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Abstract

Factorization Machines (FMs) are a widely used
method for efficiently using high-order feature inte-
ractions in classification and regression tasks. Un-
fortunately, despite increasing interests in FMs, ex-
isting work only considers high order information
of the input features which limits their capacities
in non-linear problems and fails to capture the un-
derlying structures of more complex data. In this
work, we present a novel Locally Linear Factori-
zation Machines (LLFM) which overcomes this li-
mitation by exploring local coding technique. Un-
like existing local coding classifiers that involve a
phase of unsupervised anchor point learning and
predefined local coding scheme which is subopti-
mal as the class label information is not exploited
in discovering the encoding and thus can result in
a suboptimal encoding for prediction, we formu-
late a joint optimization over the anchor points, lo-
cal coding coordinates and FMs variables to mini-
mize classification or regression risk. Empirically,
we demonstrate that our approach achieves much
better predictive accuracy than other competitive
methods which employ LLFM with unsupervised
anchor point learning and predefined local coding
scheme.

1 Introduction
Interactions between features play an important role in many
classification and regression tasks. One of the widely used
approach to leverage such interactions is the polynomial
kernel[Friedman et al., 2001] which implicitly maps the data
via the kernel trick. However, the cost of storing and eva-
luating the model is expensive especially for large datasets.
This is sometimes called the curse of kernelization [Wang
et al., 2010]. To address this issue, Factorization machines
(FMs)[Rendle, 2010; 2012] have been proposed to model the
high order nested interactions with factorized interaction pa-
rameters. The model estimation can be computed in linear
time and they only depend on a linear number of parameters.
This allows direct optimization and storage of model parame-
ters without the need of storing any training data.

Despite their great success, FMs only consider the high or-
der information of the input features which limits their ca-
pacities in non-linear problems and fails to capture the un-
derlying structures of more complex data. Specifically, taking
classification task into consideration, not all problems are ap-
proximately linearly separable after quadratic mapping. In
most cases, real data naturally groups into clusters and lies on
nearly disjoint lower dimensional manifolds and thus the ori-
ginal FMs are inapplicable. One solution to address this limi-
tation is the locally linear classifiers [Ladicky and Torr, 2011;
Yu et al., 2009; Mao et al., 2015] which leverage the manifold
geometric structure to learn a nonlinear function which can
be effectively approximated by a linear function with an co-
ding under appropriate localization conditions. Since a non-
linear manifold behaves linearly in the local neighborhood,
data on the manifold can be encoded locally in a local coor-
dinate system established by a set of anchor points. Each data
point can then be approximated with a linear combination of
surrounding anchor points, and the weights are local coding
coordinates which can be used for subsequent model training.

Although local coding methods provide a powerful tool for
approximating data on the nonlinear manifold, the model per-
formance of locally linear classifiers depends heavily on the
quality of the local coding coordinates and the anchor points.
The existing locally linear classifiers learn the local coding
coordinates, the anchor points and classifiers in two sepa-
rate steps. They first compute the anchor points with some
unsupervised learning method that does not take class label
information into account and encode the training data with
a predefined local coding scheme, and then feed the results
of encoding to the downstream supervised classifier training
process. One major issue with this decoupled approach is that
it only leverages the anchor points and local coding coordina-
tes to improve classifier training task, but not reverse. This
two-step procedure is rather suboptimal as the class label in-
formation is not used in discovering the anchor points and lo-
cal coding coordinates, which is clearly not an optimal enco-
ding for classification task as the two methods are not tightly
coupled to fully exploit their potential.

In this paper, we present a novel Locally Linear Factoriza-
tion Machines (LLFM) which is capable of learning complex
non-linear data by exploring local coding technique. Unlike
existing local coding classifiers that involve a two-step pro-
cedure, a joint optimization is formulated over the anchor
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points, local coding coordinates and FMs variables to mini-
mize classification or regression risk simultaneously. Speci-
fically, our learning method is capable of refining local co-
ding scheme which adaptively choose the number of nearest
anchor points and the corresponding approximation weight
according to the current data point x and the anchor points.
With these local coding coordinates, we adopt stochastic gra-
dient descent to efficiently learn both the anchor points and
the FMs model simultaneously. Experimental results on ben-
chmark datasets show that our proposed LLFM approach with
joint optimization (LLFM-JO) outperforms state-of-the-art
methods with predefined fixed local coding scheme (LLFM-
DO) or unsupervised anchor point learning(LLFM-APL).

The rest of this paper is organized as follows. We first re-
view related work about FMs and local coding method, fol-
lowed by introducing the proposed Locally Linear Factoriza-
tion Machines model. Then we present our joint optimization
method with respect to the local coding coordinates, anchor
points and FMs parameters. Finally, we discuss empirical re-
sults and conclude this work.

2 Related Work
2.1 Factorization Machines
A standard 2-order FMs model takes the form:

fFM (x) =

p∑
j=1

wjxj +

p∑
j=1

p∑
j′=j+1

xjxj′
k∑
f=1

vj,fvj′,f ,

where p is the dimensionality of feature vector x ∈ Rp,
k � p is a hyper-parameter that denotes the dimensiona-
lity of latent factors, and wj , vj,f are the model parameters
to be estimated, i.e., Θ = {w1, . . . , wp, v1,1, . . . , vp,k} =
{w ∈ Rp,V ∈ Rp×k}. It is equivalent to the following sim-
ple equation:

f(x) = w>x +

p∑
j=1

p∑
j′=j+1

(VV>)jj′xjxj′ .

The gradient can be derived
∂fFM

∂θ
=

{
xj θ is wj
xj

∑
i6=j vi,fxi θ is vj,f

(1)

The main advantage of FMs compared to the polynomial ker-
nel in SVM [Vapnik, 2013] is the pairwise feature interaction
weight matrix Z = VV> ∈ Sp×p, where the number of pa-
rameters to estimate is reduced from p2 to kp by utilizing
the factorized form. In addition, this factorization form helps
to drop the prediction cost to linear runtime especially un-
der sparsity condition. Given a training set [x1, . . . ,xn]> ∈
Rn×p and corresponding targets p[y1, . . . , yn]> ∈ Rn, model
parameters Θ can be learned by using the principle of empi-
rical risk minimization and solving the following non-convex
problem

min
w∈Rp,V∈Rp×k

1

n

n∑
i=1

`(yi, f(xi)) +
β

2
R(Θ), (2)

where R(Θ) is the regularization term and ` is a convex loss
function incurred. Although the objective is a non-convex
problem, this optimization problem can be efficiently solved
by many off-the-shelf approaches [Rendle, 2012].

In recent years, some developments in FMs have been pro-
posed to efficiently optimize FMs model. [Blondel et al.,
2015] gives a convex formulation of FMs based on the nu-
clear norm and proposed a two-block coordinate descent al-
gorithm. [CHIN et al., ] proposes an alternating minimization
algorithm based on Newton method. [Lin and Ye, 2016] de-
signs a construction of an estimation sequence endowed with
a CI-RIP condition and proposesp an efficient single-pass al-
ternating updating framework for generalized FMs. [Blondel
et al., 2016b] discusses the relationship between high order
FMs and ANOVA kernel. [Blondel et al., 2016a] proposes
linear time dynamic programming algorithms for evaluating
the ANOVA kernel and the algorithm for training arbitrary-
order FMs.

2.2 Locally Linear Coding
Local coding methods offer a powerful tool for approxima-
ting data on the nolinear manifold. All these methods employ
a set of anchor points to encode data as a linear combina-
tion of surrounding anchor points, so as to minimize the ap-
proximation error. Specifically, let Z = {zi}mi=1 denote the
set of m anchor points, any point x is then approximated as
x ≈

∑m
i=1 γx,zi

zi, where γx,zi
is the local coding coordina-

tes, depicting the degree of membership of x to the ith anchor
point zi, constrained by

∑m
i=1 γx,zi = 1. Different encoding

schemes have been proposed in literature, [Liu et al., 2011;
Van Gemert et al., 2008] proposes local soft-assignment co-
ding, which is defined as:

γx,zi
=

{
exp(−cd(x,zi))∑

j∈Nk(x) exp(−cd(x,zj)) j ∈ Nk(x)

0 otherwise
(3)

where d(·, ·) is the distance function, and Nk(x) denotes the
set of indices of k-nearest anchor points to x. Notice here only
the k-nearest anchor points are considered for encoding data
point x with k nonzero weights, and the remaining weights
for anchor points are all set to zero. Other local coding met-
hods include local coordinate coding [Yu et al., 2009], inverse
Euclidian distance based weighting [Van Gemert et al., 2008;
Ladicky and Torr, 2011], etc.

A number of locally linear classifiers have been proposed
based on local coding methods. [Ladicky and Torr, 2011] cal-
culates the local coordinates with fixed and predefined local
coding scheme, and them treats the local coordinates as weig-
hts for assigning training data into different local regions. Se-
parate model are trained for each local region and combined
to form a local linear classifier. [Gu and Han, 2013] adopts
K-means to partition the data into clusters and then trains a
linear SVM for each cluster. Meanwhile, it requires each clus-
ter’s model to align with a global model, which can be treated
as a type of regularization. Unlike these two-step methods, a
joint optimization is formulated over the anchor points, local
coding coordinates and FMs variables in our work.

3 Locally Linear Factorization Machines
FMs haven been found successful in many prediction tasks,
including classification, regression and ranking. However,
they only consider the second order information of the input
features which limits their capacity in non-linear problems
and fails to capture the underlying structures of complex data.
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One intuitive idea for addressing this limitation is to leverage
the manifold geometric structure to learn a nonlinear function
which can be effectively approximated by a linear function
with an coding under appropriate localization conditions. In
another word, we assume that in a sufficiently small region
the decision boundary is approximately linear and each data
point x can then be approximated with a linear combination
of surrounding anchor points, which are usually called local
codings scheme. To encode this local linearity with FMs, the
model parameters Θ should vary according to the location of
the point x in the feature space as:

fLLFM (x) = w(x)>x +

p∑
j=1

p∑
j′=j+1

(V(x)V(x)>)jj′xjxj′ .

(4)
According to [Yu et al., 2009; Ladicky and Torr, 2011],

smoothness and constrained curvature of the decision boun-
dary implies that the function w(x) and V(x) are Lipschitz in
the feature space x. Thus, for a local coding scheme defined
by anchor points, we can approximate the weight function
w(x),V(x) of FMs using local coding as:

w(x) ≈
m∑
i=1

γx,ziwzi ,V(x)V(x)> ≈
m∑
i=1

γx,zi(VziV
>
zi

).

Substituting these equations into the prediction function
fLLFM (x), we obtain:
fLLFMγx,z,Z,ΘLLFM

(x)

=
m∑
i=1

γx,zi
w>zi

x +
m∑
i=1

γx,zi

p∑
j=1

p∑
j′=j+1

(Vzi
V>zi

)jj′xjxj′

=

m∑
i=1

γx,zi

w>zi
x +

p∑
j=1

p∑
j′=j+1

(VziV
>
zi

)jj′xjxj′


=

m∑
i=1

γx,zi
fFMzi

(x) (5)

where ΘLLFM = {Θzi}mi=1 = {wzi ,Vzi}mi=1 are the mo-
del parameters corresponding to the anchor point zi. This
transformation can be seen as a finite kernel transforming a
p-dimensional problem into a mp-dimensional one. It can
also be interpreted as defining a locally linear Factoriza-
tion Machines as the weighted average of m separate FMs
with respect to each anchor point, where the weights are
determined by the local coding coordinates. Let γx,z =
[γx,z1

, · · · , γx,zm
]> and fFMZ = [fFMz1

(x), · · · , fFMzm
(x)]>

be m dimensional vectors by stacking the m FMs models.
The prediction function in Equation (5) can be written as
fLLFMγx,z,Z,ΘLLFM

(x) = γ>x,zf
FM
Z .

4 Joint Optimization Method for Locally
Linear Factorization Machines

To evaluate fLLFMγx,z,Z,ΘLLFM
(x) for each data point x, we need

to calculate the corresponding local coding coordinates γx,z,
that is further depend on the anchor points z being used
and the local coding scheme, which means the prediction
function fLLFMγx,z,Z,ΘLLFM

(x) depends on the model parameters
ΘLLFM , the anchor point variable z and local coding coor-
dinates γx,z. This leads to a natural two-step approach taken

by existing methods [Ladicky and Torr, 2011; Yu et al., 2009;
Gu and Han, 2013], which first estimate the anchor points for
each data point by adopting K-means clustering and evalu-
ate the local coding coordinates with a predefined scheme by
utilizing exponential decay scheme or inversely-proportional
decay scheme, and then feeds the anchor points and the local
coding coordinates to the downstream supervised model trai-
ning. This two-step learning procedure is inconsistent with
the objective function and rather suboptimal as the prediction
information is not used in discovering the anchor points and
the local coding scheme. This motivates a joint optimization
method for LLFMs. Using a similar formulation to Equation
(2), we define the LLFM optimization problem as follows:

min
γx,z,Z,ΘLLFM

1

n

n∑
i=1

`(yi, f
LLFM
γxi,z

,Z,ΘLLFM
(xi)) +

β

2
R(ΘLLFM ).

(6)
Note that here the local coding coordinates γx,z and anchor

points z are treated as the variables to be optimized. Previous
approaches [Mao et al., 2015] select local coding coordinates
without supervised information, which is not guaranteed to
retain the discriminative information for prediction. Conse-
quently, the selected anchor points and the local coding coor-
dinates may not be optimal for the model being trained. On
the contrary, the use of embedded optimization for the local
coding scheme, the anchor points and the model parameters
in Equation (6) is crucial to the success of our approach. The
objective function in Equation (6) is a non-convex optimi-
zation problem when considering variables γx,z,Z,ΘLLFM

together. Therefore, we iteratively optimize γx,z,Z,ΘLLFM

until convergence to obtain a local minimum.

4.1 Local Coding Coordinates Optimization
Method

To start off, we first present our optimization method for the
local coding coordinates γx,z. Take the weight function w(x)
into consideration, recall we seek to find the best local ap-
proximation in a sense of minimizing the distance between
this approximation and the ground truth. Assume that for any
data point x, the ground truth holds that wx = w(x) + εx,
where w(·) is a Lipschitz continuous function that for any
x1,x2 ∈ Rp it holds that |w(x1) −w(x2)| ≤ L · d(x1,x2)
for some predefined distance function d(·, ·) and εx is a noise
term that E[εx|x] = 0 and |εx| ≤ b for some given b > 0.
Our task is to estimate w(x), where we restrict the estima-
tor ŵ(x) to be of the form ŵ(x) =

∑m
i=1 γx,ziwzi . That

is, the estimator is a weighted average of the anchor points.
Formally, the objective is to minimize the absolute distance
between our approximation and the ground truth w(x), we
need to solve

min
γx,z

|
m∑
i=1

γx,zi
wzi
−w(x)|s.t.

m∑
i=1

γx,zi
= 1; γx,zi

≥ 0, ∀i.

Decomposing the above objective into a sum of bias and va-
riance terms, we can transforms it into

|
m∑
i=1

γx,zi
wzi
−w(x)|

=|
m∑
i=1

γx,ziεzi +
m∑
i=1

γx,zi(w(zi)−w(x))|
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≤|
m∑
i=1

γx,zi
εzi
|+ |

m∑
i=1

γx,zi
(w(zi)−w(x))|

≤|
m∑
i=1

γx,zi
εzi
|+ L

m∑
i=1

γx,zi
d(zi,x) (7)

By Hoeffding’s inequality it follows that |
∑m
i=1 γx,zi

εzi
| ≤

C‖γx,z‖2 for C = b
√

2 log( 2
δ ), w.p. at least 1 − δ. Inequa-

lity (7) yield a upper bound guarantee for solving the origi-
nal objective with high probability, we can formulate the new
problem as the following optimization:

min
γx,z

C‖γx,z‖2 + γ>x,zu s.t.
m∑
i=1

γx,zi
= 1; γx,zi

≥ 0, ∀i.

(8)
where u = {Ld(z1,x), · · · , Ld(zm,x)}. Its Lagrangian is:

L(γx,z, θ, λ)

=p‖γx,z‖2 + γ>x,zu + λ(1−
m∑
i=1

γx,zi)−
m∑
i=1

θiγx,zi

where λ ∈ R and θ1, · · · , θm ≥ 0 are the Lagrange mul-
tipliers. This optimization problem has a convex objective
function and feasible affine constraints. Thus, satisfying the
KKT conditions is a necessary and sufficient condition for
finding the problem’s optimum. Setting the partial derivative
of L(γx,z, θ, λ) with respect to γx,z to zero gives:

γx,zi

‖γx,z‖2
= λ− ui + θi. (9)

Let γ?x,z be the optimal solution. According to the KKT con-
ditions, if γ?x,zi

> 0 it follows that θi = 0. Otherwise,
γ?x,zi

= 0 and λ ≤ ui. Substituting it into the equality con-
straint

∑
i γ

?
x,zi

= 1, for any γ?x,zi
> 0, we have

γ?x,zj
=

λ− uj∑
γ?
x,zi

>0(λ− ui)
=

λ− Ld(zj ,x)∑
γ?
x,zi

>0(λ− Ld(zi,x))

(10)
It demonstrates that the optimal weight γ?x,zi

is proportio-
nal to −d(zi,x), whose weight decay is quite slow compa-
red to the popular exponential decay scheme or inversely-
proportional decay scheme that used in [Mao et al., 2015;
Gu and Han, 2013; Ladicky and Torr, 2011]. It also shows
that parameter λ has a cutoff effect that only nearest anchor
points that λ − Ld(zi,x) > 0 are considered for encoding
data point x, the weights for the remaining anchor points are
all set to zero. This is consistent with the previous predefined
local coding scheme. Note that the objective (8) is a convex
optimization problem, which can be efficiently solved using
off-the-shelf toolbox. Here we follow the method in [Anava
and Levy, 2016]. The key idea is to greedily add neighbors
according to their distance from x until a stopping condition
is achieved. Our algorithm is presented in Algorithm 1.

Denote by k the number of nonzero weights which corre-
spond to the k smallest value of u. Squaring and summing
Equation (9) over all the nonzero elements of γ?x,z, we have

1 =
∑

γ?
x,zi

>0

γ?x,zi

‖γ?x,z‖2
=

∑
γ?
x,zi

>0

(λ− ui)
2 (11)

Algorithm 1 Local Coding Coordinates (LLC) Optimization
Algorithm

Input: data point x and anchor points Z = {z1, · · · , zm}
Initialization: λ0 = u1 +1, k = 0 and compute the vector
of ascending ordered distance u ∈ Rm
while λk > uk+1 and k ≤ n− 1 do

Update k ← k + 1
Compute λk based on (12)

end while
Output: The number of nearest anchor points k, compute
the local coding coordinates γx,z based on (10)

which is equivalent to kλ2−2λ
∑k
i=1 ui+(

∑k
i=1 u

2
i −1) =

0. Solving this quadratic equation with respect to λ and igno-
ring the solution that violate γ?x,zi

≥ 0, we get

λ =
1

k
(
k∑
i=1

ui +

√√√√k + (
k∑
i=1

ui)2 − k
k∑
i=1

u2
i ) (12)

4.2 Anchor Points and FMs Optimization Method

For the anchor points and FMs optimization, we apply the
SGD method to the objective in (6). Specifically, at each ite-
ration, we randomly sample a data point x and its correspon-
ding target y, then we update the anchor points Z and FMs
parameters ΘLLFM . Since the data point x is approximate
as a linear combination of its k-nearest anchor points, only
the k-nearest anchor points need to be optimized. For up-
dating anchor points z, we take the partial derivative of the
objective (6) with respect to z while fixing ΘLLFM . The de-

rivative
∂γ>x,z

∂zi
is a (p+ p2)×m matrix, among which only k

columns are non zero. The ith column is computed as:
Ls(λ− Ld(zi,x)−

∑
γx,zj

>0(λ− Ld(zj ,x)))

(
∑
γx,zj

>0(λ− Ld(zj ,x)))2
(13)

where s = ∂d(zi,x)
∂zi

. The other nonzero columns except the
ith column are computed as

− Ls

(
∑
γx,zj

>0(λ− Ld(zj ,x)))2
(14)

where zj also belongs to the k-nearest neighbors of x and it
is not equal to zi. Then the ith anchor point zi is updated as:

zi ← zi +
ρz

t+ t0

∂γ>x,z
∂zi

fFMZ

∂`(y,f
LLFM
γx,z,Z,ΘLLFM

(x))

∂fLLFMγx,z,Z,ΘLLFM
(x)

(15)
where ρz is the learning rate, t denotes the current iteration
number and t0 is a positive constant [Bordes et al., 2009].
The optimal learning rate is denoted as ρ

t+t0
[Shalev-Shwartz

et al., 2007]. Note that our method works well with different
loss function and can be applied to classification task or re-
gression task, which only needs to minorly modify the last
term about the derivative of the loss function in update rule
(15). The FMs variables ΘLLFM can also be updated by uti-
lizing SGD method (more details can be found in [Rendle,
2012; 2010]). Specifically, the update rules for FMs parame-
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ter θzi with respect to anchor point zi is:

θzi
←θzi

+
ρθ

t+ t0
(
∂fFMzi

∂θzi

γx,zi

∂`(y,f
LLFM
γx,z,Z,ΘLLFM

(x))

∂fLLFMγx,z,Z,ΘLLFM
(x)

+
∂R(θzi

)

∂θzi

) (16)

where
∂fFM

zi

∂θzi
can be found in Equation (1). Algorithm 2 sum-

marizes the proposed Locally linear Factorization Mahicnes
with pJoint Optimization (LLFM-JO) method.

Algorithm 2 Locally Linear Factorization Mahicnes Joint
Optimization Algorithm (LLFM-JO)

Input: Training data{(xn, yn}Nn=1, the number of anchor
points m and parameters ρ, β, L
while no convergence do

Sample a data point x randomly
Compute the local coordinate γx,z according to Algo-
rithm 1
Compute the loss `(y, fLLFMγx,z,Z,ΘLLFM

(x))

for each nearest anchor point i with respect to data point
x do

Update the ith nearest anchor point of x via (15)
Update the FMs model parameters with respect to this
anchor point via (16)

end for
end while
Output: Compute the local coding coordinates γx,zi

based
on (10)

5 Experiments
In this section, we empirically investigate whether our propo-
sed LLFM-JO method can achieve better performance com-
pared to other state-of-the-art methods which employ LLFM
method with unsupervised anchor point learning (LLFM-
APL) and predefined local coding scheme (LLFM-DO) on
benchmark datasets. Furthermore we examine the efficacy
and efficiency of joint optimization.

5.1 Experimental Testbeds and Setup
We conduct our experiments on six public datasets. Table
1 gives a brief summary of these datasets. All the datasets
are normalized to have zero mean and unit variance in each
dimension. To make fair comparison, all the algorithms are
conducted over 5 experimental runs of different random per-
mutations. We apply logistic loss [Rendle, 2012] for training
and evaluate the performance of our proposed methods for
classification task by measuring accuracy and logistic loss.
We adopt squared Euclidean distance function in local soft-
assignment coding and our local coding coordinates optimi-
zation method. For parameter settings, we perform grid se-
arch to choose the best parameters for each algorithm on the
training set.

5.2 Performance Comparison
In our experiments, we compare the following methods:

Dataset #Training #Test #class
Banana 3533 1767 2
Magic04 12680 6340 2
IJCNN 49990 91701 2
LETTER 15000 5000 26
MNIST 60000 10000 10
Covtype 387342 193670 2

Table 1: Summary of datasets used in our experiments.

• FM: Factorization Machines with stochastic gradient
descent optimization method, which is the baseline met-
hod we introduced in Section 2.1.

• LLFM-DO: Locally Linear Factorization Machines
with Decoupled Optimization method. We first compute
the anchor points by K-means clustering and encode the
training data with local soft-assignment coding, and then
estimate the LLFM model parameters. This method is
a baseline to validate the efficacy of joint optimization
over the anchor points, local coding coordinates and mo-
del parameters simultaneously.

• LLFM-APL: Locally Linear Factorization Machines
with Anchor Point Learning method. We jointly esti-
mate both the anchor points and FMs model parameters
as described in Section 4.2 but using the fixed local soft-
assignment coding scheme as Equation (3). This method
is a baseline to validate the efficacy of local coding coor-
dinates optimization method in algorithm 1.

• LLFM-JO: The proposed LLFM method with Joint Op-
timization method in algorithm 2.

5.3 Experimental Results
The detailed comparison results are shown in Table 2 and Fi-
gure 1. We can observe that:

• All of LLFM methods that employ local linear coding
techniques achieve better performance in terms of trai-
ning loss, test loss and test accuracy compared with
original FM method. This validates the efficacy of le-
veraging local coding techniques to improve the per-
formance of FMs. Since local linear coding techniques
could leverage the manifold geometric structure to learn
a much more complex nonlinear model.

• It is not surprising that the performance of LLFM-JO,
LLFM-APL is much better than LLFM-DO. It reveals
the importance of jointly optimizing over the anchor
points and the FMs model. It is even more critical on
LETTER and MNIST datasets since the dimension of in-
put features is much bigger and the LLFM-DO may be
more risky and unreliable in finding the right direction
for update at each iteration. Moreover, it can be cle-
arly seen that the performance of LLFM-JO outperforms
LLFM-APL especially on LETTER dataset, this clearly
demonstrates the power of the local coding coordinate
optimization method in algorithm 1.

• As evidenced by Table 2, LLFM-JO takes less test time
compared with LLFM-DO and LLFM-APL. The rea-
son is that test time scales linearly with the parameter
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Figure 1: Epoch-wise demonstration of different algorithms with logloss on test data

Banana Train loss Test loss Acc(%) Time
FM 0.6810 0.6770 53.53 1×

LLFM-DO 0.2614 0.2371 89.80 5.84×
LLFM-APL 0.2573 0.2337 89.87 5.89×
LLFM-JO 0.2396 0.2201 90.49 7.00×
Magic04 Train loss Test loss Acc(%) Test time

FM 0.3783 0.3804 83.98 1×
LLFM-DO 0.3661 0.3715 84.22 4.92×

LLFM-APL 0.3582 0.3670 84.44 5.14×
LLFM-JO 0.3220 0.3364 85.95 6.30×

IJCNN Train loss Test loss Acc(%) test time
FM 0.0949 0.0928 96.70 1×

LLFM-DO 0.0815 0.0760 97.58 4.97×
LLFM-APL 0.0786 0.0682 97.92 5.16×
LLFM-JO 0.0564 0.0511 98.55 4.87×
LETTER Train loss Test loss Acc(%) test time

FM 1.3899 1.2166 83.19 1×
LLFM 0.6966 0.5753 92.57 5.01×

LLFM-APL 0.6315 0.4819 93.70 4.92×
LLFM-JO 0.5129 0.3958 94.56 4.33×

MNIST Train loss Test loss Acc(%) test time
FM 0.4733 0.4247 95.61 1×

LLFM 0.3051 0.3331 95.40 5.01×
LLFM-APL 0.2586 0.3080 95.86 5.27×
LLFM-JO 0.2558 0.2822 96.26 1.74×

Covtype Train loss Test loss Acc(%) Test time
FM 0.4713 0.4557 78.42 1×

LLFM-DO 0.4509 0.4374 79.70 6.83×
LLFM-APL 0.4312 0.4178 80.34 6.87×
LLFM-JO 0.4270 0.4130 80.78 4.99×

Table 2: Comparison of different algorithms in terms of training loss,
test loss, classification accuracy and test time (normalized to test
time of FM)

k, LLFM model need to compute k FM model with re-
spect to k nearest anchor points for prediction. However,
LLFM-DO and LLFM-APL are restricted to choose one
value of k during the locally linear coding procedure,
LLFM-JO method could choose k adaptively, which is
in line with our theoretical findings.

• To further examine the effectiveness of joint optimiza-
tion, we record the objective function value as well as
the logistic loss on the test data for epoch. Figure 1
shows the epoch-wise results of different algorithm. It
can be seen clearly that the test log loss of all different
algorithms are monotonically decreasing over the epo-
chs and LLFM-JO outperforms the other algorithms sig-
nificantly.

6 Conclusion and Future Work

In this work, we present a novel Locally Linear Factoriza-
tion Machines (LLFM) model that exploring local coding
technique. Unlike existing previous methods that learn the
anchor points and local coding scheme separately before mo-
del training process we formulate a joint optimization over
anchor point, local coding coordinate and FMs variables to
minimize classification or regression risk. Our encouraging
results show that LLFM-JO achieves better predictive accu-
racy than other competitive methods which employ LLFM
with unsupervised anchor point learning and predefined lo-
cal coding scheme. A shortcoming of current method is the
high computation cost of model training due to the search
and update of the local coding coordinates, it will be interes-
ting to develop efficient local coding coordinates optimiza-
tion approach. Future work includes combining LLFM model
with learning to rank technique [Cao et al., 2007] and AUC
maximization[Zhao et al., 2011].
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