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Abstract

This paper presents to model the Hebb learning rule
and proposes a neuron learning machine (NLM).
Hebb learning rule describes the plasticity of the
connection between presynaptic and postsynaptic
neurons and it is unsupervised itself. It formulates
the updating gradient of the connecting weight in
artificial neural networks. In this paper, we con-
struct an objective function via modeling the Hebb
rule. We make a hypothesis to simplify the mod-
el and introduce a correlation based constraint ac-
cording to the hypothesis and stability of solution-
s. By analysis from the perspectives of maintain-
ing abstract information and increasing the ener-
gy based probability of observed data, we find that
this biologically inspired model has the capabili-
ty of learning useful features. NLM can also be
stacked to learn hierarchical features and reformu-
lated into convolutional version to extract features
from 2-dimensional data. Experiments on single-
layer and deep networks demonstrate the effective-
ness of NLM in unsupervised feature learning.

1 Introduction
A promising but challenging research in artificial intelligence
has been mimicking the process the human brain represents
information for decades [Arel et al., 2010]. Neural science
findings [Kruger et al., 2013] have provided new ideas for
designing information representation systems. This has mo-
tivated the development of hierarchical learning architectures
and feature learning models.

Unsupervised feature learning aims to learn good represen-
tations from unlabeled input data. One of the interests in un-
supervised learning is the stacked single-layer learning mod-
els for learning hierarchical representations [Hinton et al.,
2006; Hinton and Salakhutdinov, 2006; Bengio et al., 2006;
2013]. Unsupervised learning had a catalytic effect in reviv-
ing interest in deep neural networks [LeCun et al., 2015]. Al-
though it has little effect in many purely supervised appli-
cations, it still works when large amount of labeled samples
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are unavailable. Various single-layer feature learning mod-
els have been used and proposed since the layer-wise train-
ing by restricted Boltzmann machine (RBM) [Hinton et al.,
2006] and auto-encoder (AE) [Bengio et al., 2006], includ-
ing principal component analysis (PCA) [Valpola, 2014], s-
parse coding [He et al., 2013], denoising AE [Vincent et al.,
2010], and sparse versions of AE and RBM [Lee et al., 2007;
Ji et al., 2014; Ranzato et al., 2007; Gong et al., 2015].

Good representations eliminate irrelevant variabilities of
the input data, while preserving the information that is useful
for the ultimate task [Ranzato et al., 2007]. For this purpose,
an intuitive way is to construct the encoder-decoder model.
AE, RBM, PCA and most unsupervised single-layer feature
learning models follow this paradigm. Based on the encoder-
decoder architecture, more useful features can be learned by
adding constrains to extract more abstract concepts, includ-
ing sparse constraints and sensitivity constraint [Rifai et al.,
2011]. Another type of learning models only have a decoder,
sparse coding for example. The above models can be taken as
task based models which model the task and find the solution
that can well handle the task. However, some tasks are am-
phibolous to define and model. The feature learning task for
instance, there are many ways to define the abstraction, e.g.,
sparse representation, noise corruption [Vincent et al., 2010],
and contractive constraint [Rifai et al., 2011].

In this paper, we propose a learning rule based model
which attempts to model the learning process of neurons with
less considerations of the task. The model consists of only
the encoder. The learning behaviours of neurons have been
researched for a long time for revealing the mechanism of
human cognition. One of the most famous theory is the Hebb
learning rule [Hebb, 1949] proposed by Donald Olding Heb-
b. By applying the Hebb rule in the study of artificial neural
networks, we can obtain powerful models of neural compu-
tation that might be close to the function of structures found
in neural systems of many diverse species [Kuriscak et al.,
2015]. Recent works on Hebb learning are the series on “bi-
ologically plausible backprop” [Scellier and Bengio, 2016]
by Bengio, et al. They linked Hebb and other biological-
ly formulated rules to back-propagation algorithm and used
them to train the neural network. Hebb rule gives the updat-
ing gradient of the connecting weights and it is unsupervised
itself. We establish the model with the single layer network
as many unsupervised learning models and attempt to mod-
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el the updating gradient as the objective function. However,
the architecture of artificial neural network is highly simpli-
fied from the neural network in brain. Therefore, when the
learning rule is implemented, several properties have to be
considered [Kuriscak et al., 2015] in order to adapt to and
reinforce the simplified network. We call the model neuron
learning machine (NLM) and find that NLM has many simi-
lar properties to other unsupervised feature learning models.
From the analysis and experiments, NLM is capable of learn-
ing useful features and outperform the compared task based
models. For learning features from 2-dimensional data, e.g.,
images and videos, we also extend the model into a convolu-
tional version.

This paper is organized in five sections. In the next section,
the proposed NLM is formulated. In Section 3, we explain
how the NLM works and learns useful features. The exper-
imental studies are provided in Section 4. In Section 5, we
conclude this paper.

2 The Model
The structure of NLM follows the common structure of
single-layer neural network, e.g., the encoder of the AE and
RBM. The values of hidden units are computed by:

hi = s(Wiv + bi) (1)

where h is the hidden vector and v is the visible vector. W
and b denote the connecting weight matrix and bias vector
respectively. s is the activation function and here we use the
sigmoid function s(x) = 1/(1 + exp(−x)).

Hebb learning rule can be summarised by the most cited
sentence in [Hebb, 1949]: “When an axon of cell A is near
enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” In the training of an artifi-
cial neural network, Hebb rule describes the updating gradi-
ent of each connecting weight Wij = Wij + ∆Wij . This can
be simplified by the product of the values of the units at the
two ends of the connection:

∆Wij = αhivj (2)

where α is the learning rate. Hebb rule itself is an unsuper-
vised learning rule which formulates the learning process of
neurons. Therefore, we attempt to model the network based
on this learning rule in order to learn in the neuronal way.

With the gradient, a model can be obtained by integrating
over ∆W . However, since W is a matrix and h actually is a
function ofW and v, i.e., h = f(W, v), it is of great difficulty
to derive the integral. As discussed above, the artificial neu-
ral networks are highly simplified models inspired from real
neural networks. Therefore when the Hebb learning rule is
applied to the simplified network, many considerations have
to be considered, i.e., locality, cooperativity, weight bound-
edness, competition, long term stability, and weight decrease
and increase [Kuriscak et al., 2015]. With these considera-
tions and constraints, we can simplify the integration process.
In real neural networks, there are many factors influencing the
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Figure 1: Undirected graphical models of network with and with-
out competition. (a) Network without competition (b) Network with
competition

status of hidden units, including status of visible units, infor-
mation from other nucleus, competition between hidden neu-
rons and adjacent connections and limitations of the neuron
itself. Then, a connection of the simplified network has less
influence on h. Therefore, for convenience, we assume that
the connecting weight has negligible influence on the con-
nected hidden unit. Under this omitting assumption, h can
be taken as a set of constants wrt W and the integral is ap-
parent, i.e., max

∑
ij

∫
Wij

hivj =
∑

ij Wijhivj = vTWh.
Although this term is derived under the hypothesis, optimiz-
ing this term will increase the correlation between Wij and
vjhi which is consistent with the Hebb rule. Specially, this
term is also similar to the energy defined in RBM and Hop-
field network.

However, without the probabilistic model in RBM and the
recurrent architecture in Hopfield network, maximizing this
term merely would not work because the simplified network
cannot approximate this assumption and guarantee the sta-
bility of solutions without any constraints. Components in
W will be +∞ or −∞ when vTWh is maximized. In or-
der to make the network approximate the assumption and
guarantee the long term stability of W and h, a correlation
based constraint is introduced. The assumption omits the
effect of W on the hidden units h. Therefore, both posi-
tive and negative correlations between W and h should be
minimized which can be represented by the cosine between
the two vectors cos2(h,W:j) where W:j is the j-th row of
the matrix W . Meanwhile, the length of W and h should
be limited in order to prevent the infinite increase or de-
crease of W . Then the correlation constraint can be formu-
lated as the square of inner product between the two vectors∑

j〈h,W:j〉2 =
∑

j ‖W:j‖22‖h‖22 cos2(h,W:j) = ‖Wh‖22.
With the simplified Hebb model and the correlation based
constraint, we can obtain the objective function of NLM:

max J(W, b) = vTWh− λ‖Wh‖22 (3)
where λ is a user defined parameter that controls the impor-
tance of the two terms. Here we explain the assumption with
neuron competition which is inspired from lateral inhibitory.

The network can be taken as undirected graphical model
with connections representing the relationship between vis-
ible and hidden units as shown in Figure 1. Without com-
petition, the hidden units are independent identically dis-
tributed. Because Hebb learning has the property of local-
ity where the update of a weight depends only on the pre-
and postsynaptic neurons. The max-clique of this graph is
circled by the red ellipse in Figure 1 (a). When the compe-
tition is implemented, there are implicit connections between

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2316



each pair of hidden units. Then the max-clique includes al-
l the hidden units as shown in Figure 1 (b). Following the
probability distribution defined in RBM, we give the ener-
gy of the max-clique with the connecting weight E(C) =∑

xi,xj∈C E(xi, xj) = −
∑

xi,xj∈C xiWijxj where C de-
notes the clique and the energy of the clique means the sum
of the energy of each connection. The potential of a clique
is defined as Φ(C) = exp(−E(C)) =

∏
xi,xj∈C Φ(xi, xj).

With the potential, the joint probability density of the graph
p(x1, x2, ...) =

∏
C Φ(C)/

∫
x1,x2,...

∏
C Φ(C). Therefore

the distribution of the network in Figure 1 (a) is denoted by:

p(v, h) =

∏
i,j Φ(vj , hi)∫

v,h

∏
i,j Φ(vj , hi)

(4)

With the simplified architecture, when only Hebb learn-
ing is considered, the hidden neurons are independent to
each other and all prefer to respond to the most frequen-
t pattern. When the competition is complemented, the po-
tential of a max-clique with vj is denoted by Φ(Cj) =∏

i Φ(vj , hi)
∏

k,l Φ(hk, hl). The joint probability of this
network is then computed by:

pc(v, h) =

∏
j Φ(Cj)∫

v,h

∏
j Φ(Cj)

=

∏
i,j Φ(vj , hi)

[∏
k,l Φ(hk, hl)

]n
∫
v,h

∏
i,j Φ(vj , hi)

[∏
k,l Φ(hk, hl)

]n (5)

where n is the number of visible units. In Eq. (4) and
(5), the potential Φ(vj , hi) depends on the status of units as
well as Wij . The potential Φ(hk, hl) is then depends on the
neuron competition. In neuron competition, the neurons in-
hibit the firing of other neurons. Therefore, the latent con-
necting weights between them are usually negative values.
Then the summed energy of hidden units

∑
klE(hk, hl) =∑

kl−hkWklhl will be a positive large value. The status of
the hidden units follows the conditional probability p(h|v) =
p(v, h)/

∫
h
p(v, h) =

∏
j Φ(Cj)/

∫
h

∏
j Φ(Cj) and there-

fore with competition, it depends largely on the competition
dominated potential while less on the network parameter W .
Consequently, we make the assumption in order to model the
Hebb rule conveniently.

Since the proposed model has only an encoder, it is conve-
nient to derive a convolutional one in order to learn useful fea-
tures from images. In convolutional neural networks (CNN),
the feature maps are obtained by several trainable convolution
kernels:

Hi = s(I ∗Wi + bi) (6)

where Hi denotes the i-th feature map and Wi denotes the
i-th convolution kernel. The convolutional NLM (CNLM)
can be obtained by summing over all the pixels in feature
maps. Then the first term can be denoted by

∑
(x,y)

∑
i(I ∗

Wi)(x, y)Hi(x, y) =
∑

i tr(I ∗WiH
T
i ), where (x, y) de-

notes the pixel position in H and tr() is the trace of a matrix.
For the second term, the convolutional version is also easy to
derive, i.e.,

∑
(x,y)

∑
(i,j)〈W (i, j),H(x, y)〉2, where (i, j)

denotes the position in convolution kernels. By combining
the two terms, the CNLM is formulated:

max JC(W , b) =
∑
i

tr(I ∗WiH
T
i )

+ λ
∑
(x,y)

∑
(i,j)

〈W (i, j),H(x, y)〉2 (7)

NLM and CNLM can be optimized by the widely used s-
tochastic gradient descent algorithm.

3 Analysis
In this section, we explain how the NLM learns useful fea-
tures from input data. As introduced above and described
in [Vincent et al., 2010], one natural criterion that we may
expect any good representation to meet, at least to some de-
gree, is to retain a significant amount of information about
the input. As introduced above, the encoer-decoder and de-
coder based models can achieve this criterion because of the
reconstruction of input data, i.e., max p(v|h). NLM has only
the encoder, but the neuron inspired learning process can also
achieve this criterion. In NLM, maximizing Eq. (3) amounts
to increasing the cosine correlation coefficient between v and
Wh:

cos(v,Wh) =
vTWh

‖v‖2‖Wh‖2
(8)

Since v is the observed data, maximizing Eq. (3) means to
increasing the numerator and decreasing the denominator and
therefore increasing the correlation coefficient. Then the con-
ditional probability p(v|Wh) is enlarged. With a distribution
of visible data q(v), Eq(v) [log p(v|Wh)] can be increased.
p(v|Wh) is a parametric distribution parameterized by W ,
therefore it can be written as p(v|h;W ). With the determinis-
tic mapping from v to h, Eq(v) [log p(v|Wh)] can be written
as Eq(v,h) [log p(v|h)]. For any distribution p(v|h) we have
[Vincent et al., 2010]:

Eq(v,h) [log p(v|h)] ≤ Eq(v,h) [log q(v|h)] (9)

Eq(v,h) [− log q(v|h)] denotes the conditional entropy H(v|h)
between v and h, and the mutual information can be com-
puted by I(v;h) = H(v) − H(v|h) with H(v) being a con-
stant. Therefore, optimizing the objective function in NLM
amounts to increasing the lower bound on the mutual infor-
mation between v and h. This is similar to AE [Vincent et al.,
2010]. Consequently, the representation h learned by NLM
can retain information of input data v.

Another criterion of a good representation is to elimi-
nate irrelevant variabilities of the input data, i.e., abstrac-
tion and invariance [Bengio et al., 2013]. Many model-
s achieve this criterion by introducing regularization terms,
e.g., sparsity induced term [Lee et al., 2007; Ji et al., 2014;
Ranzato et al., 2007; Gong et al., 2015] and sensitivity penal-
ization [Rifai et al., 2011]. By introducing noise, the model
can be trained to increase the robustness to local variation
[Vincent et al., 2010]. This can also learn useful features. In
NLM, the abstraction can be achieved by eliminating irrele-
vant components in v. For each visible unit vj , the squared
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inner product between h and W:j is minimized which break-
s the relationship between h and vjW:j as well. Then the
conditional probability p(h|vjW:j) will be minimized. Since
h = f(W, v), the conditional probability can be written as
p(h|vj ;W:j). The constraint term is the sum over all the
vj , and then minimizing the constraint term amounts to mini-
mizing the summed conditional probability

∑
j p(h|vj ;W:j).

However, maximizing the first term will increase the corre-
lation between vTW and h which increases the condition-
al probability p(h|v;W ). As a consequence, by maximizing
the objective function in NLM, p(h|v;W ) is increased while
the summed probability over all the components in v, i.e.,∑

j p(h|vj ;W:j) is reduced. This means that h can respond
to v while h cannot respond to most of the components in v.
In other words, in NLM, h responds to most relevant compo-
nents which omitting the relatively irrelevant components in
v. Therefore, the proposed NLM has the ability of abstrac-
tion.

From another perspective, in NLM, the first term is similar
to the energy defined by RBM:

E(v, h) = −
∑
i

∑
j

vjWijhi −
∑
i

bihi −
∑
j

cjhj (10)

RBM is a generative model and the energy based joint distri-
bution is considered:

p(v, h) =
1

Z
exp(−E(v, h)) (11)

where Z is a normalization constant. RBM is trained by max-
imizing the probability that the network assigns to the ob-
served data, i.e., p(v) =

∑
h p(v, h). The probability that the

network assigns to a training data can be raised by adjusting
the weights and biases to lower the energy of that data and to
raise the energy of other data, especially those that have low
energies and therefore make a big contribution to the parti-
tion function [Hinton, 2010]. Similarly, NLM can be taken
as an energy based model with a correlation based constraint.
Considering negative version of the first term −vTWh as the
energy of the network, the constraint can be used to restrain
the decrease of the summed energy of all the data. Since h re-
sponds to v according toW , by minimizing the squared inner
product between h andW:j , the summed energy

∑
d−dTWh

over all the possible data d in the data space is raised to ap-
proach to 0 because most components in Wh is restrained to
0. However, since the first term is the energy of the observed
data, such energy is relatively lower than that of other data.
From the perspective of network energy, the proposed NLM
assigns high probability to the observed data which is similar
to RBM.

4 Experimental Study
4.1 Experiments on the Learning Process
First we implement the experiments on the gradient based
learning process and verify the claims we make in the anal-
ysis of the model. The widely used MNIST digit dataset is
used here and we randomly select 10000 images from the
training set in order to speed up the experiments. We claim
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Figure 2: (a) Plots of the correlation coefficient cos(v,Wh) and
cos2(W,h) during the learning process. (b) Plots of the energy of
the observed data and random data and the simplified p(v) during
the learning process. (c) Error rates (%) of NLM with different λ on
the MNIST dataset. The red line indicates the error rate of MO-SFL
for comparison. (d) Comparison of different learning models with
different number of hidden units.

that optimizing the objective function in NLM amounts to in-
creasing the lower bound on the mutual information between
v and h. This can be verified by the correlation coefficient
between v and Wh in Eq. (8). Therefore we plot the value
of cos(v,Wh) and

∑
j cos2(vjW:j , h) =

∑
j cos2(W:j , h)

in each iteration as shown in Figure 2 (a). The blue dashed
line represents

∑
j cos2(W:j , h) and red solid line represents

cos(v,Wh). During the learning process, the correlation be-
tween v and Wh increases. This demonstrates that NLM
achieves similar function to AE. Then on the squared cor-
relation coefficient between W and h, with the increase of
iterations, it gradually converges to 0. This means that the
correlation constraint makes the network approximate the
assumption and reduce the summed conditional probability∑

j p(h|vj ;W:j).
We also claim that in NLM, h responds to most relevan-

t components which omitting the relatively irrelevant com-
ponents in v. Then we select two images from the M-
NIST dataset and CIFAR-10 dataset respectively, and plot
cos2(h,W:j) for each j as the response to each vj during
the iterations. Figure 3 shows such plots of the initialization,
10th iteration (N=10), 50th iteration (N=50) and the last itera-
tion (N=100), respectively. Since v is 2-dimensional data, the
plots are exhibited in the 3-dimensional form with the heave
representing the response to each pixel in v. The sharp peak
demonstrates that h responds to a few components in input
data and most components cannot significantly influence the
response of h andW . For the image in CIFAR-10 dataset, we
also compare the response plots with different λ.

From the network energy perspective, NLM has the simi-
lar properties to RBM. We plot the energy −vTWh in each
iteration of the observed data set and other data set as dot-
ted line and dashed line respectively show in Figure 2 (b).
The other data set is a random set with the same size to
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Figure 3: 3 dimension plots of cos2(h,W:j) on each pixel of the
input image. Two images from the MNIST dataset and the CIFAR-
10 dataset respectively are exhibited. With the increase of iterations,
i.e., N=0, 10, 50, and 100, the irrelevant pixels are restrained. With
different λ, the response intensity of each pixel is different.

the observed data set. With the learning process, the ener-
gy of observed data decreases greatly while that of the oth-
er data does not significantly change. To further narrow
the distance between NLM and RBM, we set a simplified
p(v) = exp(vTWh)/(exp(vTWh) + exp(dTWh)), where
d denotes the other data. p(v) in each iteration is plotted in-
to red line as shown in Figure 2 (b). p(v) increases with the
learning process which demonstrates that NLM can model the
observed data well.

4.2 Experiments on Single-layer Network
Above experiments show the behaviours of NLM during
learning process and verify the claims we make in Analysis.
Then we test NLM on single-layer network and the features
learned by NLM are evaluated. The experiments are imple-
mented on the MNIST digit dataset and image patches. The
image patches with the size of 12× 12 are randomly extract-
ed from two remote sensing images respectively. Some digit
images and the two remote sensing images are shown in Fig-
ure 4. The first image is a panchromatic image acquired by
Landsat 7 satellite which shows the city of Wuhan in China.
The size of the image is 4561×4505 pixels and we randomly
extract 100000 image patches as the Wuhan dataset. Another
image is a synthetic aperture radar (SAR) image which shows
the Yellow River Estuary in China. The size of this image is
3233 × 5193 pixels and there are 100000 image patches in
the Yellow River dataset. Here the remote sensing images are
used because of the significance and difficulty of interpret-
ing remote sensing images. Some randomly selected bases
learned by NLM on the three datasets are shown in Figure
4. AE, RBM, and the recently proposed sparsity induced ver-
sion of them, i.e., multiobjective sparse feature learning mod-
el (MO-SFL) [Gong et al., 2015] and sparse response RBM
(SR-RBM) [Ji et al., 2014] are compared. SR-RBM is based
on RBM and use the l1-norm of the activation probability of
hidden units to achieve a small code rate. A user defined pa-
rameter is used to control the importance of the two terms.
MO-SFL considers the difficulty of determining the compro-
mise between reconstruction error and sparsity. MO-SFL is
more adaptive than SR-RBM.

First on the MNIST dataset, without constraints, AE and
RBM achieve unstructured weight patterns. Sparsity is a
model of simple cells in visual cortex and it has been a key
element of unsupervised learning algorithms. With the s-
parsity constraint, the uncertainty of representations is re-
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Figure 4: Randomly sampled bases learned by the five models on
the MNIST dataset and image patches. The first row exhibits the
images in these datasets followed by the bases.

duced which increases the robustness to irrelevant variabil-
ities. Therefore, the bases learned by them can capture the lo-
cal structure of the images as shown in the figures. In NLM,
the constraint term leads the representation to responding to
most relevant components. Therefore, the local structure can
also be captured by the weights. Then on the remote sens-
ing image patches, it is more difficult to deal with remote
sensing images than nature images because such images are
acquired from satellite and many interferences may influence
the quality of the images. As a consequence, AE, RBM and
their derivatives may be misled by the inferences. Some bases
learned by NLM are Gabor-like edge detectors in differen-
t positions and orientations. The results are consistent with
many works on nature image patches.

In practice, a good representation is one that will eventu-
ally be useful for addressing tasks of interest. Therefore, we
test the features learned by the task of image classification.
The experiments are implemented on the MNIST dataset and
in order to speed up the learning process, we randomly sam-
ple 10000 images from the training set to train NLM as well
as other models. For the models, we set the number of hidden
units to 196. In NLM, λ = 1 and the learning rate in stochas-
tic gradient descent algorithm is set to 0.01. Those models
keep the same number of iterations. The features learned by
those models are fed into a linear classifier and we randomly
sample 1000, 5000, and 10000 images to train the classifier.
The test error rates (%) on the test set are listed in Table 1.
The best result is highlighted in bold. From the classification
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Table 1: Error rates (%) of features extracted by different feature
learning models with single-layer network on the MNIST dataset.

number of training samples

models 1000 5000 10000

AE 13.16 10.64 8.88
RBM 12.82 9.70 8.42
SR-RBM 12.49 8.87 7.42
MO-SFL 12.20 8.05 6.97
NLM 9.98 7.10 5.27

test, sparsity induced models can outperform the base model-
s. NLM always achieves the best result.

In NLM, the user defined parameter λ may influence the
performance. Therefore, we set λ = 0.03, 0.04, ..., 1.9 and
plot the error rate in Figure 2 (c). The result of MO-SFL is
marked by a red line for comparison. We can see that too s-
mall or too large values of the λ can reduce the performance
of NLM. However, NLM can outperform MO-SFL with a
large range of λ values, from 0.5 to 1.9. Meanwhile, rela-
tively good performance can also be achieved with many λ
values, from 0.8 to 1.1. Consequently, NLM is not too sensi-
tive to λ.

Another parameter that may influence the performance of
learning models is the number of hidden units. In the above
experiments, 196 is the empirical value. We set the number
of hidden units to 300, 400, and 500 for these learning mod-
els and plot the error rate as shown in Figure 2 (d). With the
sparse constraint, AE and RBM achieves much better per-
formance when there are more hidden units representing the
input data. NLM with 196 hidden units outperforms the other
models with 300 hidden units which demonstrates the effec-
tiveness for using hidden units to represent input data.

4.3 Experiments on Deep Networks
Above experiments evaluate NLM on single-layer network.
Then we apply NLM to deep neural networks and learn hier-
archical representations. First two NLMs are stacked with the
hidden units being 500 and 300 respectively. We set λ = 1
and the learning rate to be 0.01. The compared models, i.e.,
AE, RBM, SR-RBM, and MO-SFL, are also stacked with the
same architecture. The models are trained by the 60000 train-
ing images in the MNIST dataset. The learned hierarchical
features are fed into a linear classifier and we use randomly
sampled 10000 images and 60000 images to train the clas-
sifier. The test error rates are listed in Table 2. With the hi-
erarchical representation, NLM can outperform the compared
models. However, the performance improvement is much less
than single-layer network because of the limited architecture
for dealing with images. For efficiently learning features from
images, we use the architecture of CNN and learn the features
by CNLM.

First on the MNIST dataset, the input of the CNLM is
32 × 32 images which are obtained by evenly zero padding
original images. There are 10 5 × 5 filters in the first lay-
er and followed by a 2 × 2 max-pooling layer. The feature
maps in the 3rd layer are obtained by 50 10 × 5 × 5 filters
and the 4th layer has 50 down-sampled feature maps by max-

Table 2: Classification results of deep networks including stacked
and convolutional version of different feature learning models. In
the experiments on convolutional versions, the CIFAR-10 dataset is
also used.

stacked convolutional

models 10000 60000 version CIFAR-10

AE 3.02 1.63 0.76 21.8
RBM 3.06 1.68 0.83 25.2
SR-RBM 2.97 1.61 – –
MO-SFL 2.91 1.57 – –
NLM 2.89 1.53 0.67 21.1

pooling. Finally, 200 50× 5× 5 filters are implemented and
a feature vector is obtained. Then the features are classified
by SVM. We compare CNLM with the convolutional version
of AE [Masci et al., 2011] and RBM [Norouzi et al., 2009].
The test error rates are listed in Table 2.

Then we implement CNLM on a more difficult dataset, i.e.,
the CIFAR-10 dataset. This dataset consists of 50000 training
and 10000 test color images with the size of 32× 32. The hi-
erarchical architecture has 5 layers with 3 convolution layers
and 2 max-pooling layers, i.e., 3-100-100-150-150-200. The
size of filters in convolution layer is 5 × 5 and the pooling
size is 2×2. The learned features are classified by SVM. The
convolutional versions of AE and RBM are compared. The
test errors are listed in Table 2. Experiments on deep neural
networks demonstrate the effectiveness of NLM for learning
hierarchical features.

5 Conclusions

In this paper, a neuron learning machine (NLM) was pro-
posed based on Hebb learning. Hebb learning rule describes
how synaptic weight changes and can be formulated by the
gradient of a connecting weight in neural network models.
To model the network with Hebb learning, we integrate over
the gradient by assuming the negligible effect of weights on
representations. This omitting assumption simplifies the inte-
gral process greatly. In order to approximate this assumption
and obtain a stable solution, a correlation constraint is added.
We find that NLM has the properties of retaining informa-
tion and abstraction which are essential for learning useful
representations. Analysis and experiments demonstrate the
effectiveness of the learned features by the proposed model.
The future work will include but not limited to exploring the
learning behaviours of neurons for efficient unsupervised as
well as supervised neural learning models on various network
architectures.
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