
EigenNet: Towards Fast and Structural Learning of Deep Neural Networks

Ping Luo
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong

pluo@ie.cuhk.edu.hk

Abstract
Deep Neural Network (DNN) is difficult to train
and easy to overfit in training. We address these two
issues by introducing EigenNet, an architecture that
not only accelerates training but also adjusts number
of hidden neurons to reduce over-fitting. They are
achieved by whitening the information flows of
DNNs and removing those eigenvectors that may
capture noises. The former improves conditioning
of the Fisher information matrix, whilst the latter
increases generalization capability. These appealing
properties of EigenNet can benefit many recent
DNN structures, such as network in network and
inception, by wrapping their hidden layers into
the layers of EigenNet. The modeling capacities
of the original networks are preserved. Both the
training wall-clock time and number of updates are
reduced by using EigenNet, compared to stochastic
gradient descent on various datasets, including
MNIST, CIFAR-10, and CIFAR-100.

1 Introduction
Deep neural networks (DNNs) have improved performances
of many computer vision tasks, as the non-linearity of
DNNs provides expressive learning power, enabling them
to learn complicated relationships between images and labels.
However, these complicated relationships may have two issues.
First, they typically trigger a highly inhomogeneous curvature
matrix [LeCun et al., 1991], which impedes the efficiency of
stochastic gradient descent (SGD). The learning rate of each
hidden layer needs careful tuning, as different layers usually
require different learning rates. Second, in large and deep
network, some of the learned relationships are noises, which
leads to over-fitting.

To reduce over-fitting, recent DNN architectures typically
incorporated dropout [Srivastava et al., 2014], which randomly
zeroes activations of the hidden neurons to reduce correlation
between each pair of the neurons, preventing their learned
features from co-adaptation. To accelerate training, previous
methods exploited second-order information such as adaptive
learning rate [LeCun et al., 1993], centering gradients
[Schraudolph, 2002a], and curvature matrix-vector products
[Schraudolph, 2002b]. These approaches approximated the

curvature matrixes either by their diagonals or by their
products with the gradients, to avoid expensive computation
of the matrix inverse.

Except for directly computing curvature matrixes, linear
multilayer perceptron [Raiko et al., 2012] and projected
natural gradient descent (PRONG) [Desjardins et al., 2015]
implicitly whitened the input features of each hidden layer to
improve conditioning of the Fisher information matrix (FIM).
For example, in each update, PRONG projected network
parameters into the eigenspace of the input features to mimic
the whitening transformation. This scheme performed well in
supervised learning such as image recognition, because the
inhomogeneity of the FIM is mainly triggered by the input
images rather than the supervised labels.

We present EigenNet, which conditions FIM by explicitly
whitening both the input features and the gradients, rather
than only the input features. It has two appealing properties.
First, EigenNet not only accelerates supervised learning,
but also improves generative unsupervised learning, where
inhomogeneity of FIM is produced by both input and target
images. Second, it improves generalization by reducing over-
fitting. This is achieved by removing eigenvectors that has
small eigenvalues, which may capture noises.

In this paper, Sec.2 introduces the architecture and prop-
erties of EigenNet. This is the main contribution. Sec.3
presents a carefully devised training algorithm, which is
another important component of EigenNet. Sec.3.1 connects
EigenNet with previous works. Experiments in Sec.4 on
MNIST, CIFAR-10, and CIFAR-100 datasets demonstrated
that both training wall-clock time and number of updates can
be reduced by using EigenNet, mimicking the fast convergence
of natural gradient descent.

2 EigenNet
Network Overview. This work takes multilayer perceptron
(MLP) as an example. The following descriptions can be also
adapted to the other networks such as convolutional network
and auto-encoder. Fig.1 (a) shows the forward (FP) and
backward passes (BP) of a fully-connected (FC) layer in a
MLP. FP transforms an input vector, x ∈ Rm×1, to an output
vector, a ∈ Rn×1, by applying a parameter matrix W and
a bias vector b. We have a = Wx + b. BP propagates the
error vector from the upper layer, δa, to the previous layer by
δx = WTδa. Fig.1 (b) shows that each FC layer is wrapped

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2428

W, b

WT

x

δx

a

δa

m n

(a) a FC layer (b) wrapping of a FC layer

x aeh1 h2

P, μ We, be Q

δxe δaδh1 δh2

QT, ηWePT

m k nz

T

Figure 1: The architecture of EigenNet.

into an EigenNet by appending two intermediate layers, h1
and h2. Its information flows are defined as

h1 = P (x− µ), h2 = Weh1 + be, ae = Qh2, (1)

δh2 = QT(δa− η), δh1 = WT
e δh2, δxe = PT

δh1. (2)

Eqn.(1) transforms x to ae by successively multiplying x with
three matrixes, P , We, and Q. Eqn.(2) propagates the error
signal δa to δxe by using the transpose of these matrixes. µ
and η represent the estimated sample means of x and δa. In
particular, P and Q are two projection matrixes that whiten
the centered representations of x and δa. They are determined
by eigen-decomposition. We and be denote a parameter matrix
and a bias vector.

Construct P and Q. We first construct P and Q in
Eqn.(1) and (2). To improve training efficiency, we encourage
each dimension of the hidden features h1 and the errors
δh2 to be independent with each other. Therefore, we
have E[h1h

T
1] = E[P (x − µ)(x − µ)TPT] = I as well as

E[δh2δhT2] = E[QT(δa−η)(δa−η)TQ] = I , where E[·] and I
denote expectation and an identity matrix. These equalities are
achieved by eigen-decomposition of the correlation matrixes
of x and δa. As a result, P and Q are defined as

P = S−
1
2UTdiag(Σ)−

1
2 , and QT = E−

1
2V Tdiag(Υ)−

1
2 ,
(3)

where diag(·) indicates a diagonal matrix, while Σ ∈ Rm×m
and Υ ∈ Rn×n are the covariance matrixes of x and
δa, respectively. Moreover, S and E are two diagonal
square matrixes whose diagonal elements are the eigenvalues,
whilst U and V are two orthogonal matrixes of eigenvectors.
For instance, we have Σ = E[(x − µ)(x − µ)T] and its
corresponding correlation matrix is diag(Σ)−

1
2 Σdiag(Σ)−

1
2 .

Then, S andU in Eqn.(3) are obtained by eigen-decomposition
of the correlation matrix. We have E[h1h

T
1] = PE[(x −

µ)(x − µ)T]PT = S−
1
2UTdiag(Σ)−

1
2E[(x − µ)(x −

µ)T]diag(Σ)−
1
2US−

1
2 , which becomes an identity matrix

I , because diag(Σ)−
1
2E[(x − µ)(x − µ)T]diag(Σ)−

1
2 =

diag(Σ)−
1
2 Σdiag(Σ)−

1
2 = USUT by construction and

UTU = I .
Pruning Neurons. The number of hidden neurons

can be pruned in EigenNet to reduce over-fitting. This
is accomplished by pruning feature dimensions that have
eigenvalues smaller than a threshold ρ. These dimensions
typically capture noises. Removing them reduces over-fitting.
To this end, S and E are truncated by removing rows and
columns associated with the smallest eigenvalues, whilst the

corresponding eigenvectors in U and V are also removed

respectively. As a result, we have P = S
− 1

2U
T

diag(Σ)−
1
2 ∈

Rk×m as well as Q
T

= E
− 1

2V
T

diag(Υ)−
1
2 ∈ Rz×n, where

the overline of a matrix indicates its truncation and we have
k < m and z < n. In this case, the layer’s structure is
determined in training by projecting x and δa into lower
dimensional spaces.

2.1 Properties of EigenNet
EigenNet has several appealing properties. First, it resem-
bles and generalizes batch normalization (BN) [Ioffe and
Szegedy, 2015] to accelerate training. This property can
be understood by substituting Eqn.(3) into Eqn.(1) and (2).
We have h1 = S−

1
2UTdiag(Σ)−

1
2 (x − µ) and δh2 =

E−
1
2V Tdiag(Υ)−

1
2 (δa−η), which imply that each dimension

of input and error is standardized independently before
multiplying by the whitening matrixes, making it have zero
mean and unit variance.

Second, EigenNet prevents over-fitting. A modern com-
ponent to reduce over-fitting is dropout, which gates hidden
neurons with a Bernoulli random variable r, so that E[(r ◦
x)(r ◦ x)T] = p(1 − p)E[xxT], where ◦ and p denote
the element-wise product and dropout ratio. For instance,
when p = 0.5, covariance after dropout becomes 1

4E[xxT].
EigenNet factorizes the correlation matrix of hidden neurons,
and reduces over-fitting by characterizing only the most
significant variations using the eigenvectors that have the
largest eigenvalues.

Third, EigenNet improves training efficiency by condi-
tioning the Fisher information matrix (FIM) [Amari and
Nagaoka, 2000]. FIM consists of L × L blocks. Here,
L is the number of hidden layers. The (i, j)-th block of
a FIM is represented by Fij = E[vec(∆W i

e)vec(∆W j
e)T],

where ∆W i
e indicates the gradient of the i-th hidden layer and

vec(·) stacks the columns of a matrix into a single column
vector. For example, as illustrated in Fig.1 (b), we have
vec(∆W i

e) = vec(hi1δhi2
T

) = δhi2 ⊗ hi1, where ⊗ denotes
the Kronecker product. In this case, Fij can be rewritten

as E[(δhi2 ⊗ hi1)(δhj2 ⊗ h
j
1)T] = E[δhi2δhj2

T
⊗ hi1h

j
1

T
], which

can be approximated by E[δhi2δhj2
T

]⊗E[hi1h
j
1

T
], by assuming

δh2 and h1 are independent as demonstrated in [Desjardins
et al., 2015; Martens and Grosse, 2015; Raiko et al., 2012].
As a result when i = j, each diagonal block Fii becomes an
identity matrix because we have E[hi1h

i
1
T

] = E[δhi2δhi2
T

] = I
as discussed in Sec.2, which improves conditioning of FIM of
each hidden layer and thus speeds up training.

3 Training Algorithm
Algorithm 1 summarizes the training procedure. The
loss function of an EigenNet can be defined as
L
(
{W `

e , b
`
e}L`=1; s.t. {a`e = a`, δx`e = δx`}L`=1

)
, which

is minimized by optimizing the network parameters as
well as satisfying two constraints for each layer `. These
constraints maintain the outputs and back-propagated errors
of each layer being identical before and after each time of

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2429

Algorithm 1 Training EigenNet

Init: Let ` and t indicate the `-th layer and t-th update, t =
1...T and ` = 1...L. Let P ` = Q` = I , and µ` = η` = 0,
where I and 0 indicate an identity matrix and a vector of
zeros, for all `.
for t = 1 : T and ` = 1...L
1 perform forward and backward passes by Eqn.(1) and (2).
2 update network parameters We

`
t, be

`
t by SGD as Eqn.(5).

3 if mod(t, γ) == 0 Beigen-construction
4 store old variables obtained at the last eigen-construction,

µ`
o = µ`, η`o = η`, P `

o = P `, and Q`
o = Q`.

5 estimate new variables µ`, η`,Σ`,Υ` by τ mini-batches of
samples.

6 construct and truncate new P ` and Q` by Eqn.(3).
7 transform network parameters We

`
t, be

`
t by Eqn.(4).

8 end
end

eigen-construction (3rd line), enabling a smooth and stable
optimization process.

The network parameters, We
`
t and be`t , are updated in every

iteration t by using SGD as shown in the 2nd line. The 3rd

line indicates that the projection matrixes, P ` and Q`, and the
sample means, µ` and η`, can be updated at an interval of γ
and kept unchanged in the consecutive γ-1 iterations. They
are estimated using τ mini-batches (5th line).

Transform Wt and bt. Here, we simplify the notations
by discarding ` and e. As outlined in Algorithm 1, when t < γ
(the iterations before the first time of eigen-construction), the
information are propagated similarly as in a conventional MLP,
because the variables P , Q, µ, and η are initialized as identity
matrixes and vectors of zeros, respectively. Eigen-construction
is performed when the modulus mod(t, γ) equals zero.

At the first time of eigen-construction when t = γ, P
and Q are constructed and truncated following Eqn.(3). The
inverse of them are employed to transform the parameter
matrix and the bias vector, so as to satisfy the above two
constraints. For instance, we have Wγ+1 = Q−1WγP

−1

when t = γ + 1. In other words, at the beginning of the (γ+1)-
th iteration, the transformed parameter matrix is updated at the
next consecutive γ-1 iterations with respect to P and Q. More
precisely, at the beginning of each eigen-construction, the
loss function has been minimized for γ iterations, regarding
Po and Qo, which have been attained in the preceding eigen-
construction. Therefore, to ensure the learned models are
identical before and after eigen-construction, we transform the
network parameters by

Wt+1 = Q−1QoWtPoP
−1 and (4)

bt+1 = Q−1Qobt +Q−1QoWtPo(µ− µo).

When t = γ, Eqn.(4) turns into Wt+1 = Q−1WtP
−1 and

bt+1 = Q−1bt+Q−1Wtµ because Po = Qo = I and µo = 0.
The above two constraints can be achieved by Eqn.(4).

Assume that t represents the iteration right before the stage
of eigen-construction. By using Eqn.(1), we have at =
Qo
(
WtPo(x−µo) + bt

)
. At the (t+1)-th iteration after eigen-

construction, given the same input x, at+1 = Q
(
Wt+1P (x−

µ) + bt+1

)
. By substituting Eqn.(4) into at+1, we have

at+1 = at, because at+1 = QoWtPo(x − µ) + Qobt +
QoWtPo(µ − µo) = QoWtPo(x − µo) + Qobt = at. The
second constraint can be satisfied similarly as above.

Eqn.(4) is able to preserve norm of the parameter matrix.
We have ‖Wt+1‖2 ≈ ‖Wt‖2, implying that Q−1Qo ≈
PoP

−1 ≈ I , as the distribution of a learned representation
typically varies smoothly within a short period. Q−1Qo and
PoP

−1 rarely scale up the parameters. In contrast, eigen-
construction may scale up the gradient.

Update Wt by Shrinking Gradient. As shown in Fig.1
(b), gradient ∆Wt is attained by ∆Wt = h1δh2

T = P (x −
µ)(δa− η)TQ, which develops into S−

1
2UTdiag(Σ)−

1
2 (x−

µ)(δa− η)Tdiag(Υ)−
1
2V TE−

1
2 by utilizing Eqn.(3). In this

case, ‖∆Wt‖2 is upper-bounded by the sub-multiplications of
‖S− 1

2 ‖2 ·‖UT‖2 ·‖diag(Σ)−
1
2 (x−µ)(δa−η)Tdiag(Υ)−

1
2 ‖2 ·

‖V T‖2 · ‖E−
1
2 ‖2. Specifically, all the three terms in the

middle equal one, because of eigen-decomposition and
standardization of FP and BP. Therefore, we have ‖∆Wt‖2 ≤
‖S− 1

2 ‖2 · ‖E−
1
2 ‖2 = 1/

√
smin · emin, where smin and emin

indicate the smallest eigenvalues in the diagonal of S and E
respectively. This implies that eigen-construction may scale up
gradient by a significantly large factor, because smin and emin

are typically small (e.g. smaller than 10−6 in experiments). As
a result, conventional SGD leads to exploding of parameters
after a few updates. To preserve gradient norm and stabilize
training, we update W `

t for each layer ` by shrinking gradient

W `
t+1 = W `

t −
(
λ
√

(s`min + ε)(e`min + ε)
)
∆W `

t , (5)

where λ denotes a global learning rate and ε is a smoothing
constant that prevents the gradient from over-penalizing. The
shrinking term in Eqn.(5) is calculated at every γ iterations.

3.1 Connections with Previous Models

The relations between EigenNet, BN, and dropout are
disclosed in Sec.2.1. It also closely connects to the natural
gradient descent (NGD) [Amari and Nagaoka, 2000], which
updates network parameters by Θt+1 = Θt − λF−1∆Θt,
where Θ = {W `}L`=1 is a set of parameters of the entire
network and F is the FIM, whose matrix inverse is usually
computational impractical, especially for networks with
large amount of parameters. Eqn.(5) addresses this issue.
To understand, we rewrite Eqn.(5) as W `

t+1 = W `
t −(

λ
√

(s`min + ε)(e`min + ε)
)
F−1`` ∆W `

t , implying that FIM is

approximated as L non-zero diagonal blocks, {F``}L`=1 6= 0.
The entries of the non-diagonal blocks are zeros, {F``′}`6=`′ =
0. As discussed in Sec.2.1, EigenNet naturally regularizes
F`` = I , mimicking fast convergence of NGD. The K-
FAC [Martens and Grosse, 2015] method also employed
the diagonal-block approximation of FIM, but it explicitly
inverses each diagonal block matrix in gradient descent, rather
than wrapping network architecture to reduce computations as
EigenNet does.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2430

0 500 1000 1500 2000 2500 3000 35000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 (a) training classification errors

updates

cl
as

si
fic

at
io

n
er

ro
r

0 500 1000 1500 2000 2500 3000 35000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 (b) test classification errors

updates

cl
as

si
fic

at
io

n
er

ro
r

0.2 0.4 0.6 0.8 1

50

100

150

200

250

(c) training time elapsed (second)

classification accuracy

tim
e

el
ap

se
d

(s
)

0

BN
EigenNet-BP
EigenNet-FP+BP
EigenNet-FP
PRONG+BN
RMSProp
SGD

300

Figure 2: Comparisons on MNIST. (a) and (b) show the classification error vs number of updates in training and test respectively. (c) compares
the runtime of training vs classification accuracy.

4 Experiments

EigenNet is extensively evaluated on three datasets, including
an ablation study on MNIST [Larochelle et al., 2007], a com-
patibility study with the recent advanced deep architectures,
NIN [Lin et al., 2014] and Inception [Ioffe and Szegedy, 2015],
on the CIFAR-10 and CIFAR-100 datasets [Krizhevsky, 2009].

4.1 Ablation Study

Supervised Learning. We evaluate three variants of Eigen-
Net, denoted as EigenNet-FP, EigenNet-BP, and EigenNet-
FP+BP, which whiten the information flows of forward,
backward, and both of them. They are compared with
existing methods including SGD, RMSprop [Tieleman and
Hinton, 2012], BN, and PRONG [Desjardins et al., 2015] on
MNIST with rotations. It contains 12,000 randomly rotated
digit images for training and 50,000 images for test. All
approaches are applied on the same convolutional neural
network, containing four convolutional layers as shown in
the first row of Table 1, where (x, y) denote number and size
of the filter respectively. For example, ‘conv0’ learns 8 filters
of size 5×5 to extract low-level features, while ‘conv3’ learns
10 filters to predict ten digit labels1.

Other than the ‘conv’ layers, different approaches involve
different additional layers as indicated in the second row of
Table 1, including the layers whitening hidden features of FP
and BP, denoted as ‘fp’ and ‘bp’. Batch normalization layer
is denoted as ‘bn’, where the subscript of ‘bn0’ indicates that
‘bn’ is stacked after ‘conv0’. For example, BN standardizes
hidden features with three ‘bn’ layers. For PRONG, EigenNet-
FP, and EigenNet-FP+BP, ‘fp’ layer is stacked behind two
convolutional layers in the middle, i.e. ‘conv1’ and ‘conv2’,
but not behind ‘conv0’ and ‘conv3’, because they already have
compact feature channels. Similarly, ‘bp’ layers of EigenNet-
BP and EigenNet-FP+BP are allocated behind ‘conv1’ and

1More specific, each ‘conv’ layer is followed by an activation
function, f(x) = max(0, x). Two max-pooling layers are stacked
after ‘conv1’ and ‘conv2’ respectively, reducing the spatial size of
the channel by half. The output of ‘conv3’ is then pooled to 10×1×1
to predict 10 digit labels.

Table 1: Comparisons of network specifications.

conv0 conv1 (128,1) conv2 (128,1) conv3 (10,1)
(8,5) bn0 fp0 bp1 bn1 fp1 bp2 bn2 fp2 bp3

BN
PRONG+BN
EigenNet-FP
EigenNet-BP
EigenNet-FP+BP

X
X
X
X
X

X
X

X
X X

X

X
X
X

X
X X

X

X

‘conv2’. Furthermore, PRONG is explicitly combined with BN
to reduce instability during training, denoted as PRONG+BN.

Results are given in Fig.2. For all algorithms, we
initialize network parameters by sampling from a standard
normal distribution and employ a batch of 64 samples
for each update, where the parameters are updated with a
momentum value of 0.9. In particular, for EigenNet, the
whitening interval γ, the number of mini-batches τ , and the
pruning threshold ρ are selected from {100,200,500,1000},
{10,20,30}, and {0.01,0.001}, respectively. For PRONG+BN,
we consider γ ∈ {10, 102, 103, 104} and a constant factor
in {1,0.1,0.01,0.001}, which is added to all the eigenvalues.
This factor penalizes small eigenvalues, preventing them from
scaling up the gradients.

In Fig.2 (a) and (b), differences of the convergence rates
among different methods are consistent in both training and
test. In general, variants of EigenNet and PRONG+BN signifi-
cantly outperform the other competitors by a large margin.
This confirms the superiority of whitening transformation
in training. In (c), EigenNet significantly outperforms the
other methods in terms of runtime taken to reach a certain
classification accuracy. For example, when training converged,
EigenNet-FP reduces runtime compared to PRONG+BN
and BN by more than 5 and 11 times respectively. This
shows that although conditioning FIM in EigenNet and
PRONG+BN needs more computations than conventional
SGD, for instance, runtime of each feed-forward iteration of
EigenNet-FP, PRONG+BN, and BN are 2×, 1.8×, and 1.3×
that of SGD, updates produced by them make much more
progress optimizing the objective, resulting in algorithms that
can be much faster.

Analysis. To better understand the above results, the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2431

co
nv
1

co
nv
2

co
nv
3

(a) BN (b) EigenNet-FP (c) EigenNet-BP (d) EigenNet-FP+BP

150 300 450 600 750 1000

5

10

15

20

25

30

35

0

2

4

6

8

10

12

14

0

5

10

15

20

25

30

0

BN
EigenNet−FP
EigenNet−BP
EigenNet−FP+BP

(e) condition numbers

updates

Figure 3: Comparisons of FIM blocks of different ‘conv’ layers and their condition numbers.

diagonal blocks of FIM corresponding to the ‘conv’ layers
of three variants of EigenNet and BN are visualized in Fig.3
(a)-(d), where the FIM block of each layer is down-sampled
to enhance visibility. Their condition numbers are compared
in (e), measured by the percentage with respect to the value
before the first time of eigen-construction. As shown in (a),
FIM of BN has dense diagonal blocks and large condition
numbers in training, indicating that standardization is not able
to improve conditioning. In (b), FIM blocks of the last two
‘conv’ layers are constrained to be diagonal-stripped, because
their input features are whitened, leading to small condition
numbers. When backward errors are whitened, FIM blocks
become block-diagonal as illustrated in the first two ‘conv’
layers of (c). In (d), three FIM blocks have good conditions,
where the block of ‘conv2’ approximates an identity matrix
because both the forward and backward flows are whitened.

Generative Unsupervised Learning. We evaluate Eigen-
Net on reconstructing images of MNIST using auto-encoder
(AE), which contains an encoder to transform an input image
into a compact feature vector and a decoder to reconstruct
the input image. In this study, the encoder has 500-200-30
hidden neurons. EigenNet is compared to SGD, BN, K-FAC,
and PRONG+BN. For all methods, network parameters are
initialized by sampling from a standard normal distribution
and each weight vector is normalized to have unit l2-norm.
Learning rate and batch size are selected from {0.01, 0.001}
and {64, 128, 256}.

Reconstruction error/accuracy with respect to number of
updates and wall-clock time are shown in Fig.4 (a,b). In
general, the methods based on natural gradient, such as Eigen-
Net, PRONG+BN, and K-FAC, achieve better performance.

0
1
2
3
4
5
6
7
8
9

10

1 3 5 7 9 11 13

gr
ad

ie
nt

 n
or

m

update step

w/o Shrinking
Shrinking lr=0.001

0.2

0.3

0.4

0.5

0.6

0.7

0 1500 3000 40 00 6000

re
co

ns
tr

uc
tio

n
er

ro
r

updates

gamma=100
gamma=500
gamma=1000
gamma=1e+4

(a) (b)

Figure 5: (a) l2-norm of gradient vector trained with and without
shrinking. (b) Comparisons between different values of gamma.

These approaches regularize either forward or backward
pass to accelerate training. Specifically, EigenNet-FP+BP
achieves the best performance, demonstrating large potential
of whitening both forward and backward propagations in
unsupervised learning, since the irregular of curvature is
induced by both input and reconstructed images. We also
observe that EigenNet-FP+BP usually attains the lowest
reconstruction error. This confirms that better conditioning
FIM produces better shaping the objective’s landscape and
more effective to minimize reconstruction error.

Fig.5 (a) visualizes l2-norm of gradient vector with respect
to step of update, when EigenNet is trained with/without
shrinking gradient. We see that when the initial learning
rate is 0.001, gradient norm is fluctuated slightly around
one with shrinking, but explodes (clipped at 10) in a few
steps without it. We observe that when parameters are also
initialized to have unit norms, their norms can be naturally

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2432

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000

re
co

ns
tr

uc
tio

n
er

ro
r

updates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1500 3000 4500 6000 7500 9000

re
co

ns
tr

uc
tio

n
er

ro
r

updates

EigenNet-FP+BP test w/o
EigenNet-FP+BP train w/o
EigenNet-FP+BP train
EigenNet-FP+BP test

0

5

10

15

20

25

30

0 0.15 0.3 0.45 0.6

tim
e

el
ap

se
d

(m
in

ut
e)

reconstruction accuracy

SGD
BN
K-FAC
PRONG+BN
EigenNet-BP
EigenNet-FP
EigenNet-FP+BP

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000

ne

ur
on

s

updates

EigenNet-FP+BP w/o prune
EigenNet-FP+BP encoder
EigenNet-FP+BP decoder

(a) (b) (c) (d)

Figure 4: Reconstruction error with respect to number of updates and wall-clock time are presented in (a,b). EigenNet is compared to SGD,
BN, K-FAC, and PRONG+BN. (c,d) reports the effectiveness of noise reduction by pruning hidden neurons.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 4 7 10

cla
ss

ifi
ca

tio
n

er
ro

r

updates (1e3)

SGD
BN
EigenNet-FP
EigenNet-FP+BP

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 5 10 15

cla
ss

ifi
ca

tio
n

er
ro

r

updates (1e4)

SGD
BN
EigenNet-FP
EigenNet-FP+BP

Figure 6: Comparisons of EigenNet and BN on (a) CIFAR-10 and
(b) CIFAR-100.

preserved during training with a proper initial learning rate.
In this case, parameters can be optimized with respect to a
“unit sphere”, yielding significant speedups often faster than
conventional SGD. Fig.5 (b) evaluates reconstruction error
with respect to the number of updates, using different values
of gamma (‘γ’). Performance of using large gamma such as
103 is comparable to those of using smaller ones. Performance
can degrade due to ill-condition when gamma increases.

Pruning Neurons. We further study the effectiveness
of noise reduction as shown in Fig.4 (c), where compares
performances of EigenNet trained with/without noise reduc-
tion. We see that EigenNet with pruning substantially reduces
over-fitting compared to those without it. Fig.4 (d) plots the
numbers of neurons of two layers in encoder and decoder
respectively. These layers are initialized with 500 neurons.
With pruning, numbers of neurons vary differently during
training. For instance, number of neurons of the encoder layer
is removed by 40% to reduce noise. That of the decoder layer
is decreased first as the encoder and increased afterwards. It
automatically adjusts amount of hidden features to capture
discriminative patterns instead of noises.

CIFAR. The compatibility of EigenNet with two popular
network structures, NIN and Inception, are evaluated on
CIFAR-10 and -100 respectively. We compare EigenNet-
FP and EigenNet-FP+BP with SGD and BN. All models
are trained by splitting a batch of 256 samples on 8 GPUs.
The setting of EigenNet is similar to Sec.4.1. Fig.6 (a,b)
plot classification error with respect to number of updates.

EigenNet-FP and -FP+BP yield consistent improvements over
SGD and BN on both datasets. For wall-clock time, for
example, EigenNet-FP+BP spends 55% and 70% runtime
of BN respectively when training converged.

5 Conclusions

This work presented EigenNet, a novel theoretically-justified
network architecture that accelerates training and reduces
over-fitting. It whitens both forward and backward flows
of a neural network and stabilizes training with a carefully
devised gradient descent update scheme. More importantly,
it is able to remove noise in training and automatically adapt
its network structure to the cleaned representation, which has
not been explored in previous works. The effectiveness of
EigenNet and its compatibility with existing deep architectures
have been demonstrated in the experiments. The other future
works include applying EigenNet on generative model such as
generative adversarial nets and LSTMs, and regularizing the
non-diagonal blocks of FIM in addition to the diagonal blocks,
reducing co-adaptation across different hidden layers.

Acknowledgements
This work is partially supported by the National Natu-
ral Science Foundation of China (61503366, 61472410,
U1613211), the National Key Research and Developmen-
t Program of China (No.2016YFC1400700), the Exter-
nal Cooperation Program of BIC, Chinese Academy of
Sciences (No.172644KYSB20160033), and the Science
and Technology Planning Project of Guangdong Province
(2015B010129013, 2014B050505017).

References
[Amari and Nagaoka, 2000] Shun-ichi Amari and Hiroshi

Nagaoka. Methods of information geometry. In Tanslations
of Mathematical Monographs, 2000.

[Desjardins et al., 2015] Guillaume Desjardins, Karen Si-
monyan, Razvan Pascanu, and Koray Kavukcuoglu. Natural
neural networks. In NIPS, 2015.

[Ioffe and Szegedy, 2015] Sergey Ioffe and Christian
Szegedy. Batch normalization: Accelerating deep network

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2433

training by reducing internal covariate shift. In ICML,
2015.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple
layers of features from tiny images. In Technical Report,
2009.

[Larochelle et al., 2007] Hugo Larochelle, Dumitru Erhan,
Aaron Courville, James Bergstra, and Yoshua Bengio. An
empirical evaluation of deep architectures on problems with
many factors of variation. In ICML, 2007.

[LeCun et al., 1991] Yann LeCun, Ido Kanter, and Sara A.
Sona. Second order properties of error surfaces: Learning
time and generalization. In NIPS, 1991.

[LeCun et al., 1993] Yann LeCun, Patrice Y. Simard, and
Barak Pearlmutter. Automatic learning rate maximization
by on-line estimation of the hessian’s eigenvectors. In NIPS,
1993.

[Lin et al., 2014] Min Lin, Qiang Chen, and Shuicheng Yan.
Network in network. In ICLR, 2014.

[Martens and Grosse, 2015] James Martens and Roger
Grosse. Optimizing neural networks with kronecker-
factored approximate curvature. In ICML, 2015.

[Raiko et al., 2012] Tapani Raiko, Harri Valpola, and Yann
LeCun. Deep learning made easier by linear transforma-
tions in perceptrons. In AISTATS, 2012.

[Schraudolph, 2002a] Nicol N. Schraudolph. Centering
neural network gradient factors. In Neural Networks: Tricks
of the Trade, 2002.

[Schraudolph, 2002b] Nicol N. Schraudolph. Fast curvature
matrix-vector products for second-order gradient descent.
In Neural Computation, 2002.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from
overfitting. In Journal of Machine Learning Research,
2014.

[Tieleman and Hinton, 2012] Tijmen Tieleman and Geoffrey
Hinton. Rmsprop: Divide the gradient by a running average
of its recent magnitude. In Neural Networks for Machine
Learning (Lecture 6.5), 2012.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2434

