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Abstract
Recognizing human actions represented by 3D tra-
jectories of skeleton joints is a challenging machine
learning task. In this paper, the 3D skeleton se-
quences are regarded as multivariate time series,
and their dynamics and multiscale features are effi-
ciently learned from action echo states. Specifical-
ly, first the skeleton data from the limbs and trunk
are projected into five high dimensional nonlinear
spaces, that are randomly generated by five dynam-
ic, training-free recurrent networks, i.e., the reser-
voirs of echo state networks (ESNs). In this way,
the history of the time series is represented as non-
linear echo states of actions. We then use a single
multiscale convolutional layer to extract multiscale
features from the echo states, and maintain multi-
scale temporal invariance by a max-over-time pool-
ing layer. We propose two multi-step fusion strate-
gies to integrate the spatial information over the five
parts of the human physical structure. Finally, we
learn the label distribution using softmax. With one
training-free recurrent layer and only layer of con-
volution, our Convolutional Echo State Network
(ConvESN) is a very efficient end-to-end model,
and achieves state-of-the-art performance on four
skeleton benchmark data sets.

1 Introduction
Human action recognition is an active research branch in ma-
chine learning, with a wide range of applications in smart
home scenes, human motion analysis and human-computer
interaction, etc. In the past decades, most work on action
recognition has focused on the analysis of 2D camera-based
RGB video sequences. However, there are many difficul-
ties with this modality, including illumination changes, view-
point variations, and occlusions, etc. In other words, 2D cam-
eras do not fully capture the human motion in 3D space. Cur-
rently, human 3D-skeleton positions can be accurately and
easily extracted from a single depth image [Shotton et al.,
2013], greatly accelerating the progress in action recognition.
Compared with 2D video-based images, 3D human skeleton
points are more appropriate for representing the natures of
human actions.

3D skeleton-based action recognition is still a challeng-
ing task. One of the biggest challenges is that semantically
similar motions may not necessarily be numerically similar
[Presti and Cascia, 2016]. The approaches to this problem
can be broadly divided into two categories: feature-based and
dynamics-based. Feature-based methods extract pose repre-
sentations or discriminative joint subsets from the skeletons
to capture the correlation of body joints, and evaluate the sim-
ilarity of different actions using a suitable metric [Devanne
et al., 2013; Hussein et al., 2013; Vemulapalli et al., 2014;
Gong et al., 2014; Zhang et al., 2016]. While feature-based
approaches are efficient to some extent, designing represen-
tative features and selecting the appropriate metric is time-
consuming and error-prone.
On the other hand, dynamics-based methods treat skeleton

data as 3D trajectories of body joints [Lo Presti et al., 2015;
Slama et al., 2015]. From the view of physical structure,
the human body is a skeleton-based articulated system with
five parts (two arms, two legs and a center trunk), and human
actions are time-varying combinations of these parts (ignor-
ing head movements). In this sense, the skeleton sequences
can be regarded as multivariate time series, and recogniz-
ing human actions can be seen as a time series classifica-
tion (TSC) problem [Gong et al., 2014]. Popular dynamics-
based methods include: HiddenMarkovModels (HMMs) [X-
ia et al., 2012; Wu and Shao, 2014], Long-Short Term Mem-
ory networks (LSTM) [Du et al., 2015; Zhu et al., 2016;
Song et al., 2016]. However, for the TSC problem, it is cru-
cial to identify dynamical patterns in their temporal context,
as many patterns are locally similar, but correspond to differ-
ent actions depending on previous actions. HMMs lack the
ability to maintain the long-term temporal history of a move-
ment. Although LSTMs can learn contextual information for
given sequences, they must be trained, which is very time-
consuming. Moreover, it is known that time series often have
features at different time scales, and LSTMs are poor at cap-
turing multiscale features in time series. Hence, it is a chal-
lenge to simultaneously and efficiently model the dynamics
and capture multiscale temporal features of 3D skeleton se-
quences.
To address these problems, we regard the 3D skeleton se-

quences as multivariate time series and propose a novel neural
network approach called the Convolutional Echo State Net-
work (ConvESN) for the skeleton-based action recognition
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Figure 1: (a) Illustration of the proposed Convolutional Echo State
Network (ConvESN) approach. Note that we drive five separated
reservoirs using five parts of the skeleton inputs; only one is shown
for simplicity. The upper-right representations feed into the fusion
schema (see Figure 4). (b) Heat map of left arm trajectories of a per-
son waving his two hands (54 frames) and the corresponding action
echo states (echo-state representations). Note the representation of
the same pose differs depending on the context.

task. ConvESN can automatically learn the dynamics and
multiple time-scale features of time series from action echo
states. The general architecture of the ConvESN is illustrat-
ed in Figure 1(a). It includes an encoding part and decoding
part. In the encoding part, the skeleton data are projected into
a high dimensional nonlinear space, which is randomly gen-
erated by a dynamic training-free recurrent net, i.e., the reser-
voir of an echo state network (ESN) [Jaeger and Haas, 2004].
In this high-dimensional space, the skeleton sequences are en-
coded into action echo states (we call “echo-state representa-
tions”, ESRs) which contain actions’ history information due
to the short-term memory property of ESNs. In the decoding
part, we use a layer of multiscale convolution and a max-over-
time pooling to decode the ESRs (Figure 3). Furthermore, we
propose two multi-step fusion strategies to integrate the spa-
tial information over the five parts of human physical struc-
ture (Figure 4). Finally, we learn the label distribution us-
ing softmax. With one training-free recurrent layer and only
one layer of convolution, ConvESN is a very efficient end-to-
end model, and achieve state-of-the-art performance on four
skeleton benchmark data sets.
The merits of using Echo State Networks over other RN-

N/LSTM networks are twofold. First, the weights of the
reservoir are randomly initialized and fixed; no training is
required. The recurrent layer can be regarded as a high-
dimensional (usually 100-1000D) nonlinear temporal kernel
and automatically provides abundant representations of the
input time series. Our results compare favorably with exist-
ing RNN/LSTM models. Second, due to the sparse connec-
tivity of neurons in a reservoir, a lot of loosely coupled oscil-
lators are created, and information will persists in one part of

the net without being propagated to other parts too quickly.
These oscillators occur naturally at multiple time scales, so
that ESRs contain actions’ history information because of this
multiscale memory. We give an illustrative example in Figure
1(b) with a visualization of the ESR activations over time. We
can see that there are two very similar poses, 15 and 35, but
the corresponding ESRs are very different. The ESRs distin-
guish the similar poses in the same action according to their
different preceding pose sequences. Pose 15 is preceded by
quite different poses (i.e., from 10 to 14) than those preceding
pose 35 (i.e., from 30 to 34), part of a static pose. This can
be attributed to the short-term memory property. Therefore,
action echo states are very suitable and efficient in represent-
ing and capturing the temporal dynamics in 3D skeleton time
series. However, only using linear combinations of action e-
cho states and simple regression, as original ESNs used, are
unable to decode complex ESRs (we’ve tried). Hence we use
the CNN to understand action echo states.
Our main contributions can be summarized as follows.

1) We propose an efficient and effective end-to-end action
recognition model learning from action echo states, which
are well-suited to represent 3D skeleton-based action se-
quences. 2) Integrating the efficiency of the ESN in dealing
with time series and the CNN for multiscale feature extraction
into a unified framework, ConvESN bridges the gap between
the reservoir computing paradigm [Lukoševičius and Jaeger,
2009] and the deep learning paradigm. 3) ConvESN can be
easily generalized by plugging in other powerful deep learn-
ing decoders. 4) We achieve state-of-the-art performance on
3D-skeleton-based action recognition benchmarks, including
the MSR-Action 3D dataset [Li et al., 2010], the Motion Cap-
ture Dataset HDM05 [Müller et al., 2007], the Florence3D-
Action [Seidenari et al., 2013] and the UTKinect-Action
dataset [Xia et al., 2012].

2 Proposed Method
To explain our model, we first briefly review the Echo State
Network paradigm. Then we propose our ConvESN for 3D-
skeleton-based action recognition.

2.1 Review of Echo State Networks
An Echo State Network (ESN) consists of three basic compo-
nents: an input layer, a large recurrent hidden layer (called the
reservoir) and an output layer. An ESN’s input weights and
reservoir weights are randomly initialized and fixed during
all the stages. In particular, the reservoir contains very sparse
connections, which encourages multiple oscillatory dynam-
ics. The only adaptable parameters are the output weights,
which usually can be obtained by linear regression. To more
clearly understand the difference between ESN with other
RNN/LSTM, their general architectures are illustrated in Fig-
ure 2.
Given u = (u(0), u(1), . . . , u(T − 1)) a K-dimensional

input series, N -dimensional initial state x(0) ∈ RN in
the reservoir and the L-dimensional output series y =
(y(0), y(1), . . . , y(T−1)), the update equations of entire sys-
tem are as follows:

x(t+ 1) = f(Wresx(t) +Winu(t+ 1)) (1)
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Figure 2: Comparison between RNN/LSTM and ESN. The red lines
are adaptable, and the black ones are fixed.

y(t+ 1) = fout(Woutx(t+ 1)) (2)
whereWin,Wres,Wout denote the connection weights from
the input layer to the reservoir layer, the reservoir to itself and
the reservoir to the output layer, respectively. Win, Wres are
initialized randomly and fixed. Only Wout is adaptable. f is
the activation function in reservoir (usually tanh(·)) and fout

is the activation function in output layer (usually identity(·)).
An ESN has two core properties for dynamical system i-

dentification.
1) Temporal Kernel: Input time series drive the large reser-

voir and produce echo responses in a high-dimensional state
space, which enables reservoir to play a similar role as the k-
ernel in kernel-based methods. That is, a reservoir can be re-
garded as a temporal kernel and the echo states are non-linear
high-dimensional representations of the input time series.
2) Echo-State Property (ESP)[Jaeger and Haas, 2004]:

The ESP means that inputs with more similar short-term his-
tory will evoke closer echo states, which ensure the dynam-
ical stability of reservoir. ESP also provides the ESN an
important capability called “fading memory” or “short-term
memory”. With this short-term memory, the input history in-
formation from some time past will not easily fade away. In
practice, the ESP is guaranteed by keeping the spectral radius
of the recurrent weight matrix below 1.
Therefore, if skeleton sequences are regarded as multivari-

ate time series generated from an implicit dynamical system,
we can take advantage of ESNs in representing their dynam-
ics.
Hyper-parameters and Initializations There are three

hyperparameters used for a ESN initialization, including IS-
Input Scaling, Sr-Spectral Radius and α-Sparsity.
1) IS is used for the initialization of the matrix Win: the

elements of Win obey the uniform distribution of -IS to IS.
We set IS to 0.1.
2) Sr is the spectral radius of Wres, given by

Wres = Sr · W
λmax(W)

(3)

where λmax(W) is the largest eigenvalue of matrixW and el-
ements ofW are generated randomly in [-0.5, 0.5]. To satisfy
the Echo State Property, Sr should be less than one; we use
Sr=0.99.
3) α denotes the proportion of the non-zero elements in

Wres. We set α to 0.01.

2.2 Convolutional Echo State Network
Combining the benefits of Echo State Networks (temporal k-
ernel, ESP) and Convolutional Neural Networks (multiscale

Figure 3: Multi-channel multiscale convolutional process (Here is
an example with 5 channels, 2 filters and 2 time scales).

feature learning, temporal shift-invariance), we propose an
end-to-end deep neural network we call a Convolutional Echo
State Network (ConvESN) for skeleton-based action recogni-
tion. The general structure is illustrated in Figure 1(a).
In the first stage, we divide the human skeleton data into

five parts: left arm (LA), right arm (RA), left leg (LL), right
leg (RL) and center trunk (CT). A simple action may be per-
formed by one segment (e.g., kicking forward only depends
on one leg) while complex actions require the coordination of
several parts (e.g., running needs the cooperation of arms and
legs).
In the second stage, we input trajectories of skeleton joints

of each part to five separated reservoirs over time and obtain
five parts of echo-state representations. The definition of the
echo-state representation is given by Def.1.
Definition 1 (Echo-State Representation) Assume an N -
neuron reservoir satisfies the ESP, given aK-dimensional in-
put denoted as u(t) at time step t, then according to Eq.1
(update equation), we have a response of N -dimensional
echo-state vector x(t) at time step t, where x(t) =
(x1(t), x2(t), . . . , xN (t)). For a T -length input series u, we
call a matrix X the echo-state representation of u, if X satis-
fies the following equation:

X = F (u) = F ((u(0), u(1), . . . , u(T − 1))T ) (4)

= (x(0), x(1), . . . , x(T − 1))T (5)

=


x1(0) x2(0) . . . xN (0)
x1(1) x2(1) . . . xN (1)

...
... . . .

...
x1(T − 1) x2(T − 1) . . . xN (T − 1)

 (6)

where F denotes the reservoir update operator (Eqn. 1).
x(t) ∈ RN denotes t-th row of X, t ∈ [0, T − 1]. In ad-
dition, we use the notation xj to denote j-th column of X,
j ∈ 1, . . . , N .

Convolution and Pooling The multi-channel multiscale
convolutional procedure (an example with 5 channels, 2 fil-
ters and 2 time scales) is shown in Figure 3. Specifically,
the convolution layer uses multiple filter widths and feature
maps to extract multiscale features from the echo-state rep-
resentations and maintains multiscale temporal invariance by
max-over-time pooling layers.
Let Xi be the echo-state representation from the i-th chan-

nel (here, i ∈ 1, 2, . . . , 5), xi(t) denote its echo-state vector
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at time step t (as t-th row), then we could describe T -length
echo-state representation of i-th channel by

zi0:T−1 = xi(0)⊕ xi(1)⊕ · · · ⊕ xi(T − 1) (7)

where ⊕ is the concatenation operator and zi0:T−1 is matrix
with size T × N i, N i is the size of reservoir of i-th chan-
nel. In a similar way, zit:t+k−1 denotes k-length echo-state
representation from t to t+ k − 1.
Let wk,j ∈ Rk×N denote the jth filter with k-width. Given

Xi ∈ RT×N and a stride of 1, we have temporal windows as
zi0:k−1, zi1:k, . . . , ziT−k+1:T . Then the convolution result with
filter wk,j is given by

ck,j = (c0, c1, . . . , cT−k+1)
T (8)

where cm,m = 1, 2, . . . , T − k + 1 is the convolution result
of m-th sliding window and is defined as

cm = f(
∑
i

αi
k,j · (wk,j ∗ zim:m+k−1) + b) (9)

where f is the nonlinear activation function (e.g., tanh(·)),
αi
k,j is the connection weight from the i-th channel reservoir

to the jth filter with k-width and ∗ denotes the dot-product
operation.
In the pooling layer, we use the max-over-time pooling

operation proposed in [Collobert et al., 2011]. In this way,
the feature extracted by the filter wk,j is defined as dk,j =
max {ck,j}, where {c} denotes the element set of vector c.
The fusion layer is a fully-connected layer, which could

contain several fully-connected layers in our multi-step fu-
sion strategies. In this stage, we fuse the relevant pooled fea-
tures {dk,j} into a single vector. We believe the relationship
of the features between two arms or two legs is close. Hence,
we fuse the information of the two arms and that of two legs,
respectively, and combine all the information in the following
steps. In section 2.4, we will introduce two multi-step fusion
strategies under the ConvESN paradigm.
The final layer is a softmax layer, whose inputs are the fu-

sion features passed through the fully connected layers and
output is defined as the conditional distribution p(Cs|u) over
skeleton action labels, where Cs denotes s-th class of human
actions, and p(Cs|u) is output of the softmax function.

2.3 Training
The loss function of ConvESN is to maximize the logarithm
likelihood function:

L(u) =
N ′∑
n=1

C−1∑
s=0

δ(s− r) ln p(Cs|un) (10)

where u denotes the skeleton training data, Cs is s-th class
of human actions, N ′ denotes the size of train set, δ(·) is the
Kronecker delta and r is the groundtruth label of sample un.
In the following experiments, we use the back-propagation

algorithm and the gradient optimization method ADAM [K-
ingma and Ba, 2014] to optimize parameters in ConvES-
N. Note that the parameters in reservoirs do not need to be
learned, but are randomly fixed.
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Figure 4: Our models of ConvESN corresponding to different fusion
strategies. (a) and (b) are our models with multi-step fusion strategy.

2.4 Fusion strategy
To capture the spatial correlation of five skeleton parts, we
first fuse the features of two arms and two legs respectively.
And then we fuse all the representations. There are two
multi-step fusion strategies to integrate the skeleton informa-
tion.
ConvESN-MSSC As shown in Figure 4(a), this model is
called ConvESN with Multi-Step Single-Channel fusion
(ConvESN-MSSC). In this model, we apply five separate
single-channel CNNs to convolve echo-state representations
of five reservoirs respectively. After that, we fuse the pooled
features corresponding to five parts by three layer-wise
fusion layers.
ConvESN-MSMC ConvESN with Multi-Step Multi-
Channel fusion (ConvESN-MSMC) is illustrated in Figure
4(b), we regard the reservoir LA and the RA as two-channel
inputs to the first filter groups, CT as the single-channel input
of the second filter group, and LL and RL as the two-channel
inputs of the third filter groups. After pooling, all the features
are combined in a fully-connected layer.

3 Experimental Results
3.1 Evaluation Datasets and Settings
We evaluate our proposed ConvESN on four skeleton-based
action recognition benchmarks:
MSR-Action 3D (MSRA3D). [Li et al., 2010] Captured

by Microsoft Kinect-like depth sensor at 15FPS, it provides
skeleton (20 joints) 3D coordinates data for 20 actions per-
formed 2-3 times by 10 subjects, which gives a total of 567 se-
quences with 23797 frames. The MSR-Action 3D task is very
challenging due to its data corruption. In [Zhang et al., 2016],
10 sequences with excessive noise were removed. However,
we use the complete original datasets in order to evaluate its
anti-noise capacity.
HDM05. [Müller et al., 2007] An optical marker-based

motion capture dataset sampled at 120Hz. It contains 3D co-
ordinates of 31 joints for 130 actions performed by 5 non-
professional actors. Following the same protocol in [Cho and
Chen, 2014], we classify some samples of 130 actions into
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the same category, in which samples represent the same ac-
tion (e.g., jogging starting from air and from floor). After this
processing, we obtain 65 action categories.
Florence3D-Action. [Seidenari et al., 2013] Captured by

using Kinect sensor, it contains 3D locations of 15 joints for
9 actions performed 2-3 times by 10 different subjects, giving
a total of 215 sequences. Its challenge is the high intra-class
variations (left-hand actors and right-hand ones) and the p-
resence of actions like drink from a bottle and answer phone
which are quite similar to each other.
UTKinect-Action (UTKA). [Xia et al., 2012] Provides

the 20-joints skeleton coordinates for 10 actions performed
2 times by 10 subjects, captured at 15FPS. There are 195 se-
quences. The frame length of them ranges from 5 to 170 with
an average value of 30.5±20. Again, the challenge is intra-
class variations as in Florence3D-Action, as well as multiple
views.
Implementation Details. The IS of reservoir is 0.1, the

Sr is 0.99, and the reservoir sizes range 100 to 300. For the
multiscale convolutional layer, we choose the width of sliding
windows as 2, 3, & 4 and the number of filters under each
width ranges from 16 to 128. The size of the final fusion
layer is set as 144. It’s worth noting that our ConvESN only
consists of a shallow architecture with a convolution layer and
a max-over-time pooling layer as Figure 4.
Preprocessing is an important step for action recognition,

because include that raw skeleton joints are not in an unified
coordinate system, different joints trajectories have different
levels of smoothness, and samples have various length, etc.
Our preprocessing details are as follows. We normalize the
coordinate system by setting the origin to the average of the
hip center, left, and right joints. We then apply the popular
Savitzky-Golay smoothing filter [Steinier et al., 1972] to s-
mooth the joint trajectories. To reduce computational cost on
the HDM05 dataset we sample every 4 frames. We do not
down-sample the other datasets. Finally, for variable length
trajectories, we pad them with zeros up to a given max-length
value. The machine setup is on an Intel Core i5-6500, 3.20-
GHz CPU 32-GB RAM and a GeForce GTX 980-Ti 6G.

3.2 Experimental Results and Analysis
MSR-Action 3D:We use a standard validation protocol used
by [Li et al., 2010] on the MSR-Action 3D dataset. In this
protocol, we split the whole dataset into three overlapping
subsets (AS1, AS2, AS3) of 8 classes for each one. Within
each set, we adopt cross-subject validation: the subjects 1, 3,
5, 7, 9 are used for training and 2, 4, 6, 8, 10 are used for
testing. The results (average accuracy of AS1, AS2 and AS3)
are reported in Table 1.
As seen from Table 1, ConvESN-MSMC achieves the best

average accuracy with 97.88%. ConvESN-MSSC also per-
forms well with 97.56%. Without removing the 10 exces-
sively noisy sequences, they both outperform the existing ap-
proaches listed in Table 1. The best of other methods is the
work of Zhang et al. [Zhang et al., 2016] with 96.97%, which
was with the 10 noisy sequences removed.
HDM05: Following the protocol used in previous work

[Du et al., 2015], we perform 10-fold cross validation on this
dataset. As shown in Table 2, the best two models with aver-

Table 1: Recognition accuracy (%) on MSR-Action 3D dataset
(Cross-subject Test).

Methods Ave.(%)
Covariance [Hussein et al., 2013] 88.10
HOD [Gowayyed et al., 2013] 91.26
Skeletons Lie group [Vemulapalli et al., 2014] 92.46
DHMM+SL [Lo Presti et al., 2015] 92.91
Random Forest+depth [Zhu et al., 2013] 94.30
Hierarchical LSTM [Du et al., 2015] 94.49
SGWT+SVM [Kerola et al., 2014] 94.77
DMMs+Fisher vectors [Chen and Liu, 2016] 95.97
Gram matrices Representations [Zhang et al., 2016] 96.97
ConvESN-MSSC 97.56
ConvESN-MSMC 97.88

Table 2: Recognition accuracy on HDM05 dataset (10-fold cross
validation).

Methods Ave.(%)
DNN [Cho and Chen, 2014] 95.59
Hierarchical LSTM [Du et al., 2015] 96.92
Deep LSTM [Zhu et al., 2016] 97.25
ConvESN-MSSC 97.08
ConvESN-MSMC 97.25

Table 3: Recognition accuracy on Florence3D-Action dataset (10-
fold cross validation).

Methods Ave.(%)
Multi-Part Bag-of-Poses [Seidenari et al., 2013] 82.00
Skeletons Lie group [Vemulapalli et al., 2014] 90.88
ConvESN-MSSC 91.17
ConvESN-MSMC 91.72

age accuracy are ConvESN-MSMC and Deep LSTM [Zhu et
al., 2016] with 97.25%.
The confusion matrices of ConvESN with MSSC and

MSMC on the HDM05 task are shown in Figure 5. As shown
in Figure 5, the proposed models (ConvESN-MSSC and
ConvESN-MSMC) can recognize most of HDM05 actions
very well. However, there exist several easily-misclassified
action pairs, including class 4 “depositFloorR” vs. class 9
“grabFloorR”, class 5 “depositHighR” vs. class 10 “grab-
HighR”, class 6 “depositLowR” vs. class 11 “grabLowR”.
These action pairs have very similar trajectories because they
all contain two key actions: “deposit” and “grab”. We can-
not distinguish these action pairs well unless we obtains more
information from the context of action processes.
Florence3D-Action: Table 3 shows that ConvESN-MSSC

and ConvESN-MSMC both outperform previous methods.
UTKinect-Action: Table 4 shows our models also achieve

the best performance of 100%. This accuracy is also reached
by the most recent work Zhang et al. [Zhang et al., 2016].

3.3 Contrast Baselines
To demonstrate the efficacy of our combined ESN and CNN,
we compare it to each component separately: 1) ESN alone
with mean-pooling and softmax; 2) CNN alone with the fu-
sion strategy MSSC; 3) CNN alone with MSMC.
Figure 6 shows that muli-step-fusion based ConvESN
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Table 4: Recognition accuracy on UTKinect Action dataset (10-fold
cross validation).

Methods Ave.(%)
Random Forest+depth [Zhu et al., 2013] 87.90
LTBSVM [Slama et al., 2015] 88.50
HOJ3D+HMM [Xia et al., 2012] 90.92
DP+KNN [Devanne et al., 2013] 91.50
Skeletons Lie group [Vemulapalli et al., 2014] 97.08
Gram matrices Representations [Zhang et al., 2016] 100.00
ConvESN-MSSC 100.00
ConvESN-MSMC 100.00

 

Figure 5: Confusion matrices on HDM05: ConvESN-MSSC (Left)
-97.08%; ConvESN-MSMC (Right) -97.25%

(ConvESN-MSMC and ConvESN-ESSC) are both better
than the contrast baselines CNN alone without action e-
choes (CNN-MSMC and CNN-MSSC). In additional, we al-
so demonstrate that the original ESN with soft-max is a poor
classifier with the CNN decoder. Thus, the combination of an
ESN to represent the temporal dynamics of the signal, with
the decoding capacity of the shallow CNN, gives the best of
both worlds.

3.4 Computational Efficiency Discussions
Compared with the standard ESN, our ConvESN does’t add
significant computational cost, because it still processes the
signal in linear time and the feed-forward CNN is a fixed cost
on top of that.
Compared with other, more complex recurrent models such

as Hierarchical or Deep LSTMs, the ESN automatically pro-
duces ESRs in a high-dimensional echo state space without
training, and has been effective in the field of (chaotic) time
series forecasting [Jaeger and Haas, 2004]. LSTM network-
s typically require extensive training via back-propagation
through time (BPTT). For the HDM05, ConvESN-MSMC
took 157s to produce all of the 200-D action echoes from
2339 sequences. Training the convnet took 23s per epoch.
During testing, it runs at 780 sequences per second. Hier-
archical LSTM [Du et al., 2015] reported their training time
at about real time. Our model trains about 7 times faster in
equivalent circumstances, not counting the one-time genera-
tion of the echo states. On the other hand, the CNN in our
framework retains the merits of weight sharing and structural
conciseness, which largely reduces the size of the parameter
space.

4 Conclusion
In this paper, we study the problem of 3D skeleton-based hu-
man action recognition and introduce a novel end-to-end neu-
ral network, the Convolutional Echo State Network (ConvES-

Figure 6: Results (Accuracy(%) of three contrast baselines from
ConvESN on MSR-Action 3D and HDM05.

N). ConvESN incorporates modeling dynamics, multiscale
temporal features extraction and actions classification in an u-
nified framework. Experiments on benchmarks achieve state-
of-the-art accuracy. These results verify that, with abundant
action echo states, the dynamics and multiscale features of
action recognition can be efficiently learned by an additional
convolutional layer and a pooling layer of the CNN. Con-
vESN is a novel framework that bridges the reservoir com-
puting and deep learning research fields, balancing high per-
formance and model complexity. The action echo states are
well-suited to represent 3D skeleton-based action sequences
and have the potential to be combined with deeper learning
models for more complex sequence recognition.
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