values (+1/-1).
Then, the problem (Eqn. 4) is rewritten as follows.

min
N∑
i=1

M∑
j=1

−Yij log
ew

T
j bi∑M

k=1 e
wT

k bi
+

α

2
(∥W∥2F +Ω)

+β
N∑
i=1

∥|bi| − 1∥1 (5)

Here |·| is the element-wise absolute value operation, 1 is a
vector of ones and || · ||1 is the ℓ1-norm of one vector. β is
a weighting parameter to control the importance of the reg-
ularizer. The above optimization problem (Eqn. 5) enables
to learn discriminative and compact hash codes by leveraging
the end-to-end learning, divide-and-encode module, hashing
learning and prediction function learning simultaneously.

To optimize the proposed formulation, the developed net-
work is trained by using back-propagation scheme with mini-
batch gradient descent algorithm. In practice, the proposed
model is implemented based on the Keras library with the
Theano backend [Bergstra et al., 2010]. Under this platfor-
m, what we need to do is just to input the objective function,
and Theano will complete the training with its characteristic
of automatic derivation.
Once the developed deep hashing network is trained, we

can use it to generate aK-bit hash codes for any input image.
Based on the outputs of the Hash layer, the hash codes can be
calculated by using the sgn(·) function: sgn(b) = 1 if b > 0
and sgn(b) = −1 otherwise.

4 Experiments
To evaluate the effectiveness of the proposed deep hashing
method for scalable face image retrieval, we conduct exper-
iments on two widely used large-scale face image dataset:
YouTube Faces [Wolf et al., 2011] and FaceScrub [Ng and
Winkler, 2014], and compare the proposed DDHmethod with
several state-of-art hashing methods.

4.1 Datasets and Evaluation Metrics
Experiments are condcuted on two face image dataset: Y-
ouTube Faces [Wolf et al., 2011] and FaceScrub [Ng and
Winkler, 2014].
YouTube Faces. This dataset contains 3,425 videos in-

volved with 1,595 different persons. The shortest clip dura-
tion is 48 frames, the longest clip is 6, 070 frames, and the
average length of a video clip is 181.3 frames. We randomly
selected 40 face images per person as the training set and 5
images per person as the test set. Thus, we have 63800 im-
ages as the training set and 7975 images as the test data. All
face images are resized to 32× 32.
FaceScrub. It composes a total of 106,863 face images of

530 celebrities, with about 200 images per person. So far, it
is one of the largest public face datasets. We randomly select
5 face images per person as the test data, and the remainder
as the training set. All face images are also resized to 32×32.
To compare the performance of hashing methods, we uti-

lize four evaluation metrics: Mean Average Precision (MAP),
Precision-Recall curves, Precision curves within Hamming
distance 2 and Precision curves w.r.t different numbers of top
returned samples.

4.2 Experimental Setting
To shown the effectiveness of the proposed DDH method, we
compare it with 7 shallow hashing methods and two deep
hashing methods. The shallow hashing methods are LSH
[Andoni and Indyk, 2006], SH [Weiss et al., 2008], ITQ
[Gong et al., 2011], KSH [Liu et al., 2012], BRE [Kulis and
Darrell, 2009], SDH [Shen et al., 2015] and FastH [Lin et al.,
2014], while the deep methods are CNNH [Xia et al., 2014]
and DSH [Liu et al., 2016]. For the shallow methods, the
236-dimensional LBP feature vector is utilized to represen-
t the visual content of face images for both YouTube Faces
and FaceScrub datasets. For deep methods, the original pix-
els are taken as the input. For fair comparison, the CNN
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Table 1: The compared results in terms of Mean Average Precision (MAP) of different hashing methods on the YouTube Faces and FaceScrub
datasets.

Method YouTube Faces FaceScrub
12 bits 24 bits 36 bits 48 bits 12 bits 24 bits 36 bits 48 bits

LSH 0.0094 0.0274 0.0491 0.0773 0.0027 0.0031 0.0033 0.0038
SH 0.0164 0.0520 0.0702 0.0990 0.0030 0.0034 0.0037 0.0038
ITQ 0.0198 0.0593 0.0986 0.1372 0.0033 0.0038 0.0042 0.0046
BRE 0.0277 0.0609 0.0954 0.1160 0.0031 0.0032 0.0033 0.0037
KSH 0.0174 0.0601 0.0960 0.1359 0.0031 0.0036 0.0035 0.0038
SDH 0.0317 0.0964 0.1346 0.1613 0.0028 0.0035 0.0041 0.0049
FastH 0.0877 0.2199 0.2983 0.3495 0.0048 0.0078 0.0113 0.0172

LSH+CNN 0.0590 0.2541 0.3993 0.4861 0.0092 0.0221 0.0333 0.0444
SH+CNN 0.0756 0.3060 0.4607 0.5271 0.0183 0.0298 0.0349 0.0395
ITQ+CNN 0.1357 0.4109 0.5358 0.5906 0.0258 0.0481 0.0683 0.0825
BRE+CNN 0.1613 0.3791 0.4947 0.5533 0.0210 0.0368 0.0498 0.0621
KSH+CNN 0.1062 0.3685 0.4881 0.5628 0.0217 0.0414 0.0596 0.0725
SDH+CNN 0.4003 0.6596 0.7237 0.7634 0.0191 0.0602 0.0938 0.1279
FastH +CNN 0.2671 0.7048 0.8099 0.8546 0.0373 0.0831 0.1274 0.1681

CNNH 0.0320 0.1723 0.2650 0.3283 N/A N/A N/A N/A
DSH 0.0019 0.4396 0.5201 0.5507 0.0046 0.0062 0.0075 0.0081
DDH 0.4029 0.8223 0.8457 0.9068 0.0650 0.1103 0.1437 0.1889
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Figure 2: The results on the YouTube Faces dataset. (a) Precision curves with Hamming radius 2; (b) Precision-recall curves of Hamming
ranking with 48 bits; (c) Precision curves with 48 bits w.r.t. the number of top returned samples.

features are extracted and used as the input of all the shal-
low hashing methods, which are denoted as “+CNN”, such as
“LSH+CNN” and “FastH+CNN”.

For the proposed deep architecture, there are some details
to configured in advance. The filter size in first convolutional
layer is 3×3 with stride 1, and the other convolutional layers
employ the filter with the size of 2×2 with stride 1. Weights
in the fourth convolutional layer are totally unshared within
the region of 2×2. The numbers of feature maps of the four
convolutional layers are set to 20, 40, 60 and 80 respective-
ly. For the activation function, all convolutional layers and
the Face Feature layer use Rectification Linear Unit (ReLU)
[Krizhevsky et al., 2012]. For the parameter setting of the
divide-and-encode module, the number of each group on the
Slice layer is set to 4 in our experiments. In addition, we
apply Batch Normalization [Ioffe and Szegedy, 2015] after
each convolutional layer to accelerate the convergence speed
of the objective function. Furthermore, we adopt Adam [K-

ingma and Ba, 2014] as our optimization algorithm and fix
the batch size as 256 during training. We use a training set
of 10 percent as a validation set to verify the results of the
training set. For the parameters α and β, in experiments we
set them to 0.0002 and 1, respectively. All the experiments
are implemented with Keras framework on a NVIDIA GTX
850M with CUDA7.5 and cuDNN v5.1.

4.3 Results and Discussions
Experiments are conducted on the YouTube Faces and Face-
Scrub datasets, and the performance is first evaluated in terms
of MAP. The results are presented in Table 1. The length of
hash codes varies from 12 to 48. From the results in Table 1,
we can have the following observations. First, the proposed
DDH method achieves the best results and are significantly
superior to other hashing methods. By introducing the divide-
and-encode module, more compact codes can be learned and
the size of parameters on the Slice layer become 1/K of the
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Figure 3: The results on the Facescrub dataset. (a) Precision curves with Hamming radius 2; (b) Precision-recall curves of Hamming ranking
with 48 bits; (c) Precision curves with 48 bits w.r.t. the number of top returned samples.

Figure 4: Visualization of the distributions of hash codes on the Y-
ouTube Faces dataset (K = 48). Dw and Db are the inter-class and
intra-class variations, respectively. Best viewed in color.

the size of parameters with the full-connected layer. Sec-
ond, compared with CNNH and DSH, DDH obtains much
improvement by integrating the hashing learning and predic-
tion learning into one unified framework. And the results of
DDH with shorter hash codes are better than ones of CNNH
and DSH with longer hash codes in some cases, which in-
dicates that DDH can learn compact hash codes. Third, deep
hashing methods are all better than the shallow hashing meth-
ods and the shallow hashing methods with CNN features. It
demonstrates that the advantages of the ene-to-end learning
by incorporating the deep structure and hash learning into one
framework. Furthermore, the shallow hashing methods with
CNN features yield better result than them with hand-crafted
features, which is consistent with many previous works. Fi-
nally, the proposed DDHmethod can learn discriminative and
compact hash codes by integrating the feature extraction, the
divide-and-encode module, the hashing learning and predic-
tion learning into one unified deep network.
Besides, the performance of hashing methods is evaluated

in terms of Precision-Recall curves, Precision curves within
Hamming distance 2 and Precision curves w.r.t the number
of top returned samples. Figure 2 and Figure 3 show the re-

sults on the YouTube Faces and FaceScrub datasets, respec-
tively. Since the shallow hashing methods with CNN features
are better than them with hand-crafted features, only the re-
sults of the shallow hashing methods with CNN features are
reported. From the results, we can obtain the same observa-
tions as ones from Table 1. The proposed DDH method is
significantly better than other hashing methods. That is be-
cause the proposed method can generate discriminative and
compact binary hash codes of faces for face image retrieval.
The proposed network integrates feature extraction and hash
learning into a unified framework, which can guarantee that
the learned features are compatible with the hashing learning.
To better illustrate the discriminative power of DDH, the

distributions of the learned hash codes with 48 bits by dif-
ferent deep hashing methods are visualized by using t-SNE
[Laurens and Hinton, 2008], and the results on the YouTube
Faces dataset are shown in Figure ??. It can be observed that
the learned hash codes by the proposed DDH method have
larger extra-class variation and smaller intra-class variation
simultaneously. That is, the learned hash codes by DDH are
more discriminative. Face images belonging to the same class
can be easily deemed as similar for image retrieval.

5 Conclusion
In this work, we propose a novel Discriminative Deep Hash-
ing (DDH) framework for large-scale face image retrieval.
The proposed framework leverages feature extraction, hash
learning and class prediction in one unified network. And the
divide-and-encode module is introduced to reduce the redun-
dancy among hash codes and the network parameters simul-
taneously. The proposed method can learn discriminative and
compact hash codes. Experiments show that the proposed
method achieves encouraging retrieval performance.
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