
Sampling for Approximate Maximum Search in Factorized Tensor

Zhi Lu and Yang Hu∗ and Bing Zeng
School of Electronic Engineering

University of Electronic Science and Technology of China
zhilu@std.uestc.edu.cn, {yanghu,eezeng}@uestc.edu.cn

Abstract
Factorization models have been extensively used
for recovering the missing entries of a matrix or
tensor. However, directly computing all of the en-
tries using the learned factorization models is pro-
hibitive when the size of the matrix/tensor is large.
On the other hand, in many applications, such as
collaborative filtering, we are only interested in a
few entries that are the largest among them. In
this work, we propose a sampling-based approach
for finding the top entries of a tensor which is de-
composed by the CANDECOMP/PARAFAC mod-
el. We develop an algorithm to sample the entries
with probabilities proportional to their values. We
further extend it to make the sampling proportion-
al to the k-th power of the values, amplifying the
focus on the top ones. We provide theoretical anal-
ysis of the sampling algorithm and evaluate its per-
formance on several real-world data sets. Experi-
mental results indicate that the proposed approach
is orders of magnitude faster than exhaustive com-
puting. When applied to the special case of search-
ing in a matrix, it also requires fewer samples than
the other state-of-the-art method.

1 Introduction
Matrix or tensor completion has received considerable atten-
tion in recent years. Many problems in application can be for-
mulated as recovering the missing entries of a matrix or ten-
sor. In some scenarios, such as image in-painting [Bertalmio
et al., 2000], all lost entries are needed to be filled in. In
some others, however, it is difficult and unnecessary to recov-
er them all. Take recommender systems for example, the size
of the matrix/tensor, determined by the numbers of users and
items, is usually rather large. It is expensive computational-
ly to compute all of the unknown values. On the other hand,
for the recommendation purpose, we are only interested in a
few entries that are the largest within a sub-array of the ma-
trix/tensor. These entries are not only the central concerns for
∗The corresponding author is Yang Hu. This work was supported

by the National Natural Science Foundation of China (61602090)
and the 111 Project (B17008).

a personalized recommendation, but also meaningful in many
other cases. In a similarity matrix, the top entries correspond
to pairs of items that are most similar, which are of interest
for applications like link prediction in graph [Dunlavy et al.,
2011], duplicate detection [Ke et al., 2004] as well as infor-
mation retrieval [Salton and Harman, 2003].

In this work, we study the problem of efficiently identify-
ing the top entries of a factorized tensor. Tensors, as multi-
way generalizations of matrices, hav been exploited more
and more recently. Take recommender systems for example,
while the traditional focus is on the user-item matrix [Ko-
ren et al., 2009], tensor is required for data representation in
many emerging settings such as context-aware recommenda-
tion [Xiong et al., 2010; Adomavicius and Tuzhilin, 2015],
and set-based recommendation [Hu et al., 2015] where the
object to be recommended is a set of items such as a set of
clothes that make an outfit.

Factorization models are essential tools for analyzing ten-
sors. They assume that the tensor can be decomposed into
some factors, which can be estimated from the observed en-
tries by learning algorithms. Specifically, we focus on the
CANDECOMP/PARAFAC [Kolda and Bader, 2009] decom-
position model, a widely used technique for exploring and
extracting the underlying structure of multi-way data. Given
an N -order tensor X ∈ RL1×···×LN , the CP decomposition
approximates it by N factor matrices:

X ≈ JA(1),A(2), · · · ,A(N)K (1)

=
R∑

r=1

a
(1)
∗r ◦ a(2)

∗r ◦ · · · ◦ a(N)
∗r

where each factor matrix A(n) = [a
(n)
∗1 a

(n)
∗2 · · ·a

(n)
∗R], n =

1, . . . , N , is of size Ln × R with a
(n)
∗r ∈ RLn being the r-th

column. The symbol “◦” represents the vector outer product.
R is the tensor rank, indicating the number of latent factors.
Element-wise, Eq.(1) is written as:

xi ≈
R∑

r=1

a
(1)
i1r
a
(2)
i2r
· · · a(N)

iNr (2)

where i is short for the index tuple (i1, i2, . . . , iN). Given the
factor matrices A(n) and a parameter t, we would like to find
t index tuples {i1, . . . , it} that correspond to the top-t largest
xi.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2400

(a) The graph representation of factor
matrices.

(b) A sampled star. (c) Two intersecting stars.

Figure 1: Graph representation of factor matrices and sampled stars.

2 Related Work
Our problem subsumes many existing problems in the litera-
ture. When N = 2, it is exactly the MAD (Maximum All-
pairs Dot-product Search) problem [Ballard et al., 2015] that
finds the largest entries in the product of two matrices. No-
tice that MAD contains the MIPS (Maximum Inner Product
Search) [Coh, 1997] problem as the special case with one ma-
trix being a single column.

The most obvious solution to the problem is to compute
the entries exhaustively. However, this becomes prohibitive
as the sizes of factor matrices grow. There is some literature
in approximate matrix multiplication. However, these meth-
ods are not suited even for MAD, since only a few entries
among millions are of interest. The more efficient solution
is to directly search the top ones, which has been extensively
studied for the MIPS problem. Popular approaches include
LSH (Locality Sensing Hashing) [Andoni and Indyk, 2008;
Shrivastava and Li, 2014], space partition techniques like k-
d tree, and sampling-based approaches [Drineas et al., 2006;
Holodnak and Ipsen, 2015]. Recently, Ballard et al. proposed
a randomized approach called diamond sampling [Ballard et
al., 2015] to the MAD problem. [Higham and Relton, 2016]
derived an algorithms for estimating the largest elements of a
matrix using a few matrix-vector products with it and its con-
jugate transpose. For tensor, however, there has not been any
study conducted yet.

Inspired by the work of diamond sampling, we present an
index sampling method for a factorized tensor, whose entries
are computed by the CP decomposition model. We design a
strategy to sample the index tuple i proportional to the k-th
power of the entries, which amplifies the focus on the largest
ones. We provide theoretical analysis for our sampling algo-
rithm and derive concentration bound on its behavior. For ap-
plications in recommender systems, an algorithm that reuses
the samples for multiple users is presented. We evaluate the
proposed method on several real-world data sets. The results
show that it is orders of magnitude faster than exact comput-
ing. When compared to previous approach for matrix sam-
pling, our method requires much fewer samples.

3 Star Sampling
A graph is used to represent the factor matrices of CP de-
composition. Each matrix A(n) ∈ RLn×R, n ∈ [N], is rep-
resented by a bipartite graph as shown in the dashed box in
Figure 1 (a). The Ln rows of A(n) , indexed by in, corre-

spond to nodes on the bottom, and the R columns of A(n),
indexed by r, correspond to nodes on the top. Edge (in, r)

exists if a(n)inr
is nonzero. Since all of the factor matrices have

the same number of columns, they can share nodes for the
columns. Therefore, the N factor matrices are represented
by an (N+1)-partite graph with one partition, called the core
partition, consisting of nodes for the common columns, and
N peripheral partitions, each of which consists of nodes for
the rows of a matrix.

To motivate our sampling procedure, we start with the case
where all A(n) are binary matrices. If a core node r in core
partition has a neighbor in, i.e. a(n)inr

= 1, in each peripheral
partition, we call subgraph (r, i1, . . . , iN) (shorted as (r, i)),
a ”star” (Figure 1 (b)). According to Eq.(2), xi is simply the
number of distinct stars connecting the same group of neigh-
bors in the peripheral partitions indexed by i. It can be shown
that the probability of selecting a random star with endpoints
i is proportional to xi [Ballard et al., 2015].

We further consider a ”compound star”, which is formed by
two intersecting stars (r, i) and (r′, i) (Figure 1 (c)). There
are x2i compound stars with endpoints i. The probability of
selecting a random compound star with endpoints i is propor-
tional to x2i . More generally, if a k-compound star is formed
by k intersecting stars, its selected probability will be propor-
tional to xki .

Sampling random k-compound stars will accelerate identi-
fying the top entries as compared to sampling basic stars but
with higher complexity. Besides, the factor matrices A(n)

are usually real-valued, which requires the sampling to have a
nonuniform distribution. In the following, we present a sam-
pling algorithm that handles these issues carefully.

3.1 Sampling A Star
To sample k-compound stars, we take node set that contains
k nodes from the core partition as a k-compound core node.

Figure 2: A sampled k-compound star with k = 2.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2401

Algorithm 1 The Corek Sampling Method

Given factor matrix A(n) ∈ RLn×R, n = 1, 2, . . . , N .
Let s be the number of samples.

1: for r ∈ [R]× · · · × [R]︸ ︷︷ ︸
k

do

2: for n = 1, ..., N do
3: for in = 1, . . . , Ln do
4: e

(n)
inr
← a

(n)
inr1
· · · a(n)inrk

5: end for
6: ‖e(n)∗r ‖1 ←

∑
in
|e(n)inr

|
7: end for
8: wr ← ‖e(1)∗r ‖1 · · · ‖e(N)

∗r ‖1
9: end for

10: for ` = 1, . . . , s do
11: Sample r with probability wr/‖w‖1
12: for n = 1, ..., N do
13: Sample in with probability |e(n)inr

|/‖e(n)∗r ‖1
14: end for
15: ξi,` ← sign(e

(1)
i1r
· · · e(N)

iNr)
16: if i = (i1, i2, . . . , iN) has not been sampled then
17: Create x̂i ← ξi,`
18: else
19: x̂i ← x̂i + ξi,`
20: end if
21: end for

There are Rk k-compound nodes in total. Figure 2 shows a
sampled star with two core nodes (r and r′) coalesced to a
single compound core node (r, r′). We weigh the edge be-
tween a k-compound core node r = (r1, . . . , rk) and a node
in in the n-th peripheral partition by

e
(n)
inr

= a
(n)
inr1
· · · a(n)inrk

(3)

Let e(n)∗r = [e
(n)
1r , · · · , e

(n)
Lnr

]T be a vector containing weights
from r to all nodes in the n-th peripheral partition, we assign
weight for the k-compound node r as

wr = ‖e(1)∗r ‖1 · · · ‖e(N)
∗r ‖1 (4)

where ‖ · ‖1 denotes 1-norm of a vector.
To find a k-compound star, we first select a k-compound

node with probability wr/‖w‖1, where w is the vector con-
taining all wr . Then, conditioned on the sampled com-
pound node, we pick one node from each of the peripher-
al partitions. The node in the n-th peripheral partition is
drawn with probability |e(n)inr

|/‖e(n)∗r ‖1. After an index tuple
i = (i1, i2, . . . , iN) is obtained, a score ξi,` is computed:

ξi,` ← sign(e
(1)
i1r
· · · e(N)

iNr) (5)

where ` denotes the `-th sample. If the index tuple i has not
been sampled before, a container is created with x̂i = ξi,`.
Otherwise, we increase x̂i by ξi,`. The full procedure is
shown in Algorithm 1.

3.2 Top-t Extraction
Let Ψp = {ip|p ∈ [P]} denotes the set of index tuples
that have been sampled. P ≤ s since some i may be

picked more than once. Two strategies for identifying the
t largest entries from Ψp are presented. The first one is
directly computing the exact entry value xi for each sam-
ple in Ψp using Eq.(2) and then extracting the t largest
ones. Following the previous works [Ballard et al., 2015;
Coh, 1997], in the second strategy, we utilize the scores x̂i
obtained during sampling to do prefiltering since the load
for computing x̂i is much lighter than that of computing xi.
Moreover, as we show through theoretical analysis later, the
expectation of x̂i is proportional to the k-th power of xi.
Therefore, x̂i can be used to filter out the relatively small ones
in Ψp. Specifically, we denote a subset by Ψt′ that contains
t′ index tuples corresponding to the top-t′ largest x̂i after the
prefiltering. Then, the exact values are computed only for in-
dex tuples in Ψt′ , and the t index tuples with the largest xi in
Ψt′ are taken as the output of our algorithm.

In the following part, we prove that in Algorithm 1, the
probability that an index tuple i is sampled is proportional to
xki and the expectation of x̂i is also proportional to the k-th
power of xi.

3.3 Theoretical Analysis
Let εi,r denote the event of choosing compound node r and
peripheral nodes i in one iteration, while εi be that of choos-
ing i. We first analyze p(εi), the probability that an entry is
sampled, and then compute the expectation of x̂i. We also
provide error bound of the estimate.
Lemma 1. Suppose that all elements of the factor matrices
A(n), n ∈ [N], are nonnegative. We have p(εi) = xki /‖w‖1.

Proof. The probability p(εi) is marginal distribution of
p(εi,r), which can be computed by:

p(εi) =
∑
r

p(εi,r) =
∑
r

wr

‖w‖1
|e(1)i1r
|

‖e(n)∗r ‖1
. . .
|e(N)

iNr|
‖e(N)
∗r ‖1

=

∏k
p=1(

∑
rp
a
(1)
i1rp
· · · a(N)

iNrp
)

‖w‖1
=

xki
‖w‖1

Let ci,` be a random variable that if i has been picked in
the `-th iteration, ci,` = ξi,`. Otherwise ci,` = 0. The final
score x̂i can be written as x̂i =

∑s
`=1 ci,`.

Lemma 2. The expectation of x̂i equals to sxki /‖w‖1.

Proof. Since ci,` are i.i.d for fixed i and varying `, the expec-
tation of x̂i is:

E[x̂i] =
s∑

`=1

E[ci,`] =
s∑

`=1

(
∑
r

p(εi,r)ξi,`) =
sxki
‖w‖1

Theorem 1. Fix δ > 0 and error probability σ ∈ (0, 1).
Assume that all entries in the factor matrices are nonnegative.
If the number of samples

s ≥ 3‖w‖1 log (2/σ)/(δ2xki) (6)
then

Pr(
∣∣ x̂i · ‖w‖1

s
− xki

∣∣ > δxki) ≤ σ

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2402

Proof. Since ci,1, · · · , ci,s are independent random vari-
ables taking values in {0, 1}. The Chernoff bounds on
the sum of Poisson trials shows Pr(|x̂i − µ| ≥ δµ) ≤
2 exp (−µδ2/3), δ ∈ (0, 1), where µ = sxki /‖w‖1. By the
choice of s, we have µ ≤ 3 log (2/σ)/δ2. Then, Pr(|x̂i −
sxki /‖w‖1| ≥ δsxki /‖w‖1) ≤ σ. Multiplying ‖w‖1/s in-
side Pr[·] proofs the bound.

4 Sampling for Recommender Systems
In this section, we present an algorithm for efficiently identi-
fying top entries in sub-arrays of a tensor, which is of par-
ticular interest for recommender systems. Without loss of
generality, we assume that the first factor matrix A(1) cor-
responds to users, with each row characterizing a single user.
For any user u = a

(1)
i1∗ , we are interested in top entries in the

sub-tensor Xu, whose CP decomposition is

Xu ≈ Ju,A(2), · · · ,A(N)K (7)

We find that for different users, only the probabilities for
sampling k-compound nodes from the core partition are dif-
ferent. In the following step, they share the same distribu-
tion for sampling the peripheral nodes. Based on this obser-
vation, for each k-compound node in the core partition, we
build a pool containing sub-index tuples i′ = (i2, . . . , iN)
that have been picked given that node. For a new user, when
a k-compound node is chosen, we can directly use the indices
kept in its pool and only sample new i′ when necessary. By
sharing among users, a huge number of samples can be saved.
This procedure is illustrated in Algorithm 2.

Algorithm 2 Finding top-t entries for multiple users

Given factor matrix A(n) ∈ RLn×R, n = 1, 2, . . . , N . A(1)

contains vectors characterizing users. Let s be the number of
samples, and m = Rk.

1: Initialize m empty pools g1, g2, . . . , gm
2: Initialize fr = 0 for all compound nodes r.
3: for i1 = 1, 2, . . . , L1 do
4: Let the current user be u = a

(1)
i1∗

5: for all r = (r1, . . . , rk) do
6: wr ← |ur1 · · ·urk |‖e

(2)
∗r ‖1 · · · ‖e(N)

∗r ‖1
7: end for
8: for ` = 1, . . . , s do
9: Sample r with probability wr/‖w‖1.

10: Increase fr by 1.
11: end for
12: for all r do
13: if fr > |gr| then
14: Sample fr − |gr| index tuples i′ and append

them to gr .
15: end if
16: Use fr index tuples i′ in gr and compute scores.
17: end for
18: Post-processing for finding top-t entries of u.
19: end for

Data L1 L2 L3 Top-1 Top-103

ML-S 456 1,973 1,222 81.564 43.385
ML-L 993 3,298 2,555 88.737 50.595

LastFM 1,348 6,927 2,132 234.730 101.795
Delicious 1,681 29,540 7,251 95.472 40.828

dblp 43,928 2,572 17 4.190 2.452

Table 1: Statistics for each data set. The last two columns show the
largest and 1000-th largest entry value in the tensors.

5 Implementation Details
In this section, we discuss some details that could improve the
performance. Follow the previous work [Coh, 1997], instead
of first picking a node from core partition and then choosing
N peripheral nodes in each iteration, we directly get s core
nodes in one loop. Specifically, we compute the expected
number of occurrence for each compound node. Let µr =
swr/‖w‖1, the count for r is:

fr =

{ bµrc, with probability p = dµre − µr

dµre, with probability p = bµrc − µr

(8)

This requires O(Rk) work while sampling r s times (line 10
of Algorithm 1) requires O(sk logR) work.

To conduct Corek sampling, we may extend the factor ma-
trices to E(n) whose elements are from Eq.(3). Then, we
can just conduct Core1 sampling with E(n) which requires
O(LnR

k) space for each n ∈ [N]. This is costly in practice
when k is large. On the other hand, given a core node r, the
sampling of the peripheral nodes will only depend on one col-
umn in E(n) indexed by r. Therefore, instead of storing the
whole E(n), we only keep one column of it at a time. This
requires O(L1 + · · · + LN) space in total. When k is small,
we can directly store E(n) in exchange for speed.

6 Experiments
We evaluate our algorithms on five real-world data sets: De-
licious Bookmarks1(Delicious), Last.FM2(LastFM), Movie-
Lens3+IMDb4/Rotten Tomatoes5(ML-S), a larger MovieLen-
s data set (ML-L) and dblp6. The first four are from the tag
recommendation application [Cantador et al., 2011; Harper
and Konstan, 2016]. Following previous practice [Jäschke et
al., 2008], users, items and tags that occur at least 5 times are
used. The last is for link prediction. We follow [Acar et al.,
2009] to extract only the proceedings from 1991 to 2007.

To learn the factor matrices of CP decomposition, for the
tag data sets, we use the Bayesian Probabilistic Tensor Fac-
torization (BPTF) method and optimize the pair-wise rank-
ing function of Bayesian Personalized Ranking (BPR) [Ren-
dle et al., 2009b; 2009a]. And for the dblp data set, Alter-
nating Least Squares (ALS), provided in the Tensor Toolbox

1http://www.delicious.com
2http://www.lastfm.com
3http://www.grouplens.org
4http://www.imdb.com
5http://www.rottentomatoes.com
6http://dblp.uni-trier.de/db/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2403

Figure 3: Recall of Corek for k ∈ {1, 2, 3}.

of [Bader et al., 2012; Bader and Kolda, 2007], is used. R is
chosen following previous works, i.e. 64 for the first four da-
ta sets and 50 for the last one. We give the summary statistics
in Table 1.

6.1 Accuracy and Running Time
We experiment with k equals 1,2 and 3 respectively. In Fig-
ure 3, we plot recall, i.e. the percentage of true top-t entries
identified, versus the number of samples s. The correspond-
ing running time are illustrated in Figure 4. The time for ex-
haustive computing is shown as the baseline. Here we set
t′ = s and focus on the effectiveness of the sampling stage
firstly. For each s, we run 10 times and the average result is
reported.

We can see that with the increase of k, much higher re-
call can be obtained with the same number of samples. For
the tag recommendation data sets, starting from s = 105, the
time consumed by Core2 becomes similar with Core1. For
dblp, they cost almost the same time from s = 106. Core3
consumes much more time than the other two when the num-
ber of samples are small due to its relatively heavy initializa-
tion. However, when the number of samples reaches 107, its
running time become quite similar with the other two. All
three sampling methods are orders of magnitude faster than
exhaustive computing.

To show more details on running time, we separate it in-
to four stages: initialization, sampling, scoring and filter-
ing. Initialization consists of computation of the weights for

Figure 4: Running time on each data set.

(a) Sampling with s = 1e6 (b) Sampling with s = 1e8

Figure 5: Running time in details for LastFM.

core nodes and some preprocessing. Sampling corresponds to
sampling index tuples and may also include the computation
of the distributions for peripheral partitions when extension
matrices are not pre-saved. The scoring phase shows the time
consumed on computing and saving scores for each sampled
index tuple. The last is to identify the top-t entries through
filtering. We plot them for LastFM in Figure 5.

The running time for initialization is dependent on k and
will be less influential with the increase of s. When s is rel-
atively small (Figure 5 (a)), the sampling phase in Core3 is
dominated by its online computing of the probability vec-
tors, which leads to considerable more running time when
compared with Core1 and Core2. And when s is large (Fig-
ure 5 (b)), all sampling phases are dominated by the sam-
pling procedure, and are therefore similar in run time. When
k = 3, the probability for top entries are amplified, leading
to a smaller size of Ψp and a saving of computation during
the filtering phase. We notice that with the increase of s, the
running time of Core3 becomes quite similar with the other
two.

6.2 Use Prefiltering
In this part, we evaluate the performance of using prefiltering
during top-t extraction (Section 3.2). Due to space limit, we
only show results on LastFM with t′ = s/10 in Figure 6. We
notice that prefiltering leads to a slightly lower recall but save
considerable computing time.

6.3 Sampling for Collaborative Filtering
In Figure 7, we show the performance of Algorithm 2 ap-
plied for collaborative filtering, where the samples are shared
among different users. Here Core2 is used to find the top-100

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2404

(a) Recalls of the two strategies. top*-t and top-t are
results with and without prefiltering respectively.

(b) s = 1e6. (c) s = 1e8.

Figure 6: Performance of using prefiltering. The left bars in (b) and
(c) are for t′ = s and the right are for t′ = s/10.

Figure 7: Recall and running time with multiple users on LastFM.
For better legibility, we only plot results for the first 100 users.

largest entries on LastFM data set and s is set to 106. We
can see that only for the first few users we need some time
to get the samples and build the sample pools. After that, the
computation time for a new user is much reduced.

6.4 Comparison with Diamond Sampling
Since this is the first study of efficiently identifying the top
entries in factorized tensors, there is no previous approach
that we can compare with. On the other hand, when N = 2,
the problem reduces to the MAD problem which finds the top
entries in the product of two matrices. We therefore apply our
algorithms to this problem and compare their performance
with the diamond sampling method of [Ballard et al., 2015].

For each user, we can multiply its characterizing vector in-
to the item matrix to get a new user-dependent item matrix.
Note that the searchings for different users are conducted in-
dependently, i.e. we run Algorithm 1 instead of Algorithm 2.
In Figure 8, we show the results on ML-L. We set t′ = s/10
and evaluate recall for t ∈ {1, 10, 100, 1000}. Since there are
L1 pairs of matrices, the average results are drawn.

The performance of Core1 is slightly worse than diamond
sampling since the score x̂i in the latter is proportional to the
square of entry magnitude. With the same number of samples,
Core2 can achieve higher recall than diamond sampling with
less computing time. With Core3, the recall can be further
improved with the cost of some more time. This illustrates the
advantage of augmenting the sampling probability to higher
power of the entry magnitude.

6.5 Accuracy of the Scores
To show the accuracy of the estimation x̂i, we run Core3 on
ML-S with s = 108 and plot the 104 pairs of (x3i , ‖w‖1x̂i/s)

(a) Recall on top-t

(b) Running time

Figure 8: Comparison with Diamond sampling on ML-L.

Figure 9: Plot of pairs (‖w‖1x̂i/s, x3
i) on ML-S. The solid line is

the reference for equality. Two dashed lines are for x3i ± δx3i .

which have the largest x3i in Ψp after sampling in Figure 9.
Given s = 108, we set σ = 0.1 and compute the δ for each
xki using the equality in Eq.(6) from Theorem 1. Then two
dashed lines for xki ± δxki can be plotted As expected, the
points concentrate around the diagonal and most pairs fall
within the two dashed lines, which confirmed with the the-
oretical result.

7 Conclusion
In this work, we proposed a novel sampling-based algorithm
for approximate maximum search in tensor which is factor-
ized by CP decomposition. It is an extension of MAD and
this is the first study of this important problem. Experimental
results indicate that our method is orders of magnitude faster
than exhaustive search. When applied to the MAD problem,
it is also more efficient than other state-of-the-art method.

References
[Acar et al., 2009] Evrim Acar, Daniel M Dunlavy, and

Tamara G. Kolda. Link prediction on evolving data using
matrix and tensor factorizations. In the IEEE Internation-
al Conference on Data Mining Workshops, pages 262–269,
2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2405

[Adomavicius and Tuzhilin, 2015] Gediminas Adomavicius
and Alexander Tuzhilin. Context-aware recommender sys-
tems, pages 191–226. Springer, 2015.

[Andoni and Indyk, 2008] Alexandr Andoni and Piotr Indyk.
Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. Communications of the
ACM, pages 117–122, 2008.

[Bader and Kolda, 2007] Brett W. Bader and Tamara G. Kol-
da. Efficient matlab computations with sparse and factored
tensors. SIAM Journal on Scientific Computing, pages
205–231, 2007.

[Bader et al., 2012] Brett W. Bader, Tamara G. Kolda, et al.
Matlab tensor toolbox version 2.5. Available online, 2012.

[Ballard et al., 2015] Grey Ballard, Tamara G. Kolda, Al-
i Pinar, and C Seshadhri. Diamond sampling for approx-
imate maximum all-pairs dot-product (MAD) search. In
the IEEE International Conference on Data Mining, pages
11–20, 2015.

[Bertalmio et al., 2000] Marcelo Bertalmio, Guillermo S-
apiro, Vincent Caselles, and Coloma Ballester. Image in-
painting. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, pages
417–424, 2000.

[Cantador et al., 2011] Ivan Cantador, Peter Brusilovsky,
and Tsvi Kuflik. Second workshop on information het-
erogeneity and fusion in recommender systems (HetRec
2011). In RecSys, pages 387–388, 2011.

[Coh, 1997] Approximating Matrix Multiplication for Pat-
tern Recognition Tasks, 1997.

[Drineas et al., 2006] Petros Drineas, Ravi Kannan, and
Michael W Mahoney. Fast monte carlo algorithms for ma-
trices I: Approximating matrix multiplication. SIAM Jour-
nal on Computing, 36(1):132–157, 2006.

[Dunlavy et al., 2011] Daniel M Dunlavy, Tamara G. Kolda,
and Evrim Acar. Temporal link prediction using matrix
and tensor factorizations. ACM Transactions on Knowl-
edge Discovery from Data, pages 10:1–10:27, 2011.

[Harper and Konstan, 2016] F Maxwell Harper and
Joseph A Konstan. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent
Systems, pages 19:1–19:19, 2016.

[Higham and Relton, 2016] Nicholas J Higham and
Samuel D Relton. Estimating the largest elements
of a matrix. SIAM Journal on Scientific Computing, pages
C584–C601, 2016.

[Holodnak and Ipsen, 2015] John T Holodnak and Ilse CF
Ipsen. Randomized approximation of the gram matrix:
Exact computation and probabilistic bounds. SIAM Jour-
nal on Matrix Analysis and Applications, pages 110–137,
2015.

[Hu et al., 2015] Yang Hu, Xi Yi, and Larry S Davis. Col-
laborative fashion recommendation: A functional tensor
factorization approach. In Proceedings of the 23rd ACM
International Conference on Multimedia, pages 129–138,
2015.

[Jäschke et al., 2008] Robert Jäschke, Leandro Marinho,
Andreas Hotho, Lars Schmidt-Thieme, and Gerd Stumme.
Tag recommendations in social bookmarking systems. AI
Communications, pages 231–247, 2008.

[Ke et al., 2004] Yan Ke, Rahul Sukthankar, and Larry Hus-
ton. Efficient near-duplicate detection and sub-image re-
trieval. In Proceedings of the 12th Annual ACM Interna-
tional Conference on Multimedia, pages 869–876, 2004.

[Kolda and Bader, 2009] Tamara G. Kolda and Brett W. Bad-
er. Tensor decompositions and applications. SIAM Review,
pages 455–500, 2009.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

[Rendle et al., 2009a] Steffen Rendle, Leandro Balby Mar-
inho, Alexandros Nanopoulos, and Lars Schmidt-Thieme.
Learning optimal ranking with tensor factorization for tag
recommendation. In Proceedings of the 15th Internation-
al Conference on Knowledge Discovery and Data mining,
pages 727–736. ACM, 2009.

[Rendle et al., 2009b] Steffen Rendle, Christoph Freuden-
thaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
Bayesian personalized ranking from implicit feedback. In
Proceedings of the 25th Conference on Uncertainty in Ar-
tificial Intelligence, pages 452–461, 2009.

[Salton and Harman, 2003] Gerard Salton and Donna Har-
man. Information retrieval. John Wiley and Sons Ltd.,
2003.

[Shrivastava and Li, 2014] Anshumali Shrivastava and Ping
Li. Asymmetric LSH (ALSH) for sublinear time maxi-
mum inner product search (MIPS). In Advances in Neural
Information Processing Systems, pages 2321–2329, 2014.

[Xiong et al., 2010] Liang Xiong, Xi Chen, Tzu-Kuo Huang,
Jeff Schneider, and Jaime G Carbonell. Temporal collabo-
rative filtering with bayesian probabilistic tensor factoriza-
tion. In Proceedings of the SIAM International Conference
on Data Mining, pages 211–222, 2010.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2406

