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Abstract
Multi-task feature learning (MTFL) aims to im-
prove the generalization performance of multiple
related learning tasks by sharing features between
them. It has been successfully applied to many pat-
tern recognition and biometric prediction problem-
s. Most of current MTFL methods assume that d-
ifferent tasks exploit the same feature representa-
tion, and thus are not applicable to the scenarios
where data are drawn from heterogeneous domain-
s. Existing heterogeneous transfer learning (includ-
ing multi-task learning) approaches handle multi-
ple heterogeneous domains by usually learning fea-
ture transformations across different domains, but
they ignore the high-order statistics (correlation in-
formation) which can only be discovered by simul-
taneously exploring all domains. We therefore de-
velop a tensor based heterogeneous MTFL (THMT-
FL) framework to exploit such high-order informa-
tion. Specifically, feature transformations of al-
l domains are learned together, and finally used
to derive new representations. A connection be-
tween all domains is built by using the transfor-
mations to project the pre-learned predictive struc-
tures of different domains into a common subspace,
and minimizing their divergence in the subspace.
By exploring the high-order information, the pro-
posed THMTFL can obtain more reliable feature
transformations compared with existing heteroge-
neous transfer learning approaches. Extensive ex-
periments on both text categorization and social im-
age annotation demonstrate superiority of the pro-
posed method.

1 Introduction
Multi-task learning (MTL) [Caruana, 1997; Liu et al., 2017]
learns multiple related tasks simultaneously. It aims to choose
an appropriate hypothesis space for each learning task by
utilizing the shared information across all tasks, and thus
improves their generalization performance. A dozen MTL
methods [Luo et al., 2013; Ammar et al., 2015; Wang et al.,
2016; Luo et al., 2016; Gonçalves et al., 2017] have been pro-
posed in the past decades. For example, a common represen-

tation is learned in [Caruana, 1997] for multiple similar tasks
by sharing hidden units in neural networks. In [Ammar et al.,
2015], some latent factors are assumed to be shared across
multiple tasks in lifelong reinforcement learning. The MTL
methods can be divided into several groups, and one represen-
tative group is multi-task feature learning (MTFL) [Argyriou
et al., 2008], which improves the performance of each task
by learning some shared features between tasks. It has been
widely applied to many real-world applications, such as hand-
written letter recognition [Liu et al., 2009], spoken language
recognition [Gong et al., 2013], disease diagnosis [Argyri-
ou et al., 2008], and medical state examination [Gong et al.,
2013].

An implicit assumption of most existing MTFL algorithms
is that the data samples of related domains have the same fea-
ture dimensionality or lie in the same feature space, and thus
the same feature mapping is learned for all tasks. This as-
sumption may be not valid for many applications. For exam-
ple, in multilingual document classification, the feature rep-
resentations of the documents written in different languages
vary since the utilized vocabularies are different. In natural
image classification and multimedia retrieval, the instances
are often represented using different types of features [Xu et
al., 2014; 2015] (such as local SIFT [Lowe, 2004] and global
wavelet texture) or have different modalities (such as image,
audio and text).

Recently, heterogeneous transfer learning (including MTL
and domain adaptation) has been proposed to manage het-
erogeneous representations. These approaches often trans-
form the heterogeneous features into a common subspace,
so that the difference between heterogeneous domains is re-
duced. Although effective in some cases, most of them are
limited for only two domains (one source and one target do-
main). Only a few approaches [Wang and Mahadevan, 2011;
Zhang and Yeung, 2011; Jin et al., 2015] could learn trans-
formations for more than two domains. In these approach-
es, only the statistics (correlation information) between each
representation and the shared representation [Zhang and Ye-
ung, 2011; Jin et al., 2015], or pairs of representation-
s [Wang and Mahadevan, 2011] is explored, while high-
order statistics (correlation information) [Tao et al., 2007a;
2007b] that can only be obtained by simultaneously examin-
ing all domains is ignored.

To deal with an arbitrary number of domains and exploit
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the high-order information, we develop a tensor based hetero-
geneous multi-task feature learning (THMTFL) framework.
In particular, THMTFL learns the feature mappings for all do-
mains in a single optimization problem. Predictive structures
of the different domains are pre-learned to enable knowledge
transfer. Following the multi-task learning strategies present-
ed in [Ando and Zhang, 2005; Quattoni et al., 2007], we
project the predictive structures of different domains into a
common subspace using the feature mappings. In this paper,
we assume the application tasks in different domains are the
same [Wang and Mahadevan, 2011], such as to classify an ar-
ticle into one of several predefined categories. Consequently,
the predictive structures (parameterized by the weight vectors
of classifiers) should be close to each other in the subspace.
By minimizing the divergence between the transformed pre-
dictive structures, we build a connection between the trans-
formations. The label information (included in the predictive
structures) of all domains is transferred in the subspace to
help learning the transformation (feature mapping) of each
domain. Hence the learned feature mappings are more dis-
criminative than the results of learning them separately, espe-
cially for those domains that have limited label information.

Our method is superior to existing heterogeneous transfer
learning approaches in that: 1) we aim to directly explore the
relationship between all domains by analyzing the high-order
covariance tensor over their prediction weights. The high-
order correlations can thus be encoded in the learned transfor-
mations, and hopefully better performance can be achieved;
2) the predictive structures can be learned beforehand, and
thus the complexity of learning the feature mapping is re-
duced. The original data can be invisible in the feature learn-
ing. Hence the proposed method can be used in applications
where original data are not available due to privacy or secu-
rity reasons. We perform experiments on two popular appli-
cations: text categorization and social image annotation. The
results validate the superiority of the proposed THMTFL.

2 Tensor Based Heterogeneous Multi-task
Feature Learning

In contrast to the traditional multi-domain heterogeneous
transfer learning approaches [Wang and Mahadevan, 2011;
Zhang and Yeung, 2011; Jin et al., 2015], which learn lin-
ear transformation for each domain by only considering the
pairwise correlations, we propose tensor based heterogeneous
MTFL (THMTFL) to learn transformations by exploiting the
high-order tensor correlation between all domains. Given
M heterogeneous domains (such as “English”, “Italian”, and
“German” in multilingual document classification), we as-
sume there are limited labeled samples for each of them. For
the m’th domain, we construct multiple prediction (such as
binary classification) problems and use the labeled data to
learn a set of prediction weight vectors {wp

m}Pp=1, where P is
the number of prediction problems. Here, each wp

m is learned
by assuming the prediction base classifier for each domain is
linear, i.e., fp(xm) = (wp

m)Txm. The P prediction prob-
lems are generated using the Error Correcting Output Codes
(ECOC) scheme [Dietterich and Bakiri, 1995]. Then we use
the feature mapping Um to transform the weight vectors into

a common subspace as {vpm = UTmwp
m}Pp=1. Because the ap-

plication tasks in all domains are the same (as mentioned in
the Introduction), the transformed weight vectors of different
domains {vp1,v

p
2, . . . ,v

p
m} should be close to each other in

the subspace. Finally, by minimizing the tensor based high-
order divergence (or equivalently maximizing high-order co-
variance [Luo et al., 2015]) between all transformed weight
vectors, we learn improved U∗m by utilizing additional infor-
mation from other domains.

It should be noted that the learned weights may be not re-
liable given the limited labeled samples. Fortunately, we can
construct sufficient base classifiers using the ECOC scheme.
Hence robust transformations can be obtained even some
learned base classifiers are inaccurate or incorrect. The tech-
nical details of the proposed method are given below, and we
start by briefing the frequently used notations and concepts of
multilinear algebra in this paper.

2.1 Notations
Let A be an M -order tensor of size I1 × I2 × . . .× IM , and
U be a Jm × Im matrix. The m-mode product of A and U is
then denoted as B = A×mU , which is an I1× . . .× Im−1×
Jm × Im+1 . . .× IM tensor with the element

B(i1, . . . , im−1, jm, im+1, . . . , iM )

=

Im∑
im=1

A(i1, i2, . . . , iM )U(jm, im).
(1)

The product of A and a sequence of matrices {Um ∈
RJm×Im}Mm=1 is a J1 × J2 × . . .× JM tensor denoted by

B = A×1 U1 ×2 U2 . . .×M UM . (2)

The mode-m matricization of A is denoted as an Im ×
(I1 . . . Im−1Im+1 . . . IM ) matrix A(m), which is obtained by
mapping the fibers associated with the m’th dimension of A
as the rows of A(m), and aligning the corresponding fibers of
all the other dimensions as the columns. Here, the column-
s can be ordered in any way. The m-mode multiplication
B = A×mU can be manipulated as matrix multiplication by
storing the tensors in metricized form, i.e., B(m) = UA(m).
Specifically, the series of m-mode product in (2) can be ex-
pressed as a series of Kronecker products and is given by

B(m) = UmA(m)

(
U (cm−1) ⊗ U (cm−2) ⊗ . . .⊗ U (c1)

)T
,

(3)
where {c1, c2, . . . , cK} = {m + 1,m +
2, . . . ,M, 1, 2, . . . ,m − 1} is a forward cyclic ordering
for the indices of the tensor dimensions that map to the
column of the matrix. Let u be an Im-vector, the contracted
m-mode product of A and u is denoted as B = A×̄mu,
which is an I1× . . .× Im−1× Im+1 . . .× IM tensor of order
M − 1, and the entries are calculated by:

B(i1, . . . , im−1, im+1, . . . , iM )

=
∑Im

im=1
A(i1, i2, . . . , iM )u(im).

(4)
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Finally, the Frobenius norm of the tensor A is given by

‖A‖2F = 〈A,A〉 =

I1∑
i1=1

I2∑
i2=1

. . .

IM∑
iM=1

A(i1, i2, . . . , iM )2.

(5)

2.2 Problem Formulation
Given M heterogeneous domains, we suppose the labeled
training set for the m’th domain is given by Dm =
{(xmn, ymn)}Nmn=1, where xmn ∈ Rdm and its correspond-
ing class label ymn ∈ {1, 2, . . . , C}. Here, we assume that
the different domains are about the same application, and
thus share the same label set [Wang and Mahadevan, 2011;
Jin et al., 2015]. To enable knowledge transfer across do-
mains in the learning of the feature mappings {Um}, we first
construct P binary classification problems and learn a set of
classifiers {wp

m}Pp=1 for each of the M domains using the la-
beled training data. This learning process can be carried out
offline and thus have no impact on the computational cost of
subsequent feature mapping learning. Then we propose to
transform wp

m using the mapping Um as vpm = UTmwp
m and

minimize the divergence of the transformed weight vectors,
i.e., {vp1,v

p
2, ...,v

p
M}. Here, we start from two domains, i.e.,

M = 2, and then generalize the model for M > 2.
When M = 2, the formulation is given by

min
U1,U2

1

2P

P∑
p=1

‖vp1 − vp2‖22 +

2∑
m=1

γm‖Um‖1,

s.t. U1, U2 � 0,

(6)

where Um ∈ Rdm×r is the mapping for them’th domain, and
r is the number of common factors shared by different do-
mains; {γm} are positive trade-off hyper-parameters, the l1-
norm ‖Um‖1 =

∑d
i=1

∑r
j=1 |umij | is the sum of the absolute

values of Um’s elements, and � indicates that each element
of Um is non-negative. We enforce Um to be sparse since a
feature in one domain is usually represented by only a small
subset of features in another domain, and the non-negativity
constraints are to preserve non-negative correlation between
the feature representations.

To generalize (6) for M > 2, we reformulate it as

min
U1,U2

1

2P

P∑
p=1

‖wp
1 −Gw

p
2‖22 +

2∑
m=1

γm‖Um‖1,

s.t. U1, U2 � 0.

(7)

Considering that G = U1ErU
T
2 and by using the tensor nota-

tion, we have G = Er ×1 U1 ×2 U2, where Er is an identity
matrix of size r. Thus, the formulation (7) for M > 2 is:

min
{Um}Mm=1

1

2P

P∑
p=1

‖wp
1 − G×̄2(wp

2)T . . . ×̄M (wp
M )T ‖22

+
M∑
m=1

γm‖Um‖1,

(8)

where each Um � 0 and G = Er ×1 U1 ×2 U2 . . . ×M UM
is a transformation tensor, Er ∈ Rr×r×...×r is an identity

tensor (the entries are 1 in the diagonal, and 0 otherwise). The
problem (8) is not convenient to optimize, so we reformulate
it by utilizing the following theorem.

Theorem 1 The following equality holds for ‖wp
m‖22 =

1, p = 1, . . . , P ;m = 1, . . . ,M :

‖wp
1 − G×̄2(wp

2)T . . . ×̄M (wp
M )T ‖22

= ‖wp
1 ◦w

p
2 . . . ◦w

p
M − G‖

2
F ,

(9)

where ◦ is the outer product.

Due to limited page length, we omit the proof. By substitut-
ing (9) into (8) and replacing G with E ×1 U1 ×2 U2 . . . ×M
UM , we obtain the following reformulation of (8):

min
{Um}Mm=1

F ({Um})

=
1

2P

P∑
p=1

‖Wp − Er ×1 U1 ×2 U2 . . .×M UM‖2F

+
M∑
m=1

γm‖Um‖1,

s.t. Um � 0,m = 1, 2, . . . ,M,
(10)

where Wp = wp
1 ◦ w

p
2 . . . ◦ w

p
M is the prediction weights

covariance tensor among all domains. Intuitively, minimiza-
tion of the first term in (10) corresponds to find a subspace
where the weight vectors of all domains are close to each
other. Knowledge (label information) is transferred in this
subspace and thus different domains can help each other in
learning the mapping Um.

2.3 Optimization Algorithm
The problem (10) can be solved by iteratively updating only
one variable Um at a time and fixing all the other Um′ , m′ 6=
m. According to [De Lathauwer et al., 2000], we have

G = E ×1 U1 ×2 U2 . . .×M UM = B ×m Um,

where B = E×1U1 . . .×m−1Um−1×m+1Um+1 . . .×M UM
and by applying the metricizing property of the tensor-matrix
product, we have G(m) = UmB(m). Besides, it is easy to
verify that ‖Wp − G‖2F = ‖W p

(m) −G(m)‖2F . Therefore, the
sub-problem of (10) w.r.t. Um becomes:

min
Um

F (Um) = Φ(Um) + Ω(Um), s.t. Um � 0, (11)

where Φ(Um) = 1
2P

∑P
p=1 ‖W

p
(m) − UmB(m)‖2F , and

Ω(Um) = γm‖Um‖1. We propose to solve the problem (11)
efficiently by utilizing the projected gradient method (PGM)
presented in [Lin, 2007]. However, the term in Ω(Um) is
non-differentiable, we thus first smooth it according to [Nes-
terov, 2005]. For notational clarity, we omit the subscript m
in the following derivation. According to [Nesterov, 2005],
the smoothed version of the l1-norm l(uij) = |uij | can be

lσ(uij) = max
Q∈Q
〈uij , qij〉 −

σ

2
q2ij , (12)
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where Q = {Q : −1 ≤ qij ≤ 1, Q ∈ Rd×r} and σ is the
smooth hyper-parameter, which is empirically set it as 0.5 in
our implementation according to the comprehensive study of
the smoothed l1-norm in [Zhou et al., 2010]. By setting the
objective function of (12) to become zero and then projecting
qij on Q, we obtain the following solution:

qij = median
{uij
σ
,−1, 1

}
. (13)

By substituting the solution (13) back into (12), we have the
piece-wise approximation of l, i.e.,

lσ =


−uij − σ

2 , uij < −σ;
uij − σ

2 , uij > σ;
u2
ij

2σ , otherwise.

(14)

To utilize the PGM for optimization, we have to compute the
gradient of the smoothed l1-norm to determine the descent
direction. It is easy to derive that the gradient ∂l

σ(U)
∂U = Q,

whereQ is the matrix defined in (12). Therefore, the gradient
of the smoothed F (Um) is

∂F σ(Um)

∂Um
=

1

P

∑
p

(
UmB(m)B

T
(m) −W

p
(m)B

T
(m)

)
+ γmQm.

(15)

Based on the obtained gradient, we apply the improved PGM
presented in [Lin, 2007] to minimize the smoothed primal
Fσ(Um), i.e.,

U t+1
m = π[U tm − µt∇F σ(U tm)], (16)

where the operator π[x] projects all the negative entries of x
to zero, and µt is the step size that must satisfy the following
condition:

Fσ(U t+1
m )− Fσ(U tm) ≤ κ∇F σ(U tm)T (U t+1

m −U tm), (17)

where the hyper-parameter κ is chosen to be 0.01 follow-
ing [Lin, 2007]. The step size can be determined using the
Algorithm 1 cited from [Lin, 2007] (Algorithm 4 therein),
and the convergence of the algorithm is guaranteed accord-
ing to [Lin, 2007]. The stopping criterion we utilized here is
|Fσ(U t+1

m )−Fσ(U tm)|/(|Fσ(U t+1
m )−Fσ(U0

m)| < ε), where
the initialization U0

m is the set as the results of the previous
iterations in the alternating of all {Um}Mm=1.

Finally, the solutions of (10) are obtained by alternatively
updating each Um using Algorithm 1 until the stop criterion
|OBJk+1 − OBJk|/|OBJk| < ε is reached, where OBJk
is the objective value of (10) in the k’th iteration step. Be-
cause the objective value of (11) decreases at each iteration
of the alternating procedure, i.e., F (Uk+1

m , {Ukm′}m′ 6=m) ≤
F ({Ukm}). This indicates that F ({Uk+1

m }) ≤ F ({Ukm}).
Consequently, the convergence of the proposed THMTFL al-
gorithm is guaranteed. Once the solutions {U∗m}Mm=1 have
been obtained, we can conduct subsequent learning, such
as multi-class classification in each domain using the trans-
formed features X∗m = U∗m

TXm.
In Algorithm 1, suppose the number of checks that is need-

ed to find the step size is T1, and the number of iterations for

Algorithm 1 The improved projected gradient method for
solving Um.

Input: B(m) and W p
(m), p = 1, . . . , P .

Algorithm hyper-parameters: γm.
Output: Um.

1: Set µ0 = 1, and β = 0.1. Initialize U0
m as the results of

the previous iterations in the alternating optimization of
all {Um}Mm=1.

2: For t = 1, 2, . . .
3: (a) Assign µt ← µt−1;
4: (b) If µt satisfies (17), repeatedly increase it by

µt ← µt/β, until either µt does not satisfy (17) or
Um(µt/β) = Um(µt).
Else repeatedly decrease µt ← µt ∗ β until µt satisfy
(17);

5: (c) Update U t+1
m = π[U tm − µt∇F σ(U tm)].

6: Until convergence

reaching the stop criterion is T2, then the time complexity of
the proposed THMTFL is (ΓM [r

∏M
m=1 dm + T2T1r

2d̄m]),
where d̄m is the average feature dimension of all domains,
and Γ is the number of iterations for alternately updating all
{Um}Mm=1. The complexity is linear w.r.t. M and

∏M
m=1 dm,

and quadratic in the numbers r. Besides, it is common that
Γ < 10, T2 < 20, and T1 < 50, so the complexity is not very
high.

3 Experiments
In this section, we evaluate the effectiveness of the proposed
THMTFL on both document categorization and image anno-
tation. Prior to these evaluations, we present the used dataset-
s, evaluation criteria, as well as our experimental settings.

3.1 Datasets, Features, and Evaluation Criteria
The dataset used in document categorization is the Reuters
multilingual collection (RMLC) [Amini et al., 2009], which
contains news articles written in five languages, and from six
populous categories. In this dataset, we choose three lan-
guages (i.e., English, Italian, and Spanish) and regard each of
them as a domain. The provided TF-IDF features are adopted
for document representation. We preprocess these representa-
tions by performing principal component analysis (PCA) and
this results in 245, 213, and 107 features for documents of
the three domains respectively. The preprocessing is main-
ly to: 1) find comparable and high-level patterns for transfer;
2) pervent overfitting; and 3) reduce computational demands
in the experiments. The number of samples for the three do-
mains are 18, 758, 24, 039, and 12, 342 respectively. In each
domain, the sample sets are randomly split into equal size to
form the training and test sets. In the training set, we random-
ly select 10 labeled samples for each category.

In image annotation, we employ a challenging natural im-
age dataset NUS-WIDE (NUS) [Chua et al., 2009]. The
dataset contains 269, 648 images, and our experiments are
conducted on a subset that consists of 16, 519 images belong-
ing to 12 animal concepts: bear, bird, cat, cow, dog, elk, fish,
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fox, horse, tiger, whale, and zebra. In this dataset, we choose
three types of features, namely the 500-D local bag of SIFT
[Lowe, 2004], 128-D global wavelet texture, and 1000-D tag
to represent each image. We preprocess the different features
using kernel PCA (KPCA) and the result dimensions are all
100. Each image representation is regarded as a domain. In
each domain, we randomly split the image set into a training
set of 8, 263 images and a test set of 8, 256 images, and the
number of labeled instances for each concept is 6.

In both datasets, the task in each domain is to perfor-
m multi-class classification [Liu and Tao, 2016], where the
SVM classifiers are adopted. In all the following experi-
ments, both the classification accuracy and macroF1 [Sokolo-
va and Lapalme, 2009] score are utilized as evaluation crite-
ria. The average performance of all domains is calculated
for comparison. Ten random choices of the labeled instances
are used, and the mean values with standard deviations are
reported.

3.2 Experimental Results and Analysis
The compared methods are listed as below:
• Original: directly using the original normalized feature

representations in each domain.
• LDA [Wang et al., 2007]: learning the feature mapping

for each domain separately using the linear (Fisher) dis-
criminant analysis algorithm [Wang et al., 2007]. The
algorithm only utilizes the given limited labeled samples
in each domain, and does not make use of any additional
information from other domains.
• DAMA [Wang and Mahadevan, 2011]: constructing

mappings {Um} to link multiple heterogeneous domains
using manifold alignment. The hyper-parameter is deter-
mined according to the strategy presented in [Wang and
Mahadevan, 2011].
• MTDA [Zhang and Yeung, 2011]: performing super-

vised dimension reduction simultaneously for heteroge-
neous features (domains) using the multi-task extension
of linear discriminant analysis. The intermediate dimen-
sionality set as 100 since the model is not very sensitive
to the hyper-parameter according to [Zhang and Yeung,
2011].
• MTNMF [Jin et al., 2015]: a recently proposed hetero-

geneous multi-task feature learning algorithm. It learns
feature transformations for multiple heterogeneous do-
mains jointly by performing matrix factorizations on
their feature-label matrices and sharing the class repre-
sentations. The trade-off hyper-parameter is optimized
over the set {10i|i = −5,−4, . . . , 4}.
• THMTFL: the proposed tensor based heterogeneous

multi-task feature learning method. Linear SVMs are
adopted to learn the weight vectors of base classifier-
s for knowledge transfer. The hyper-parameters {γm}
are set as the same value, and we tune γm over the set
{10i|i = −5,−4, . . . , 4}. The hyper-parameter P is
empirically set as 10d1.5 logCe.

If unspecified, the hyper-parameters are determined using
leave-one-out cross validation on the labeled set. For DAMA,

Number of common factors
1 10 20 30 50 80 100

A
cc

ur
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y
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0.51

0.55

0.59

0.63

0.67
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DAMA
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MTNMF
THMTFL
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1 10 20 30 50 80 100

M
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DAMA
MTDA
MTNMF
THMTFL

Figure 1: Average accuracy and macroF1 of all domains vs. number
of the common factors on the RMLC dataset.

Table 1: Average accuracy and macroF1 score of all domains of the
compared methods at their best numbers (of common factors) on the
RMLC dataset. (10 labeled instances for each category.)

Accuracy MacroF1
Original 0.524±0.021 0.480±0.019

LDA 0.610±0.023 0.594±0.019
DAMA 0.621±0.011 0.601±0.013
MTDA 0.635±0.027 0.619±0.026

MTNMF 0.643±0.021 0.622±0.020
THMTFL 0.656±0.013 0.643±0.008

MTDA, MTNMF, and the proposed THMTFL, we do not
tune the hyper-parameter r, which is the number of common
factors (or dimensionality of the common subspace). The
performance comparisons are performed on a set of varied
r = {1, 2, 5, 8, 10, 20, 30, 50, 80, 100}. This also applies to
the result dimension of LDA.

Document Categorization
The classification accuracies and macroF1 scores in relation
to the number r are shown in Figure 1. The performance
of different methods at their best numbers (of common fac-
tors) are summarized in Table 1. From these results, we ob-
serve that: 1) although the labeled samples in each domain
is scarce, learning the feature mapping separately using LDA
can still improve the performance significantly. This demon-
strates the effectiveness of the supervised mapping learning
method in this application; 2) all the heterogeneous transfer
learning approaches (DAMA, MTDA, MTNMF, and THMT-
FL) achieve much better performance than the single domain
LDA algorithm. This indicates that it is useful to leverage
information from other domains; 3) overall, the proposed
THMTFL outperforms all DAMA, MTDA and MTNMF at
most numbers (of common factors). This indicates that the
learned factors by our method are more expressive than the
other approaches. The main reason is that our method directly
examining the high-order statistics of all domains simultane-
ously. However, in DAMA only the pairwise relationships are
explored, and in MTDA and MTNMF the different domains
must communicate with each other through an intermediate
structure, where some important information contained in the
original features may be lost; 4) the performance under the
accuracy and macroF1 criteria are consistent. In particular,
we obtain a significant relative improvement of 3.4% over
the competitive MTNMF in terms of macroF1 score.
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Figure 2: Individual accuracy and macroF1 score of each domain
of the compared methods at their best numbers (of common factors)
on the RMLC dataset. (10 labeled instances for each category; EN:
English, IT: Italian, SP: Spanish, AVG: average.)
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Figure 3: Average accuracy and macroF1 of all domains vs. number
of the common factors on the NUS animal subset.

Table 2: Average accuracy and macroF1 score of all domains of the
compared methods at their best numbers (of common factors) on the
NUS animal subset. (6 labeled instances for each concept.)

Accuracy MacroF1
Original 0.321±0.035 0.330±0.029

LDA 0.354±0.015 0.358±0.010
DAMA 0.349±0.017 0.355±0.019
MTDA 0.370±0.015 0.378±0.010

MTNMF 0.380±0.014 0.379±0.012
THMTFL 0.389±0.006 0.389±0.010

We also show the performance for the individual domain-
s of different methods at their best numbers in Figure 2. It
can be seen from the results that: 1) the heterogeneous trans-
fer learning methods has larger improvements than LDA in
the domains that the discriminative ability of the original rep-
resentations is not very good, such as EN (English) and IT
(Italian). This demonstrates that the knowledge is success-
fully transferred between different domains; 2) in the good
performing SP (Spanish) domain, MTDA is comparable to
LDA and DAMA is even worse than LDA. It seems that the
discriminative domain obtains little benefits from the other
relatively non-discriminative domains in DAMA and MTDA.
Although MTNMF performs well in the SP domain, it fails
in the IT domain. The proposed THMTFL achieves satis-
factory improvements in all domains. This demonstrates that
the high-order correlation information between all domains is
well discovered, and that exploring this kind of information
is much better than only exploring the correlation informa-
tion between pairs of domains (as in DAMA) or through an
intermediate shared structure (as in MTDA and MTNMF).

Image Annotation
We show the annotation accuracies and MacroF1 scores of
the compared methods in Figure 3, and summarize the result-
s at their best numbers (of common factors) in Table 2. It
can be observed from the results that: 1) the improvements
of LDA compared with the original feature baseline are not
that large as in the RMLC dataset. This may be because
the data of different concepts in this dataset are less sepa-
rable than the ones in RMLC. Hence the effectiveness of the
supervised feature mapping learning method decreases giv-
en the limited label information; 2) DAMA is only compara-
ble to LDA, and the improvements of MTDA compared with
LDA are marginal. The main reason is that in this applica-
tion, the different domains corresponding to different kinds
of features. This setting is much more challenging than the
multilingual document classification, where the feature types
(TF-IDF) are the same and only the vocabulary varies. The
statistical properties of the different kinds visual features u-
tilized here are quite different from each other. Therefore, it
is very hard to find some common expressive factors across
all domains by only exploiting the pairwise relationships be-
tween them. Nevertheless, the proposed THMTFL achieves
satisfactory performance by simultaneously exploring all do-
mains, and is superior to the competitive MTNMF at most
numbers (of common factors). This further verifies the supe-
riority of the proposed method. The tendency of the macroF1
score curves are similar to that of the accuracy.

4 Conclusion
This paper presents a method for heterogeneous multi-task
learning. The proposed method can discover high-order s-
tatistics among multiple heterogeneous domains by analyzing
the prediction weight covariance tensor of them. The knowl-
edge shared by the different domains is successfully trans-
ferred in a common subspace to help each of them in the
feature learning by minimizing their high-order divergence in
the subspace. We develop an efficient algorithm for optimiza-
tion, and the exploited high-order correlation information was
demonstrated empirically to be superior to the pairwise cor-
relations utilized in the traditional approaches.

From the experimental validation on two popular applica-
tions we mainly conclude that: 1) the labeled data deficiency
problem can be alleviated by learning for multiple heteroge-
neous domains simultaneously. This is consistent with the
results of multi-task learning literatures; 2) the shared knowl-
edge of different domains exploited by the transfer learning
methods can benefit each domain if appropriate common fac-
tors are discovered, and the high-order statistics (correlation
information) is critical in discovering such factors. In the fu-
ture, we plan to extend the proposed method to learn nonlin-
ear mappings so that it has the capability to handle compli-
cated domains.
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