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Abstract

Semi-supervised learning plays a significant role in
multi-class classification, where a small number of
labeled data are more deterministic while substan-
tial unlabeled data might cause large uncertainties
and potential threats. In this paper, we distinguish
the label fitting of labeled and unlabeled training
data through a probabilistic vector with an adaptive
parameter, which always ensures the significant im-
portance of labeled data and characterizes the con-
tribution of unlabeled instance according to its un-
certainty. Instead of using traditional least squares
regression (LSR) for classification, we develop a
new discriminative LSR by equipping each label
with an adjustment vector. This strategy avoids in-
correct penalization on samples that are far away
from the boundary and simultaneously facilitates
multi-class classification by enlarging the geomet-
rical distance of instances belonging to different
classes. An efficient alternative algorithm is ex-
ploited to solve the proposed model with closed
form solution for each updating rule. We also an-
alyze the convergence and complexity of the pro-
posed algorithm theoretically. Experimental results
on several benchmark datasets demonstrate the ef-
fectiveness and superiority of the proposed model
for multi-class classification tasks.

1 Introduction
Data are abundant due to the digital information explosion.
However, a vast majority of large-scale data are usually
collected without labels for classification. Labeling these
data requires the efforts of human annotators who must of-
ten be quite skilled [Zhu et al., 2003; Yang et al., 2015].
Moreover, this process is difficult to scale and often er-
ror prone for its dramatically expensive and time-consuming
cost [Subramanya and Talukdar, 2014; Chang et al., 2014;
Luo et al., 2017]. As a result, it is crucial to develop semi-
supervised learning (SSL) algorithms which potentially im-
prove the generalization performance by employing a small
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amount of labeled data jointly with a large number of unla-
beled data [Chapelle et al., 2008; Zhu and Goldberg, 2009;
Chang and Yang, 2016].

In the past decades, researchers have proposed a variety
of semi-supervised learning algorithms. Most of them are
started by representing the training data (labeled and unla-
beled) as a graph and assume that data points are likely to
have the same label if they are close to each other [Chapelle et
al., 2009]. For example, semi-supervised support vector ma-
chines (SVMs) with manifold regularization [Sindhwani and
Keerthi, 2006; Belkin et al., 2006; Liu et al., 2011], graph
kernels based SSL [Zhu et al., 2004], semi-supervised dis-
criminant analysis from graph perspective [Cai et al., 2007a],
SSL with local and global consistency [Zhou et al., 2004],
gaussian eld harmonic function [Zhu et al., 2003] and so on.
Since data points from different classes can be quite close
in practice, the graph-based algorithms might fail to achieve
desirable performance when two classes overlap significantly
[Zhu and Goldberg, 2009]. Additionally, conventional semi-
supervised learning algorithms treat the labeled and unlabeled
instances equally in the training stage. In fact, the labeled data
are usually more deterministic and should play a more signif-
icant role, while substantial unlabeled data might cause large
uncertainties and potential threats. Thus, it is crucial to dis-
tinguish between different label types of training instances in
the framework of SSL [Nie et al., 2011b]. Wang et al. [Wang
et al., 2014] introduced an adaptive parameter to suppress
the weights of unlabeled data points around the boundary.
However, this method employs traditional least squares re-
gression (LSR) loss function for classification, which usually
penalizes the data points far away from the boundary even
when they are classified correctly for sure [Bishop, 2006;
Xiang et al., 2012].

In this paper, we exploit an adaptive semi-supervised clas-
sification algorithm with a novel discriminative LSR. This
idea is illustrated by a synthetic dataset (see Figure 1a) con-
sisting of labeled data points (filled circles from two classes)
and unlabeled ones (hollow circles). Specifically, the unla-
beled data points with various uncertainties include the pur-
ple ones around the boundary, the brown ones far away from
the boundary, and the black ones following the distribution
of the labeled data. By assigning a probabilistic vector to
the fitting of each sample, our method always ensure the sig-
nificant importance of labeled data while characterizing the
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(a) Synthetic data (b) Classification result

Figure 1: (a) The synthetic dataset. (b) The contribution importance
of each data point in the training stage is characterized by its size.
The learned classifier (dotted blue line) by our model is not distorted
by the unlabled data points far away from the boundary (the brown
hollow circle) and the data points around the boundary (the purple
hollow circle).

contribution of the unlabeled instance according to its uncer-
tainty. See the classification performance of our model in
Figure 1b. The size of labeled data remain unchanged, while
the unlabeled data points with comparable deterministic affil-
iation become smaller. Specifically the unlabeled data points
around the boundary that belong to multiple labels with sim-
ilar probabilities turn to be much smaller. To overcome the
shortcomings of the conventional LSR for classification, we
equip each label with an adjustment vector. This strategy
prevents the incorrect penalization of unlabeled samples far
away from the boundary. As a result, our model performs ro-
bust to not only the unlabeled data with varying uncertainties
but also the outliers far away from the boundary. In summary,
we describe the contributions of this paper as follows:

1. We associate each label with an adjustment vector and
develop a new discriminative LSR to prevent incorrect
penalization on the data far away from the boundary.

2. Based on the proposed discriminative LSR, we con-
cern the contribution difference of training data in semi-
supervised learning and developed a unified label fitting
for both labeled and unlabeled training data.

3. We exploit an efficient alternative algorithm to solve the
proposed model with closed form solution for each up-
dating rule, and analyze its convergence and computa-
tional complexity theoretically.

2 The Proposed Methodology
In this section, we first introduce a new discriminative least
squares regression, and then propose an adaptive framework
for semi-supervised classification.

2.1 Discriminative LSR
In this paper, we denote the training set by X =
{x1,x2, · · · ,xn}, where xi ∈ Rd is the feature vec-
tor of the i-th instance. In the framework of semi-
supervised classification, we suppose the first nl(nl ≤ n)
instances, i.e., x1,x2, · · · ,xnl

, are labeled uniquely c dif-
ferent classes. The remaining nu = n − nl instances,
i.e., xnl+1,xnl+2, · · · ,xn, are unlabeled. To identify the c

classes uniquely, we associate the k-th class with a coding
tk = [−1, · · · ,−1, 1,−1, · · · ,−1]> ∈ Rc, where only the
k-th element of tk is equal to 1 and the other ones are −1.

Instead of using traditional regression loss which usu-
ally incorrectly penalizes the right classification, in this pa-
per, we take tk (k = 1, 2, · · · , c) as the regression tar-
get and associate each class with an adjustment variable
mk = [mk1,mk2, · · · ,mkc]

> ≥ 0 (k = 1, 2, · · · , c). Let
W ∈ Rd×c be a transformation matrix and b ∈ Rc be a
bias vector, the proposed discriminative regression loss (fit-
ting loss) for the i-th instance which belongs to the k-th class
is defined as

Dik(W,b,mk;xi) = ‖W>xi + b− tk − tk �mk‖22
where � is a Hadamard product operator of vectors. In con-
trast to the traditional regression loss, the introduced term
tk �mk are capable of not only offsetting the incorrect pe-
nalization but also enlarging the margin between classes. For
a better representation, we collect all of adjustment variables
into matrix M = [m1,m2, · · · ,mc] ∈ Rc×c. We take the
instance xi ∈ R3 which might belong to one of c = 3 differ-
ent classes for example. The discriminative regression loss of
xi belonging to the 2-th class is formulated as

Di2(W,b,m2;xi) = ‖W>xi + b− t2 − t2 �m2‖22

=

∥∥∥∥∥
(
zi1 − (−1−m21)
zi2 − (1 +m22)
zi3 − (−1−m23)

)∥∥∥∥∥
2

2

where zi = [zi1, zi2, zi3]> is the predicted label vector for xi.
If xi belongs to the 2-th class with the predicted label vector
zi � t2, the value of loss Di2 keeps small with an appropri-
ate non-negative adjustment variable m2. This strategy effec-
tively prevents the correct classification from being penalized.
Moreover, the introduced nonnegative variable m2 intuitively
enlarge the distance between different classes in the projected
space as much as possible. Note that the proposed discrim-
inative LSR is more efficient and usually have better gener-
alization ability than the one in [Xiang et al., 2012] which
associates each instance with c non-negative variables.

2.2 Semi-supervised Classification with DLSR
Taking the advantages of discriminative LSR, we consider the
contribution importance of varying training data in the frame-
work of semi-supervised learning and propose a novel fitting
loss for both labeled and unlabeled data in a unified formula-
tion, i.e.,

L(W,b,M, Y ) =
n∑
i=1

c∑
k=1

yrikDik(W,b,mk;xi) (1)

where yik ∈ [0, 1]c (i = 1, 2 · · · , n; k = 1, 2, · · · , c) refers
to the probability of the i-th instance belonging to the k-th
class. For a training instance xi ∈ X with probability vector
yi = [yi1, yi2, · · · , yic] ∈ [0, 1]c, its contribution importance
is defined as

ωri =
c∑

k=1

yrik (i = 1, 2, · · · , n)
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where r ≥ 1 is an adaptive parameter. The advantages of
this definition are embodied in the following three aspects.
Firstly, it ensures the significance of labeled data since the
contribution importance of any labeled instance is always 1
for any adaptive parameter r ≥ 1. Secondly, it is capable of
reflecting how much proportions of the unlabeled data play at
the macro level because, on one hand, the unlabeled instance
is considered to have the equal importance as labeled data
when the adaptive parameter r → 1; On the other hand, the
unlabeled instance has no effect on the training stage as the
adaptive parameter r → ∞. Thirdly, the contribution impor-
tance with fixed 1 < r <∞ can distinguish between different
types of unlabeled data at the micro level. This setting coin-
cides with the fact that uncertain unlabeled instances should
have less influence on the procedure of training. In summary,
the contribution importance not only distinguish between la-
beled and unlabeled instances at the macro level but also dif-
ferentiate the varieties of unlabeled data at the micro level.

Let Y = [Yl;Yu] ∈ [0, 1]n×c be the probability matrix for
training data, where Yl = [y1,y2, · · · ,ynl

]> ∈ [0, 1]nl×c

and Yu = [ynl+1,ynl+2, · · · ,yn]> ∈ [0, 1]nu×c refer to the
probability matrices of labeled and unlabeled data, respec-
tively. We employ the loss function (1) and formulate the idea
of semi-supervised classification with discriminative LSR as
the following optimization problem

min
Ω
L(W,b,M, Y ) + λ‖W‖2F (2)

s.t.
c∑

k=1

yik = 1, yik ∈ [0, 1],mk ≥ 0 (∀i, k);

where Ω = {W,b, Yu,M} collects all of the optimization
variables. r ≥ 1 is the adaptive parameter which needs to
be tuned; The regularization ‖W‖2F controls the complexity
of model with a trade-off parameter λ. In contrast to the ap-
proach used in [Wang et al., 2014], the proposed optimization
problem (2) not only demonstrates excellent robustness to the
unlabeled uncertainty instances that are near the classification
boundary but also prevents the correct classification from be-
ing penalized.

3 Optimization Procedure
In this section, we exploit a simple and efficient alternative al-
gorithm to solve the proposed optimization problem (2), and
analyze its computational complexity and convergence theo-
retically.

3.1 Optimize Unlabeled Probability Matrix Yu:
Consider the independence of training data, probability vec-
tor for each instance can be updated simultaneously by solv-
ing the following optimization problem

min
yi

c∑
k=1

yrikDik s.t.
c∑

k=1

yik = 1; yik ∈ [0, 1] (∀i) (3)

where Dik = Dik(W,b,mk;xi) is calculated with fixed pa-
rameters W,b and mk (k = 1, 2, · · · , c). If the adaptive
parameter r is set to 1, the optimization problem (3) has a

trivial solution

yik =

{
1, if k = arg minj Dij ;
0, otherwise. (4)

for k = 1, 2, · · · , c. In this case, the labeled data and un-
labeled data are treated equally in the semi-supervised clas-
sification. For a more general case that r > 1, let the La-
grangian function of objective (3) be Lα =

∑c
k=1 y

r
ikDik −

α(
∑c
k=1 yik − 1), where α is the Lagrangian multiplier. Set-

ting the derivative of Lagrangian function Lα in terms of yik
to zero and combining with the constraint

∑c
k=1 yik = 1, we

arrive at the following closed-form solution for optimization
problem (3)

yik =

 c∑
j=1

(
Dik

Dij

) 1
r−1

−1

(5)

Given this closed-form solution, the optimal probability vec-
tor for each unlabeled instance is updated efficiently.

3.2 Optimize W and b:
To update W and b with fixed Y and M , we frist introduce
the following Theorem 1.

Theorem 1. GivenW ∈ Rd×c, b ∈ Rc, Y ∈ Rn×c andM ∈
Rc×c, let T = [t1, t2, · · · , tc] ∈ Rc×c and H = T +T �M .
The loss function L(W,b,M, Y ) can be reformulated as a
compact matrix representation

L(W,b,M, Y ) = Tr
[
(W>X + b1>n )Ω(W>X + b1>n )>

]
− 2Tr

[
FH>(W>X + b1>n )

]
+ Tr

[
HGH>

]
where Ω = diag(ωr1, ω

r
2, · · · , ωrn) ∈ Rn×n is a diagonal ma-

trix with its (i, i)-th diagonal element being the contribution
importance of the i-th instance; F = Y r is computed in el-
ement wise; G = diag(g11, g22, · · · , gcc) ∈ Rc×c is also a
diagonal matrices with its (k, k)-th diagonal element being
gkk =

∑n
i=1 y

r
ik (k = 1, 2, · · · , c).

Proof. The result is derived with some matrix theories.

Based on Theorem 1, we update W and b according to the
following Theorem 2.

Theorem 2. Given fixed parameters Y and M , the solutions
of optimization problem (2) with respect to variables W and
b are derived as the following closed forms

W = (XΩPX> + λId)
−1XP>FH> (6)

b = (HF> −W>XΩ)1n/1
>
nΩ1n (7)

where P = In − 1n1
>
nΩ/1>nΩ1n ∈ Rn×n; Id and In are

identity matrices of size d× d and n× n, respectively.

Proof. According to Theorem 1, the optimal W and b
can be achieved through minimizing the objective func-
tion f(W,b) = Tr

[
(W>X + b1>n )Ω(W>X + b1>n )>

]
−
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2Tr
[
FH>(W>X + b1>n )

]
+λ‖W‖2F . By some matrix the-

ories, we set the derivative of f(W,b) with respect to variable
b to zero, i.e.,

∂f(W,b)

∂b
= 2[(W>X + b1>n )Ω−HF>]1n = 0. (8)

Thus, we have b = (HF> −W>XΩ)1n/1
>
nΩ1n. More-

over, setting the derivative of f(W,b) with respect to variable
W to zero, i.e.,
∂f(W,b)

∂W
= 2XΩ(X>W + 1nb

>)− 2XFH> + 2λW = 0,

and substituting the derivation of b into the equation above,
we arrive at

XΩPX>W + λW = XP>FH>

where P = In − 1n1
>
nΩ/1>nΩ1n. As a result, the opti-

mal W is obtained in a closed form W = (XΩPX> +
λId)

−1XP>FH>. The proof is completed.

3.3 Optimize Adjustment Variable M :
Given W,b and Y , the optimal M can be obtained through
solving problem minM≥0 L(W,b,M, Y ). To this end, we
introduce the following Theorem 3.
Theorem 3. Given W ∈ Rd×c, b ∈ Rc and Y ∈ Rn×c,
let F = Y r ∈ Rn×c be calculated in element wise; G =
diag(g11, g22, · · · , gcc) ∈ Rc×c be a diagonal matrix with its
(k, k)-th element gkk =

∑n
i=1 y

r
ik (k = 1, 2, · · · , c). The

solution of optimization problem (2) with respect to M is de-
rived as a closed form

M = T �
[
(W>X + b1>n )FG−1 − T

]
. (9)

Proof. According to the compact matrix representation of
loss function L(W,b,M, Y ) in Theorem 1, we denote H =
T + T �M with T = [t1, t2, · · · , tc] ∈ Rc×c, and compute
the derivative of L(W,b,M, Y ) with respect to M , i.e.,

∂L(W,b,M, Y )

∂M
=
∂H

∂M
× ∂L(W,b,M, Y )

∂H

= T ×
[
2HG− 2(W>X + b1>n )F

]
.

Recall that matrix T is invertible, we set the derivative of
L(W,b,M, Y ) to 0, and thus obtain

H = T + T �M = (W>X + b)FG−1. (10)

Since the (k, k)-th element of T is 1 and the others are−1 for
k = 1, 2, · · · , c, T � T = 1c×c holds, where 1c×c refers to
a matrix whose elements are all 1. Thus we have M = T �[
(W>X + b1>n )FG−1 − T

]
. The proof is completed.

In summary, we describe the alternative algorithm for opti-
mization problem (2) in Algorithm 1. Because of the closed-
form solutions to each updating rule, Algorithm 1 is very sim-
ple to implement and efficient to run on large scale datasets.
Specifically, the overall computational cost of Algorithm 1
is less than O(Td2c) + O(nd2) + O(ndc). For real world
application, since the number of classes c is always much
smaller than the dimensionality of data d and the number of
data points n, the upper bound computational cost reduces to
O(Td2) + O(nd2). We also analyze the convergence of the
proposed algorithm in the following Theorem 4.

Algorithm 1 Alternative optimization for problem (2)

Input: X = [Xl;Xu] ∈ Rd×n with label matrix Fl ∈
Rnl×c; λ; r ≥ 1.

Initialization: W (0) ∈ Rd×c, b(0) ∈ Rc, M (0) ∈ Rc×c and
t = 0.

1: while not converge do
2: Update Y t+1

u given W (t),b(t) and M (t) by Eq. (4) if
r = 1, by Eq. (5) otherwise;

3: Update W (t+1) and bt+1 given Y t+1 and M t by Eq.
(6) and Eq. (7);

4: Update M (t+1) given W (t+1),b(t+1) and Y (t+1) by
Eq. (9);

5: t = t+ 1;
6: end while

Theorem 4. The iterative updating rules in Algorithm 1
monotonically decrease the objective function value of the op-
timization problem (2) in each iteration until convergence.

Proof. Let the value of objective function (2) be
F(W (t),b(t),M (t), Y (t)) = L(W (t),b(t),M (t), Y (t))+
λ‖W (t)‖2F at the t-th iteration. In alternative optimization
Algorithm 1, since we update variable Y with closed-form
solution by Y (t+1) = arg minY L(W (t),b(t),M (t), Y ),
followed by updating variables W and b according to
(W (t+1),b(t+1)) = arg minW,b F(W,b,M (t), Y (t+1)),
the inequality F(W (t+1),b(t+1),M (t), Y (t+1)) ≤
F(W (t),b(t),M (t), Y (t)) holds evidently. Further-
more, the adjustment variable M is updated through
M (t+1) = arg minM L(W (t+1),b(t+1),M, Y (t+1)),
we have F(W (t+1),b(t+1),M (t+1), Y (t+1)) ≤
F(W (t),b(t),M (t), Y (t)). Recall objective function (2)
is bounded below, thus its value decrease monotonically in
each iteration until Algorithm 1 convergence.

4 Experiment
In this section, several benchmark datasets of varying image
types are used to validate the effectiveness and superiority
of the proposed model, including the ORL database of faces
[Cai et al., 2007b], the extended Yale B database (YaleB) of
face [Georghiades et al., 2001], the face database CMU-PIE
[Sim et al., 2002] and the palm print database (PALM) [Yan
et al., 2007]. We download all of the datasets from different
websites. The pixel value of the image is used as its feature
representation. Images of the faces are resized to 32 × 32
while the palm print images in PALM are resized to 16× 16.

We compare the proposed model with some state-of-the-art
classification methods, including supervised learning meth-
ods: SVM [Fan et al., 2005] and classification based on dis-
criminative LSR (SDLSR) with respect to each data points
[Xiang et al., 2012], transductive learning methods: Semi-
supervised classification with Gaussian Fields and Harmonic
Functions (GFHF) [Zhu et al., 2003] and Semi-Supervised
Learning with `1-Norm Graph (`1-SEMI) [Nie et al., 2011a],
two inductive learning: semi-supervised learning with Flexi-
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Table 1: Performance comparison on Accuracy STD with 10% training data are labeled.

ORL YaleB CMU-PIE PALM
Unlabeled Testing Unlabeled Testing Unlabeled Testing Unlabeled Testing

SVM 0.513±0.027 0.501±0.014 0.187±0.015 0.187±0.021 0.276±0.012 0.279±0.015 0.801±0.012 0.811±0.013
SDLSR 0.660±0.028 0.658±0.023 0.937±0.007 0.940±0.010 0.895±0.013 0.900±0.012 0.925±0.008 0.931±0.012
GFHF 0.614±0.023 NA 0.582±0.022 NA 0.654±0.008 NA 0.914±0.012 NA
`1-SEMI 0.576±0.016 NA 0.387±0.026 NA 0.553±0.031 NA 0.891±0.013 NA

FME 0.665±0.018 0.672±0.014 0.928±0.008 0.933±0.012 0.881±0.015 0.884±0.015 0.942±0.008 0.945±0.012
ASL 0.674±0.020 0.666±0.013 0.964±0.004 0.962±0.004 0.943±0.009 0.946±0.008 0.963±0.010 0.964±0.015

Our Model 0.718±0.012 0.725±0.012 0.996±0.001 0.995±0.002 0.954±0.005 0.957±0.006 0.982±0.005 0.986±0.007

Table 2: Performance comparison on Accuracy STD with 20% training data are labeled.

ORL YaleB CMU-PIE PALM
Unlabeled Testing Unlabeled Testing Unlabeled Testing Unlabeled Testing

SVM 0.521±0.014 0.514±0.026 0.315±0.030 0.319±0.033 0.378±0.012 0.383±0.011 0.917±0.007 0.921±0.009
SDLSR 0.662±0.018 0.662±0.017 0.982±0.002 0.981±0.003 0.955±0.013 0.957±0.009 0.986±0.005 0.988±0.003
GFHF 0.627±0.023 NA 0.735±0.020 NA 0.800±0.008 NA 0.981±0.004 NA
`1-SEMI 0.584±0.024 NA 0.576±0.016 NA 0.768±0.031 NA 0.976±0.005 NA

FME 0.672±0.018 0.689±0.023 0.990±0.003 0.989±0.003 0.952±0.015 0.953±0.008 0.989±0.004 0.991±0.003
ASL 0.691±0.027 0.689±0.013 0.996±0.002 0.995±0.002 0.969±0.009 0.968±0.004 0.992±0.005 0.993±0.005

Our Model 0.732±0.012 0.736±0.021 0.997±0.001 0.997±0.002 0.973±0.005 0.974±0.005 0.994±0.005 0.996±0.004

ble Manifold Embedding (FME) [Nie et al., 2010] and Adap-
tive Semi-Supervised Learning (ASL) [Wang et al., 2014].

For each dataset, two thirds of samples are randomly se-
lected as the training data, while the remaining ones are
served as the testing data. At the semi-supervised training
stage, we randomly choose only 10% or 20% samples with
labels. For the regularization parameter used in SDLSR, `1-
SEMI, FME , ASL and our model, we tune them in the range
of {10−3, 10−2, 10−1, 100, 101, 102, 103} and report the best
results. Following [Nie et al., 2010], we use the Gaussian
function to compute the Laplacian matrix for all graph-based
methods. The adaptive parameter used in ASL and our model
is tuned from 1 to 2 with a step-size of 0.1.

4.1 Experimental Results Comparison
For a fair comparison, we randomly split each dataset into
training and testing dataset 50 times and report the aver-
age accuracy with standard deviation (STD) for the unla-
beled data in training dataset and testing data. The experi-
mental results on four datasets are collected in Table 1 and
Table 2 with 10% and 20% labeled samples, where “NA”
indicates that transductive semi-supervised classification ap-
proaches are not able to predict labels for samples out of train-
ing stage. From the experimental comparison, we have the
following observations. (1) The performance of each algo-
rithm becomes better as the increase of labeled data in the
training stage. This phenomenon looks more obvious in su-
pervised and transductive semi-supervised classification than
inductive semi-supervised learning algorithms. (2) Thanks to
the information proved by unlabeled data, the performance
of semi-supervised classification algorithms exceeded SVM.
However, both running in the supervised scenario, SDLSR
achieves much better results than SVM. In fact, the perfor-

mance of SDLSR is even over transductive semi-supervised
classification approaches since it concerns the discriminative
variables of each label for each samples. (3) Since our model
takes the contribution importances of different training data
into consideration, together with the introduced adjustment
variables for each label, it consistently outperforms other
methods over all datasets. ASL also considers the contribu-
tion importances but achieves the second best performance
because it employs traditional LSR for classification.

We also conduct some numeric experiments to verity the
time superiority of the proposed algorithm. With 20% la-
beled training data, we copy each datasets 2-times, 4-times,
6-times, 8-times and 10-times respectively and report the
time performance over each extended datasets in Figure 2.
Note that because `1-SEMI, ASL and our model are solved
through alternative optimization algorithm, a equal conver-
gence residual is shared for a fair comparison. We observe
from the experimental result that: (1) The time cost of the
graph-based methods, including GFHF, `1-SEMI and FME
grow more rapidly than the proposed model and ASL with
the increase of training data; (2) Our model consumes less
time than other semi-supervised methods, especially when
the number of data increases larger. This result gears to
the computational complexity mentioned above and demon-
strates the efficiency of the proposed model for large scale
data applications.

4.2 Sensitivity and Convergence
To illustrate the influence of parameters on the performance
of semi-supervised classification, we report in Figure 3 the
performance of the proposed model with varying values of
parameters λ ∈ [10−3, 103] with step-size of 10 and r ∈
[1.1, 1.7] with step-size of 0.1. We observe from the experi-
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Figure 2: Time performance analysis of the competitors.
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Figure 3: Sensitivity analysis on parameters λ and r.
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Figure 4: Convergence curves of the objective values.

mental results that the performance varies with different set-
tings on various datasets. As a result, how to identify the opti-
mal values of the parameters is data dependent. Generally, the
results could be satisfactory and relatively stable when λ and
r fall in the range of [10−2, 10−1] and [1.5, 1.7], respectively.
To illustrate the efficiency of our algorithm, we plot the corre-
sponding convergence curves of the objective function (2) for
two datasets in Figure 4, where the parameters λ and r are set
as 0.1 and 1.4, respectively; 20% labeled data are involved in
the training stage. It is evident that our algorithm converges
within 20 iterations over all datasets, validating the efficiency
and quickly converges of this algorithm.

5 Conclusion
In this paper, we develop a new discriminative LSR where
each label is associated with an adjustment variable to elimi-
nate the penalty of data that are classified correctly. Based on

this discriminative LSR, we propose a novel semi-supervised
classification which concerns the contribution importance of
labeled and unlabeled training data simultaneously. An effi-
cient alternative algorithm is exploited to solve the proposed
challenging problems with theoretical analyses on its conver-
gence and computational complexity. Experimental results,
including the performance of accuracy and time cost, demon-
strate the superiority and efficiency of the proposed model.
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