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Abstract

Whereas it is well known that social network users
influence each other, a fundamental problem in in-
fluence maximization, opinion formation and viral
marketing is that users’ influences are difficult to
quantify. Previous work has directly defined an in-
dependent model parameter to capture the interper-
sonal influence between each pair of users. How-
ever, such models do not consider how influences
depend on each other if they originate from the
same user or if they act on the same user. To do
so, these models need a parameter for each pair
of users, which results in high-dimensional models
becoming easily trapped into the overfitting prob-
lem. Given these problems, another way of defining
the parameters is needed to consider the dependen-
cies. Thus we propose a model that defines parame-
ters for every user with a latent influence vector and
a susceptibility vector. Such low-dimensional and
distributed representations naturally cause the in-
terpersonal influences involving the same user to be
coupled with each other, thus reducing the model’s
complexity. Additionally, the model can easily con-
sider the sentimental polarities of users’ messages
and how sentiment affects users’ influences. In
this study, we conduct extensive experiments on
real Microblog data, showing that our model with
distributed representations achieves better accuracy
than the state-of-the-art and pair-wise models, and
that learning influences on sentiments benefit per-
formance.

1 Introduction

Social network services generally allow users to post, for-
ward, share, or “like” a piece of information; to comment on
a product or service; or to “check in” at a place of interest. All
the above behaviors can be grouped as temporal sequences of
users’ activity, which are known as temporal cascades. Thus
a temporal cascade contains users’ actions with regard to a
specific piece of information, product, place, etc. Since such
actions are publicly visible, and since the system purposefully
shares the information with related users or communities,

Figure 1: Previous pair-wise work gave an overfitting influence to
(c, d)

users in a cascade influence each other [Goyal et al., 2010;
Althoff et al., 2016], similar to a contagion of behaviors.

Scholars have applied the concept of contagion to
study viral marketing [Richardson and Domingos, 2002], in-
fluence maximization [Gionis et al., 2013; Du et al., 2016b;
Lu et al., 2016], and how opinion forms [Bindel et al., 2015;
Wang et al., 2016a]. These studies and applications need a
way to know the causality of who influences whom, as well
as accurate values of influences. In addition, the influences
are usually different, depending on who the actors and recipi-
ents of the action are [Aral and Walker, 2012]. Therefore, ac-
curately quantifying the interpersonal influences involved is
fundamental to a proper understanding of viral marketing, in-
fluence maximization, and understanding opinion formation.

In previous works, interpersonal influences are
estimated by machine learning from the observed
data [Saito et al., 2008]. Those studies suffer from the
overfitting problem in sparse data, because of how they
define their model parameters. A free parameter on each
user pair in those models. Such pair-wise parameters do
not consider dependency, especially when those influences
originate from or act on the same user. For the parameters of
such user pairs, the overfitting problem occurs, resulting in
inaccurate estimation. For an intuitive example in Figure 1,
the interpersonal influence cannot be learned for user pair c
and d, who do not appear in the same cascade with informa-
tion passing between them. In such a case, even though c,
d, and e form a social triangle, a zero or some empirically
small constant ǫ is assigned, implying that information would
never or seldom be passed between them in the future, which
can be inaccurate. In fact, power-law-like distributions can
always be found in social network analysis, which suggests
that the number of user pairs between whom information is
rarely passed cannot be ignored.
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(a) Our models output the best
ROC curve on prediction of next
infected user.

(b) Our models outperform
competitors on prediction of
next infected user.

(c) Our results achieve the
lowest error on cascade size
prediction.

(d) Our models outperform
competitors on prediction of
“who will be retweeted”.

Figure 2: Our models are CT LIS, and its variants: Sent LIS and Sent LIS(ns). (a) The ROC curves of prediction results of next infected
user. (b) The area under ROC curve (AUC) is used for next infected user prediction. (c) Mean absolute percentage error (MAPE) is used for
cascade size prediction, and a good model should have small MAPE. (d) The top-one accuracy is used to measure the prediction accuracy of
“who will be retweeted”.

Therefore we propose to define model parameters for in-
dividual users as opposed to user pairs, specifically users’
influence vectors and susceptibility vectors. For clarity, we
use interpersonal influence to indicate the likelihood that in-
formation will be passed between two people, and influence
vector to indicate a unilateral influence from a user and sus-
ceptibility vector is a unilateral susceptibility of a user. The
interpersonal influences are modeled by the product of the
influence vector from one user and the susceptibility vector
from another. The advantages of our model named “CT LIS”
is:

- Dependency awareness: our model captures the depen-
dency of two interpersonal influences that are sending
from the same user, or received by the same user, by
the shared influence or the shared susceptibility vector
respectively. For example, the interpersonal influence
from c to d in Figure 1 is estimated with c’s influence
vector and d’s susceptibility vector. The interpersonal
influence of user c to user e contains c’s influence vector
as well. So, on account of the shared influence vector,
the above two interpersonal influences couple with each
other as expected. And interpersonal influence between
user c and user d can be learned without overfitting.

- Conciseness: our model uses fewer parameters O(n ·
D), instead of O(n2) parameters for user pairs to rep-
resent users’ influence, where n is the number of users,
and D is the dimension of influence and susceptibility
vectors. Using a less complex model offers an advan-
tage in modeling sparse data.

- Effectiveness: our model achieved the best perfor-
mance on real Microblog data for three prediction tasks
on: next infected user, cascade size, and “who will be
retweeted” (see Figure 2).

- Unification of temporal and categorical information:
our model proposes a unified framework based on tem-
poral model, to make use of infection time, and categor-
ical attributes, like sentiments and topics of review text.

2 Related Work

Previous work on cascade dynamics was studied based
on point-process or influence models. [Zhao et al., 2015;
Shen et al., 2014] used the variants of Poisson process
to predict cascade size. Hawkes process was also
studied to model the dynamics [Mavroforakis et al., 2015;
Wang et al., 2016b]. [Du et al., 2016a] proposed to use Re-
current Neural Network to predict the next point and time.
The point-process based work model cascade dynamics in a
macroscopic view, and did not explicitly consider the inter-
personal influence.

In terms of influence models, scholars estimated in-
terpersonal influences and their relationship to informa-
tion propagation. Some of them made efforts to ex-
tract features that are related to propagation proba-
bility and learned from the observed information cas-
cades [Crane and Sornette, 2008; Aral and Walker, 2012].
[Artzi et al., 2012] predicted whether a user would re-
spond to or retweet a message, thus being influenced,
based on classification of demographic and content features.
[Saito et al., 2008] learned the propagation probability be-
tween neighbors of a directed network, using the orders of
users become infected. [Goyal et al., 2010] proposed to es-
timate the interpersonal influences, using assumptions from
the Bernoulli model and Jaccard Index separately. NetInf
[Gomez-Rodriguez et al., 2010] modeled propagation proba-
bility, using exponential and power-law incubation time sep-
arately to infer the underlying network. [Tang et al., 2009;
Liu et al., 2010] proposed a topic factor graph (TFG) to
model the generative process of the topic-level social influ-
ence on large networks and heterogeneous networks respec-
tively. LIS model [Wang et al., 2015] learned users’ repre-
sentations from the sequence of infected users, without tem-
poral information.

Moreover, a series of work learned interpersonal influ-
ence with survival model and its variants to infer underly-
ing networks. NetRate [Gomez-Rodriguez et al., 2011] used
survival theory to model the transmission rate between ev-
ery user pair, which was viewed as an edge weight of the
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influence network. [Gomez-Rodriguez et al., 2013a] then
modeled the hazard rate in a survival model with addi-
tive and multiplicative risks separately to improve the per-
formance of cascade size prediction. Afterwards, InfoPath
[Gomez-Rodriguez et al., 2013b] was proposed to learn time-
varying transmission rates for user pairs as the edge weights
of the hidden dynamic network. The distribution of content
topics has also been considered [Du et al., 2013]. Taken to-
gether, these methods work in a pair-wise manner, i.e., they
learned the propagation probability between pairs of users.
This approach is fundamentally different from the proposed
method proposed in this paper, which focuses on inferring
user-specific influence and susceptibility from historical cas-
cades. Also influence representations on sentimental polari-
ties can be learned in our model.

3 Learning Users’ Influences

A temporal cascade C for actions on a target is defined as

C = {(v1, t1), (v2, t2), · · · , (vN , tN )|t1 ≤ t2 ≤ · · · ≤ tN},

where vi is the user who takes the action at time ti, and N is
the total number of acting users, i.e., the cascade size. A tem-
poral cascade is associated with an object, e.g., a message, a
product, or a hotel. To simplify the description of our model,
we do not specify the identity of the target or message until
we establish the overall objective function at the end.

To make our model more general, we assume that any pair
of users can have an interpersonal influence, or probability
of passing information between them. A very small or zero
value of influence can capture the underlying disconnections
of the user network, and vice versa. When a social network is
available, we can easily apply it in our model as a constraint
that only connected users can influence each other.

3.1 Survival Analysis Model

Before presenting our model, we introduce the prior knowl-
edge of the Survival Analysis Model [Lawless, 2011], which
is used to model life time of a species exploring to some
hazard environment. We mimic the life time as the incuba-
tion time before a user being infected and taking an action.
Thus we define the infection time T of a user as a continu-
ous random variable, with T ∈ [0,∞). Let f(t) and F (t)
denote the probability density function (PDF) and the cumu-
lative density function (CDF) respectively. The probability
Pr(T ≤ t) = F (t). So the probability of a user not taking
the action until time t is defined by the survivor function

S(t) = Pr(T ≥ t) = 1− F (t) =

∫ ∞

t

f(x)dx.

Given that users survive until time t, a hazard function h(t)
for users is defined as the instantaneous infection rate in time
interval [t, t+ ε) in a hazard situation, where ε is an infinites-
imal elapsed time:

h(t) = lim
ε→0

Pr(t ≤ T < t+ ε|T ≥ t)

ε
=

f(t)

S(t)
.

Noticing that f(t) = −S′(t) and S(0) = 1 , the survivor
function can be expressed as

lnS(x) = −

∫ t

0

h(x)dx. (1)

3.2 Our Proposed Model

Our model represents a user vi with two non-negative D-
dimensional vectors Ii and Si, which stand for influence rep-
resentation and susceptibility representation respectively. D
is a parameter for the size of vectors which is given. With-
out loss of generality, we can turn the representations into
matrices to consider sentimental polarities. Each row of the
matrices is the representation vector on a sentimental polarity.
Influence matrix Ii and susceptibility matrix Si have K ×D
dimensions, where K is the number of sentimental polarities
or classes. The sentiment of information is defined as a one-
of-K vector o. Only one element in vector o can be 1 with the
others being zero, indicating that the information belongs to
that corresponding sentiment class. When K = 1 and o = 1,
the model reverts back to vector representations of no senti-
ments. Thus we introduce our model in a general form with
sentiment o in the following sections.

For a cascade with sentiment o, the transmission rate func-
tion φ(·) from users vj to vi, is defined by equation:

φ(Ij ,Si, o) = 1− exp{−oT IjS
T
i o} (2)

where matrix Ij and matrix Si are parameters that capture the
influence of user vj and the susceptibility of user vi respec-
tively. The transmission rate function (2) indicates the like-
lihood of successful passing of information between them.
We use an exponential function to scale the transmission rate
between 0 and 1 for regularization. So the extent of an inter-
personal influence is calculated by equation (2).

To simplify, let Hji denote the set of parameters
{Ij ,Si, o}. With a transmission rate φ(Hji), we define the
hazard function of the Survival Analysis Model for user vi at
time t, under the influence from vj , as follows:

h(t|tj ;φ(Hji)) = φ(Ij ,Si, o)
1

t− tj + 1
, (3)

where t − tj + 1 depicts the hazard function monotonously
decaying with the time elapsed from tj . Adding 1 avoids an
unbounded hazard rate due to a zero or infinitesimal value
of t − tj . Since equation (3) holds only when t ≥ tj , we
define the hazard rate h(t|tj ;φ(Hji)) = 0, when t < tj ,
namely, user vj has not been infected at time t. Moreover, as
mentioned earlier, we can consider social network as another
constraint by defining hazard function h(t|tj ;φ(Hji)) = 0, if
user vi and user vj are not connected.

Given the survivor function (1) in the Survival Analysis
Model, the survivor function S(t|tj ;φ(Hji)) that user vi sur-
vives longer than t satisfies

lnS(t|tj ;φ(Hji)) = −

∫ t

0

h(x|tj ;φ(Hji))dx

= φ(Ij ,Si, o) · ln(t− tj + 1)

(4)

Finally, given that influential user vj takes action or becomes
infected at time tj , the probability density function of user vi
happening (acting on the target) at time t is

f(t|tj ;φ(Hji)) = h(t|tj ;φ(Hji))S(t|tj ;φ(Hji)).

With the assumption that a user is only infected by one of
the previously infected users, the likelihood of user vi, i > 1
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being infected at time ti in a cascade is

f(ti|t;φ(H)) =
∑

j:tj<ti

f(ti|tj ;φ(Hji))
∏

k 6=j,tk<ti

S(ti|tk;φ(Hki))

=
∑

j:tj<ti

h(ti|tj ;φ(Hji) ·
∏

k:tk<ti

S(ti|tk;φ(Hki)).

Thus given that user v1 takes the first action at time t1, the
joint likelihood of observing the whole cascade is

f(t \ t1|t1;φ(H)) =
∏

i>1

∑

j:tj<ti

h(ti|tj ;φ(Hji)) ·

∏

k:tk<ti

S(ti|tk;φ(Hki)).

To consider the negative cases, we define a time window
of our observation for cascade C. The end of the time win-
dow is tE , and tE > tN . The users who do not act until tE
are survivors under the influence of infected users. Thus the
probability of a negative case for the survival of user vl is

S(tE |t;φ(H)) =
∏

i:ti≤tN

S(tE |ti;φ(Hil)).

Considering the negative cases, the log-likelihood of a cas-
cade is

lnL(I,S; o) =
∑

i>1

ln





∑

j:tj<ti

φ(Ij ,Si, o)
1

ti − tj + 1



−

∑

i>1

∑

k:tk<ti

φ(Ik,Si, o) · ln(ti − tk + 1)−

L
∑

Evl∼P (u)





N
∑

j=1

φ(Ij ,Sl, o) · ln(tE − tj + 1)





The negative cases contain any pair of an infected user and a
surviving user. The number of survivors is always the major-
ity of the overall social network. Thus the number of negative
user pairs is much larger than that of positive pairs in a cas-
cade. For learning efficiency, we adopt the negative sampling
strategy [Mikolov et al., 2013]. We sample L users as nega-

tive cases according to the distribution P (u) ∝ R
3/4
u , where

Ru is the frequency of user u becoming infected in a cascade.
It is worth noticing that sampling of negative cases is repeated
in every optimization iteration to honor the expectation. The
infection frequency of a user indicates how easily he or she
could become infected again. Observing a frequently infected
user who survives provides more information regarding the
likelihood. Sampling negative cases from the distribution of
users’ infected frequencies is a better choice.

Finally, the optimization problem of learning users’ influ-
ence representations and susceptibility representations is

min
I,S

−
∑

C

lnLc(I,S;oc) (5a)

s.t. Iki ≥ 0,Ski ≥ 0,∀k, i. (5b)

where superscript c is used to identify the values or functions
that are related to cascade C. The log-likelihood of all the
observed cascades is summarized in the above objective func-
tion.

3.3 Optimization

The model learns the distributed representations of users’ in-
fluences, by means of a gradient algorithm. The gradients of
the transmission rate function on matrix Iv and matrix Su are

∂φ(Iv,Su, o)

∂Iv
= (1− φ(Iv,Su, o))oo

TSu

∂φ(Iv,Su, o)

∂Su
= (1− φ(Iv,Su, o))oo

T Iv

The gradients are are K ×D matrices. Only the k-th row in
each matrix has a non-zero gradient, when a cascade belongs
to the k-th sentiment class, i.e, ok = 1.

As the negative cases for a cascade are repeatedly sampled
in every iteration, we define [Vc

s]τ as the set of negative users
in the τ -th iteration of the algorithm for cascade C:

[Vc
s]τ = {vl ∼ P (u)}L,

where L is the set size. Moreover, Only when user v becomes
infected in a cascade, i.e., t1 ≤ tv ≤ tN , the gradients of
the log-likelihood (5a) on matrix Iv are non-zero; Only when
user v is infected and t1 < tv ≤ tN , or user v is in a negative
case, the gradients on matrix Sv are non-zero; otherwise, the
gradients are always zeros.

Therefore, the gradients of the objective function (5a) on
matrix Iv and matrix Sv are

gIv = −
∑

c

1(tcv ≤ tcN )
∂Lc(I,S;oc)

∂Iv

gSv
= −

∑

c

1(tc1 < tcv ≤ tcN )
∂Lc(I,S;oc)

∂Sv
+

∑

c

1(v ∈ [Vc
s]τ )·

Nc

∑

j=1

(1−φ(Ij ,Sv, o
c))·ln(tcE−tcj+1)ococT Ij

where 1(·) is an indicator function, with an output of 1 if the
argument is true, and 0 otherwise. The gradients gIv and gSv

are K ×D matrices.

The framework of Stochastic Gradient Descent (SGD) over
shuffled mini-batches was employed for efficient optimiza-
tion. The mini-batch size was set at 12 cascades. To solve
the non-negative constraints on parameters, Projected Gradi-
ent (PG) was used to adjust the gradients. Moreover, since
deciding the learning rate is not trivial, we chose Adadelta
to adaptively tune the learning rate with an insensitive decay
constant ρ = 0.95 as suggested in [Zeiler, 2012].

4 Experiments

To evaluate our model, we used real Microblog data crawled
from Sina Weibo 1 in which users’ activity in passing mes-
sages is publicly available. The temporal cascades were ex-
tracted for all the messages in the data for evaluations.

1Sina Weibo (http://www.weibo.com), is one of the
biggest Microblog websites in China.
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4.1 Data and Setup

We have an initial pool of 315.6 million records including
posting, retweet, and mentioning of messages between Nov
1, 2013 and Feb 28, 2014 from the timelines of 312,000 users,
from the Sina Weibo database. We filtered and chose the mes-
sages with frequently used emoticons. Emoticons are labeled
with positive or negative sentiment; e.g., :) and :D express
positive emotion, whereas :( and :-( express negative emo-
tion, in order to determine the message’s sentiment label. In
fact, any reliable sentiment classifier can also be used to de-
termine the sentiments, which is out of our reach. In our ex-
periments, we choose emoticons to label message sentiments
without loss of generality, and we have K = 2 sentiments.
Since some parts of cascades might be missing, we crawled
the missing retweet records for those chosen cascades that
are not integrate in the data pool. Cascades of sizes less than
8 were removed to ensure that the messages examined have
attracted enough attention. The resulting sample contained
6,219 active users, and a total of 44,021 cascades from Oct
31, 2013 to Mar 3, 2014. The preprocessed data start earlier
than the original data because we withdrew the missing data
from the messages.

To set up the experiments, the cascades were evenly split
into 10 groups. Ten-fold cross-testing is used for our evalu-
ations, alternately training 9 of 10 groups and testing the re-
maining one. As we discussed in the previous work, the most
representative influence models that used the same informa-
tion as our model are used as competitors: NetRate, continu-
ous version of Jaccard and Bernoulli models (denoted as CT
Jaccard and CT Bernoulli). Our CT LIS model has another
two variants: Sent LIS with sentiment information, Sent LIS
(ns) with negative sampling. With testing on vector size of
users’ representations, we choose D = 8 for both efficiency
and stable objective value.

4.2 Study of Users’ Influences and Susceptibilities

We present the distributions of influential and susceptible
users from our results. With positive and negative sentiments,
a user can have four vectors (from the two matrices): Posi-
tive I, Negative I, Positive S, and Negative S. We study those
row vectors with L1-norms, i.e., the summation of the abso-
lute value of each element. Thus we can use those L1-norms
as coordinates of a point for each user. Figure 3 shows the
contour maps to visualize the user distributions in different
influence and susceptibility coordinate systems.

The distribution of “Positive S vs. Positive I” in Figure 3
(a) interestingly shows two groups of users in positive sen-
timent class, corresponding to two peaks in the figure. The
group along the bottom axis has very lower susceptibilities
but significant influences. The upper right group has both sig-
nificant influences and susceptibilities. We will refer to these
two groups of people as primary influential and secondary
influential, respectively. The primary influential people have
the power to influence other users, without being infected eas-
ily, as was also explained by Aral and Walker on Facebook
users [Aral and Walker, 2012]. Interestingly, on Sina Weibo,
users can get influence credit, or have more people retweet
them, by being an agency or hub. So people invest consid-
erable effort in retweeting (potentially) interesting messages

(a) Positive S vs. Positive I

Positive S(L1−norm)
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(b) Negative S vs. Positive S

Figure 3: Analysis of L1-norm of latent representations on senti-
mental polarities.

to attract others to follow them and retweet from them. This
type of user is not restricted to the Sina Weibo scenario. Some
primary influential people like to explore new restaurants and
make recommendations to their friends or audiences. Another
type of user simply likes to browse other people’s recommen-
dations or ratings and advertise them to their own audiences.
Similar activities might be seen in place of interest (POI) rec-
ommendation, hotel bookings, and online shopping as well.
As for an online system, both primary influential and sec-
ondary influential people are important. The primary influ-
ential users represent the originating power of the system to
bring new resources and initiate a cold start. The secondary
influential users are good advertisers or hubs to enable other
people to get information efficiently. As the primary influen-
tial people are considered high-quality users by system oper-
ators, the secondary influential ones may easily be persuaded
to help in sharing advertisements. And on the negative senti-
ment class, we can also find the two groups of users.

In addition, from the user distribution on susceptibility vec-
tors in Figure 3 (b), we can see that although a large group of
users has the same significant susceptibilities (a large hot area
in the middle), many users may be more susceptible to differ-
ent sentimental messages, as shown in some hot areas closed
to the four edges of the figure. We can also observe the simi-
lar distribution on influence vectors.

4.3 Prediction of Next Infected User

This task aims at predicting whether a user v will take an
action (i.e., become infected) given time t. For every user, we
calculate the likelihood of becoming infected. Thus we can
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use AUC of the ROC (receiver operating characteristic) curve
(see Figure 2(a)), to measure the output likelihood.

The ROC curves in Figure 2(a) show that our models
achieve better performance than list-wise models, consider-
ing the areas under the curves. All our variants, achieve
higher AUC values in the classification metric.

In Figure 2(b), the average results of 10-fold cross-tests are
reported. The figure shows that our CT LIS achieved consis-
tent better AUC than the three baselines. And with sentiment
information, our Sent LIS improved the AUC accuracy by at
most 4.30%. Moreover, considering sentiment information
improved the performance on this prediction task. Although
Sent LIS(ns) cannot outperform Sent LIS, but the former’s
training is more efficient, since of the random sampled nega-
tive cases.

4.4 Cascade Size Prediction

Cascade size prediction (popularity) is a key part of influence
maximization and viral marketing applications. In the appli-
cation, we chose the first P user-time pairs in each cascade as
the initial status, and we predicted the cascade size at time tN ,
tN > tP . tP is the infecting time of the last user in the initial
tuples. We made our prediction by simulating the generation
process of a cascade.

The time interval tN − tP is first evenly divided into dis-
crete time points. Starting from the time point right after tP ,
every infected user u makes a random trial to infect user v at
each time point τi > tP . The probability in a trial is

Pr(T ≤ τi|tu;φ(Hu,v)) =

∫ τi
τi−1

f(t|tu;φ(Hu,v))dt

S(τi−1|tu;φ(Hu,v))
.

This is a conditional probability, given that user v will sur-
vive until time τi−1. Users who become infected in a random
trial are added to the number of infected users for the next
step of the simulation process. Thus, we use the mean ab-
solute percentage error (MAPE) to measure the predictions
with ground truth cascade sizes, where a smaller value indi-
cates a better prediction. In the experiments, we chose first
P = 10 users in a cascade as the initialization for the pre-
diction. The simulations were repeated 100 times for every
cascade in the test data, and the results were averaged to ar-
rive at the prediction result.

Figure 2(c) shows that the best prediction result come from
our models, achieving at least 11.9% MAPE reduction com-
pared to the pair-wise models. Besides, considering senti-
ment or not did not bring much differences in our cascade
size prediction, while the small differences may be the result
of noisy sentiment labels.

4.5 Prediction of Who Will Be Retweeted

“Who will be retweeted” (WBR) is a new application that
helps to identify the causality of who influences whom to take
an action. For example, it enables us to find out who has in-
fluenced or motivated the target user to retweet a message,
“like” a webpage, buy a product, or go to some location. The
relations of who retweets whom are extracted as previously
described, which is treated as the ground truth. We use aver-
age Accuracy (Acc) of top-one prediction as metric.

Our results in causality judgment of who influences whom
achieve more than 37.2% in the accuracy metric, as Fig-
ure 2(d) shows. Therefore, our models outperformed the pair-
wise models, without suffering from the over-fitting problem
in causality judgment.

4.6 Discrimination of Interpersonal Influences

Figure 4 shows the heat map distribution of users’ interper-
sonal influence values. In the two sub-figures, very hot and
dark cells horizontally line at the bottom, with a range from
0.1 to 0.4. For the influences of those user pairs, our model
discriminates the influential degrees from 0.1 to 0.4. In ad-
dition, our model shows a discriminating distribution of in-
terpersonal influences at the higher values of the evaluation
models. In summary, the figure suggests that our values are
more discriminating, which can guarantee a better application
performance.
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(b) Ours interpersonal influ-
ence vs. NetRate’s

Figure 4: Heat map of interpersonal influences. Ours is more dis-
criminating

5 Conclusions

In this study, we have proposed a model to learn the con-
cise representations of users’ influence from their historical
behaviors. The contributions of our model include:

- Dependency awareness: our model captures the depen-
dency of two interpersonal influences that are sending
from the same user, or received by the same user, by
the shared influence or the shared susceptibility vector
respectively.

- Conciseness: our model use fewer parameters, offering
an advantage in modeling sparse data.

- Effectiveness: Our model achieved the best perfor-
mance on real Microblog data for three prediction tasks.

- Unification of temporal and categorical information:
our model applies a unified framework based on tempo-
ral model, which can make use of sentiment information
easily.
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