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Abstract
Data sparsity is one of the most challenging
problems for recommender systems. One promis-
ing solution to this problem is cross-domain rec-
ommendation, i.e., leveraging feedbacks or rat-
ings from multiple domains to improve recom-
mendation performance in a collective manner. In
this paper, we propose an Embedding and Map-
ping framework for Cross-Domain Recommen-
dation, called EMCDR. The proposed EMCDR
framework distinguishes itself from existing cross-
domain recommendation models in two aspects.
First, a multi-layer perceptron is used to cap-
ture the nonlinear mapping function across do-
mains, which offers high flexibility for learning
domain-specific features of entities in each do-
main. Second, only the entities with sufficient data
are used to learn the mapping function, guarantee-
ing its robustness to noise caused by data sparsity
in single domain. Extensive experiments on two
cross-domain recommendation scenarios demon-
strate that EMCDR significantly outperforms state-
of-the-art cross-domain recommendation methods.

1 Introduction
With the explosively growing amount of online information,
recommender system becomes an important tool to help users
efficiently find their desired information [Adomavicius and
Tuzhilin, 2005; Shen et al., 2014]. Collaborative filtering is
widely adopted in recommender systems [Sarwar et al., 2001;
Koren et al., 2009], which assumes that users and items that
are similar in history will also be similar in future. Among
existing collaborative filtering methods, Matrix Factoriza-
tion (MF) gains great success in the last decade [Mnih and
Salakhutdinov, 2007]. MF formalizes the recommendation
problem into a matrix completion problem, recovering a user-
item rating matrix by factorizing it into a low-rank user matrix
and a low-rank item matrix. The recommendation accuracy
of MF heavily depends on the rating matrix. Unfortunately,
the rating matrix is often highly sparse in practical scenarios,
forming a hard barrier for MF to be widely used in realistic
recommender systems [Schein et al., 2002; Lin et al., 2013;
Zhou et al., 2011]. Moreover, the rating matrix is unevenly

distributed, i.e., a majority of inactive users express prefer-
ence on a small number of items and a majority of unpopular
items get few feedbacks. Such a data sparsity problem is par-
ticularly severe for newly joining users and newly arriving
items, forming the so-called cold-start problem.

Cross-domain recommendation was proposed to combat
the long-standing data sparsity problem, which leverages
feedbacks or ratings from multiple domains to improve rec-
ommendation accuracy in a collective manner [Singh and
Gordon, 2008; Zhang et al., 2012]. Existing methods for
cross-domain recommendation fall into two main types, deal-
ing with the data sparsity problem in different scenarios. The
first type works in an asymmetric way, aiming to leverage
data in an auxiliary domain to alleviate data sparsity of the
target domain [Li et al., 2009a; 2009b; Pan et al., 2010]. In
this scenario, knowledge or patterns learned from the auxil-
iary domain is directly transferred to the target domain, acting
as regularization or priors to improve recommendation accu-
racy. For these methods, the key is to identify the appropriate
knowledge that can be transferred from the auxiliary domain
to the target one. However, without fully leveraging the data
in both domains, the capacity of these methods is limited. The
second type of methods works in a symmetric way, assum-
ing that both the auxiliary and target domains suffer from the
data sparsity problem, and anticipates that these domains can
complement each other [Singh and Gordon, 2008; Agarwal et
al., 2011; Jamali and Lakshmanan, 2013; Li and Lin, 2014;
Liu et al., 2015]. In this scenario, there is no distinction be-
tween the auxiliary domain and the target domain, i.e., both
domains are treated equally. All domains work in a collective
way to combat data sparsity. These methods generally learn
a mapping function across domains, explicitly distinguish-
ing domain-specific factors from domain-sharing factors. The
main drawback or concern about these methods is that learn-
ing both domain-specific and domain-sharing factors is likely
to further exacerbate data sparsity.

In this paper, we study the cross-domain recommendation
problem from an embedding and mapping perspective, which
is in line with the aforementioned second type of methods,
i.e., learning a mapping function across domains. We inves-
tigate two key issues of cross-domain recommendation: (1)
How to represent the mapping function across domains, in
linear or nonlinear format? (2) Which part of data should
be leveraged to learn the mapping function, all available
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Figure 1: Illustrative diagram of the EMCDR framework.

data in both domains or just part of them? These two ques-
tions are very tricky: While a nonlinear mapping function
has high flexibility in characterizing the complex relationship
across domains, it requires more data for training and may
be easily over-fitted in cross-domain recommendation with
a high data sparsity problem. Meanwhile, not all the users
or items are useful for learning the mapping function. It has
been shown that the users/items that are inactive/unpopular
in both domains is harmful in learning a cross-domain map-
ping function [Man et al., 2015]. In this paper, we give our
answers to the above two questions and thus propose an Em-
bedding and Mapping framework for Cross-Domain Recom-
mendation, called EMCDR. We validate the effectiveness of
EMCDR on two cross-domain recommendation scenarios by
comparing it to state-of-the-art cross-domain recommenda-
tion methods.

2 The Proposed EMCDR Framework
In this section, we formulate the cross-domain recommenda-
tion problem and present the EMCDR framework.

Suppose we have two domains which share the same users
and/or items. Users/items appearing in only one domain can
be regarded as the upcoming users/items in the other domain.
In this sense, these two domains also share the same users
and items. Without loss of generality, one domain is referred
to as the source domain and the other as the target domain.
Let U = {u1, u2, ....} and V = {v1, v2, ...} be the user and
item sets, Rs and Rt be two rating matrices from the source
and target domains respectively, where Rsij is the rating that
user ui gives to item vj in the source domain and Rtij is the
corresponding rating in the target domain.

Given two partially observed matrices, Rs and Rt, and
cross-domain user and item sets, U and V , we aim to make
recommendation for those users and/or items in the target
domain with little information, by leveraging information
across domains. For this purpose, we propose the Embed-

Algorithm 1 The EMCDR framework.

Require:
Source domain Rs, target domain Rt;
User set U , item set V;

Ensure:
Make recommendation for entities in the target domain:
{u ∈ Rs&u /∈ Rt} / {v ∈ Rs&v /∈ Rt};

Latent Factor Model
1: Learn {Us, V s} from Rs;
2: Learn {U t, V t} from Rt;
Latent Space Mapping
3: Learn the mapping function fU (·) (fV (·)) by users across

domains
Cross-domain Recommendation
4: Get affine factors Û t (V̂ t ) of target users
5: Make recommendation for target users (items)

ding and Mapping framework for Cross-Domain Recommen-
dation (EMCDR). This framework contains three major steps,
i.e., latent factor modeling, latent space mapping and cross-
domain recommendation, as illustrated in Figure 1.

At the first step, we aim to find the representation of
users/items in the latent space by latent factor models [Ko-
ren et al., 2009; Man et al., 2016]. Latent factor model as-
sumes that there is a factor associated with each user and each
item, and the observed user-item ratings are actually the re-
sults of interactions between the latent factors of users and
items. The factors of users and items in latent spaces can be
represented as feature vectors. We denote the latent factors
learned from the source domain Rs as {Us, V s} and the tar-
get domain as {U t, V t}. At the second step, we model the
cross-domain relationships of users/items through a mapping
function. We assume that there is an underlying mapping re-
lationship between the user/item feature vectors of the source
and target domains, and further use a mapping function to
capture this relationship. Formally, given user ui’s feature
vectors in the two domains, Usi and U ti , we adopt a map-
ping function f(·; θ) to capture the cross-domain relationship
U ti = f(Usi ; θ), where θ is the parameter of the mapping
function. Finally, at the third step, we make recommendation
for one new user/item in the target domain. We can obtain
the corresponding latent factor in the target domain, with the
help of the latent factor in the source domain and the mapping
function. The complete EMCDR framework is presented in
Algorithm 1.

3 The EMCDR Models
In this section, we implement the proposed EMCDR frame-
work into different models with two different latent factor
models, and two latent space mapping functions.

3.1 Latent Factor Modeling
As aforesaid, the first step of the EMCDR framework aims
to learn the latent factors of entities (i.e., users and/or items)
in both source and target domains, respectively. In this paper,
two different models, namely MF [Koren et al., 2009] and
BPR [Rendle et al., 2009], are employed in the framework,
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offering us a rating-oriented recommendation algorithm and
a ranking-oriented one. MF decomposes a rating matrix into
two low-dimensional matrices. Let R be an |U| × |V| rating
matrix,K be the dimension of latent factors,U be theK×|U|
user latent factor matrix where the ith column Ui represents
the latent factor of user ui, and V be the K × |V| item latent
factor matrix where the jth column Vj represents the latent
factor of item vj . With Gaussian observation noise, the prob-
ability that the rating Rij is observed for one user-item pair
(ui, vj) is modeled as [Mnih and Salakhutdinov, 2007]

p(Rij |Ui, Vj ;σ2) = N (Rij |UTi Vj , σ2), (1)

where N (x|µ, σ2) is the probability density function of the
Gaussian distribution with mean µ and variance σ2.

MF maximizes the probability of the conditional distribu-
tion over observed rating matrixR, forming the following op-
timization problem

min
U,V

∑
i

∑
j

||Iij · (Rij − UTi Vj)||2F

+λU
∑
i

||Ui||2F + λV
∑
j

||Vj ||2F

 ,

(2)

where the indicator variable Iij = 1 if user i has a rating on
item j; otherwise, Iij = 0. ||·||2F denotes the Frobenius norm,
λU and λV are the coefficients for the regularization terms.

Different from MF that optimizes a rating based objective
function, BPR adopts a preference ranking approach that op-
timizes a ranking based objective function. BPR first creates
a training set D : U × V × V , composed by preference pairs,
from the original rating matrix

D := {(ui, vj , vl)|Rij > Ril}. (3)
The probability of a preference pair (Rij , Ril), given the la-
tent factor {Ui, Vj , Vl}, is modeled as

p(Rij > Ril) = σ(UTi Vj − UTi Vl), (4)
where σ(·) is the sigmoid function. BPR then optimizes the
following objective function, derived from the posterior prob-
ability of the latent factors

min
U,V

 ∑
(ui,vj ,vl)∈D

−lnσ(UTi Vj − UTi Vl)

+λU
∑
i

||Ui||2F + λV
∑
j

||Vj ||2F

 .

(5)

The parameters of both MF and BPR models can be es-
timated by optimizing the objective functions via stochastic
gradient descent. The latent factors learned by the MF and
BPR models (e.g., user factors U ) can be viewed as a set of
coordinates in the latent space. Later on, we employ these
coordinates as implicit features to learn a mapping function
across different domains. For the MF model, given a rating
Rij for the user-item pair (ui, vj), the updating rules are

Ui ← Ui − η · {(Rij − UTi Vj)Vj + λUUi},
Vj ← Vj − η · {(Rij − UTi Vj)Ui + λV Vj}

(6)

where Ui and Vj represent the latent factors of user ui and
item vj respectively, λU and λV are regularization terms, and
η is the learning rate.

For the BPR model, a training set composed by preference
pairs is first constructed. Then, in the learning step, given a
preference pair Rijl = {Rij > Ril}, the updating rule is

Θ← Θ + η ·
(

e−x̂ijl

1 + e−x̂ijl
· ∂
∂Θ

x̂ijl − λΘΘ

)
. (7)

Here, Θ ∈ {Ui, Vj , Vl}, x̂ijl = UTi Vj −UTi Vl, λΘ is regular-
ization terms for latent factors, and η is the learning rate.

3.2 Latent Space Mapping
With the latent factor models, we can get the latent factors,
{Us, V s, U t, V t}, of users and items in the source and tar-
get domains. We assume that the relationship across domains
could be captured by a mapping function. In what follows,
we propose two different mapping functions: one is a linear
function, and the other is a nonlinear function based on Multi-
Layer Perceptron (MLP) [Ruck et al., 1990].

To obtain the mapping function, we formalize the learning
procedure as a supervised regression problem. Specifically,
we minimize the mapping loss to get the mapping function

min
θ

∑
ui∈U

L(fU (Usi ; θ), U ti ), (8)

where L(·, ·) is the loss function defined on the mapping re-
sult of the feature vector from the source domain and the
corresponding feature vector from the target domain. Since
the input and output of the mapping function are multi-
dimensional numerical vectors, we choose square loss as the
loss function.

Similarly, the optimization problem of the mapping func-
tion on the item side can be represented as

min
θ

∑
vj∈V

L(fV (V sj ; θ), V tj ). (9)

Linear Mapping. The latent space mapping problem can be
solved using a linear mapping method [Mikolov et al., 2013].
Here a mapping function is defined as a transfer matrix M .
Taking the user side for example, the goal is to find M such
that M ×Usi approximates U ti for all users across source and
target domains. In practice, M can be learned via the follow-
ing optimization problem

min
M

∑
ui∈U

L(M × Usi , U ti ) + Ω(M), (10)

where L(·, ·) is the loss function and Ω(M) is the regulariza-
tion on the transfer matrix.
MLP-based Nonlinear Mapping. In this study, we also em-
ploy an MLP to cope with the latent space matching problem,
as shown in Figure 1. Adopting an MLP as the mapping func-
tion has the following advantages. First, as the input and out-
put of the mapping function areK-dimensional vectors, MLP
is convenient to capture such input-output structure. Second,
MLP is a nonlinear transformation, which is more flexible
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Table 1: Statistics of the MovieLens-Netflix dataset.

Statistics MovieLens Netflix
Num. of movies 5,871 5,871
Num. of users 69,258 70,132

Num. of ratings 7,891,832 11,658,783

than a linear mapping function. Finally, MLP is easy to be op-
timized by back propagation methods [Le Cun et al., 1990].
Specifically, the optimization problem can be formalized as

min
θ

∑
ui∈U

L
(
fmlp(U

s
i ; θ), U ti

)
, (11)

where fmlp(·; θ) is the MLP mapping function, θ is its pa-
rameter set, which are the weight matrices and bias terms be-
tween layers.

In order to obtain the MLP mapping function, in this paper
we adopt stochastic gradient descent to learn the parameters.
Looping through the training set, with any user ui across both
source and target domains, we refresh the parameters of the
MLP. The back propagation algorithm is employed to calcu-
late the gradients of the parameters. The iterative process is
stopped until the model converges.

3.3 Cross-domain Recommendation
Given a user/item in the target domain, without sufficient in-
formation we cannot estimate a promising latent factor for
it to make recommendation. However, with the latent factor
learned for it in the source domain, as well as the mapping
function between the source and target domains, we can get
an affine latent factor for it in the target domain. For example,
give a user ui in the target domain, we can get its affine factor
Û ti by the following equation

Û ti = f(Usi ; θ), (12)

where Usi is its latent factor in the source domain and f(·; θ)
is the mapping function. Next, the recommendation is done
base on this affine latent factor.

4 Experiments
4.1 Experiments Setup
Datasets. Two real-world datasets are adopted for evalua-
tion. The first dataset, MovieLens-Netflix, contains users and
aligned movies from two public benchmark sets, namely the
Netflix Prize and the MovieLens project. Over 5, 000 movies
are shared across Netflix and MovieLens according to the
IMDB information. Users in the two platforms are quite dif-
ferent, forming an item-shared cross-domain scenario. The
second dataset was crawled from an online social network,
i.e., Douban [Huang et al., 2012], where users give rating to
books and movies, forming a natural cross-domain scenario
with shared users. Statistics of the two datasets are shown
in Table 1 and Table 2. In this paper, we take MovieLens
as source domain and Netflix as target domain for the item-
shared scenario. For the user-shared scenario, movie is taken
as source domain, and book is taken as target domain.

Table 2: Statistics of the Douban dataset.

Statistics Movie Book
Num. of users 10,000 10,000
Num. of items 25,342 51,204

Num. of ratings 2,287,712 832,103

Experiment Setup. To evaluate the validity and efficiency of
the proposed framework on the cross-domain recommenda-
tion task, we randomly remove all the rating information of
a fraction of entities in the target domain and take them as
cross-domain cold-start entities for making recommendation.
For the sake of stringency of the experiments, we set differ-
ent fractions for cold-start entities, namely, 10%, 20%, 30%,
40%, and 50%. In addition, since different sets of cold-start
entities may affect the final recommendation results, we re-
peatedly sample users/items for L times to generate different
sets. We report the average results and standard deviations
over these L different sets. Specifically, we set L as 10 in the
experiments.

Dimension K of the latent factor is set as 20, 50, and
100. The learning rate and regularization coefficients are op-
timized via 5-fold cross validation on the training dataset. For
the linear mapping function, the size of the permutation ma-
trix isK×K, and the regularization coefficient λM is chosen
as 0.01; for the MLP mapping function, we choose the struc-
ture of the MLP as one-hidden layer, the dimension of the
input and output of the MLP is set as K, whilst the number
of nodes in the hidden layer is set as 2 ×K. The weight and
bias parameters of the MLP is initialized according to the rule
in [Glorot and Bengio, 2010]. We use minibatch with a size of
16 and no momentum is used. Finally, a tan-sigmoid function
is employed as the activation function.
Models for Comparison. In the experiments, we implement
the EMCDR framework into four models by adopting MF or
BPR as the latent factor models and with either a linear or an
MLP based cross-domain mapping function:

• MF EMCDR LIN: It adopts MF as its latent factor
model and a linear cross-domain mapping function;

• MF EMCDR MLP: It also adopts MF as its latent fac-
tor model, but has an MLP based cross-domain mapping
function;

• BPR EMCDR LIN: It employs BPR as its latent factor
model and a linear cross-domain mapping function;

• BPR EMCDR MLP: It also employs BPR as its latent
factor model, but adopts an MLP based cross-domain
mapping function.

We compare these EMCDR models with the following base-
line models and algorithms for validating their merits:

• AVE: It predicts cross-domain entities with the global
average ratings in the target domain;

• CMF [Singh and Gordon, 2008]: In CMF, the latent fac-
tors of entities are shared across the source and target
domains;

• CST [Pan et al., 2010]: It transfers the latent factors
learned in the source domain into the target domain to
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Table 3: Recommendation performance in terms of RMSE on the MovieLens-Netflix dataset.

10% 20% 30% 40% 50%
AVE 1.0845± 0.0011 1.0834± 0.0009 1.0853± 0.0009 1.0864± 0.0008 1.0859± 0.0013

K=20

CMF 0.9251± 0.0006 0.9280± 0.0011 0.9313± 0.0004 0.9337± 0.0009 0.9359± 0.0007
CST 0.9170± 0.0007 0.9205± 0.0009 0.9220± 0.0006 0.9265± 0.0011 0.9311± 0.0005
LFM 0.9162± 0.0008 0.9198± 0.0011 0.9223± 0.0007 0.9259± 0.0005 0.9290± 0.0005

MF EMCDR LIN 0.9160± 0.0006 0.9192± 0.0007 0.9220± 0.0005 0.9258± 0.0009 0.9289± 0.0007
MF EMCDR MLP 0.8988± 0.0009* 0.9018± 0.0006* 0.9041± 0.0008* 0.9078± 0.0005* 0.9092± 0.0004*

K=50

CMF 0.9226± 0.0004 0.9258± 0.0007 0.9279± 0.0009 0.9301± 0.0007 0.9328± 0.0005
CST 0.9163± 0.0007 0.9193± 0.0010 0.9224± 0.0003 0.9229± 0.0003 0.9263± 0.0005
LFM 0.9152± 0.0008 0.9177± 0.0007 0.9199± 0.0009 0.9220± 0.0005 0.9253± 0.0007

MF EMCDR LIN 0.9141± 0.0011 0.9163± 0.0009 0.9189± 0.0007 0.9210± 0.0004 0.9241± 0.0007
MF EMCDR MLP 0.8960± 0.0009* 0.8987± 0.0005* 0.9015± 0.0005* 0.9040± 0.0006* 0.9068± 0.0007*

K=100

CMF 0.9201± 0.0004 0.9224± 0.0007 0.9245± 0.0007 0.9273± 0.0011 0.9297± 0.0006
CST 0.9137± 0.0007 0.9163± 0.0003 0.9193± 0.0005 0.9234± 0.0007 0.9265± 0.0006
LFM 0.9131± 0.0005 0.9154± 0.0007 0.9179± 0.0009 0.9201± 0.0011 0.9233± 0.0009

MF EMCDR LIN 0.9119± 0.0005 0.9142± 0.0007 0.9169± 0.0005 0.9193± 0.0007 0.9218± 0.0009
MF EMCDR MLP 0.8939± 0.0007* 0.8962± 0.0005* 0.8991± 0.0009* 0.9010± 0.0007* 0.9036± 0.0008*

Significantly outperforms LFM at the: * 0.01 level, paired t-test

Table 4: Recommendation performance in terms of AUC on the MovieLens-Netflix dataset.

10% 20% 30% 40% 50%

K=20

CMF 0.6132± 0.0005 0.6110± 0.0007 0.6093± 0.0006 0.6071± 0.0008 0.6048± 0.0007
CST 0.6351± 0.0004 0.6312± 0.0007 0.6295± 0.0007 0.6265± 0.0007 0.6233± 0.0006
LFM 0.6421± 0.0007 0.6402± 0.0006 0.6378± 0.0009 0.6350± 0.0010 0.6325± 0.0004

BPR EMCDR LIN 0.6730± 0.0008 0.6702± 0.0009 0.6681± 0.0004 0.6652± 0.0007 0.6631± 0.0005
BPR EMCDR MLP 0.6892± 0.0007* 0.6869± 0.0008* 0.6828± 0.0004* 0.6803± 0.0002* 0.6782± 0.0009*

K=50

CMF 0.6153± 0.0009 0.6132± 0.0007 0.6118± 0.0010 0.6094± 0.0007 0.6072± 0.0008
CST 0.6372± 0.0003 0.6342± 0.0010 0.6332± 0.0007 0.6284± 0.0005 0.6263± 0.0006
LFM 0.6445± 0.0009 0.6424± 0.0007 0.6401± 0.00011 0.6378± 0.0014 0.6350± 0.0007

BPR EMCDR LIN 0.6752± 0.0007 0.6724± 0.0010 0.6700± 0.0009 0.6681± 0.0005 0.6659± 0.0009
BPR EMCDR MLP 0.6919± 0.0004* 0.6892± 0.0009* 0.6860± 0.0004* 0.6835± 0.0009* 0.6808± 0.0004*

K=100

CMF 0.6176± 0.0009 0.6154± 0.0010 0.6142± 0.0006 0.6110± 0.0008 0.6095± 0.0009
CST 0.6396± 0.0007 0.6364± 0.0009 0.6340± 0.0005 0.6305± 0.0011 0.6272± 0.0006
LFM 0.6470± 0.0008 0.6448± 0.0010 0.6426± 0.0006 0.6399± 0.0006 0.6378± 0.0007

BPR EMCDR LIN 0.6778± 0.0004 0.6746± 0.0005 0.6722± 0.0009 0.6703± 0.0010 0.6684± 0.0007
BPR EMCDR MLP 0.6948± 0.0004* 0.6922± 0.0008* 0.6900± 0.0007* 0.6876± 0.0006* 0.6852± 0.0005*

Significantly outperforms LFM at the: * 0.01 level, paired t-test

combat the sparsity problem and improve the perfor-
mance of cross-domain recommendation. This method
is one state-of-the-art transfer learning method for cross-
domain recommendation.

• LFM [Agarwal et al., 2011]: In LFM, each entity
has a global latent factor shared across domains. The
domain-dependent factor for each entity is generated
from the global one by multiplying it with a domain-
specific transfer matrix. This method is one state-of-the-
art method for cross-domain recommendation in sym-
metric way.

Several other cross-domain recommendation methods exist,
with comparable performance with the selected baselines.
Limited by space, we cannot list all of them in this paper.
We select the above methods as baselines, since they are rep-
resentative methods of two types of cross-domain recommen-
dation, asymmetric and symmetric manners.
Metrics. For MF-based EMCDR models (MF EMCDR LIN
and MF EMCDR MLP), we evaluate the recommendation
performance in terms of Root Mean Squared Error (RMSE).
For BPR-based EMCDR models (BPR EMCDR LIN and
BPR EMCDR MLP), average AUC statistic is employed for
evaluating the recommendation performance.

4.2 Experimental Results
Recommendation Performance. Experimental results of
RMSE and AUC on the MovieLens-Netflix dataset are pre-
sented in Tables 3 and 4, respectively. Note that since the
AVE recommendation method provides an equal recommen-
dation for all user-item pairs, we do not report the AUC val-

ues for it. From these two tables, we can see that the AVE
recommendation method exhibits the worst performance as a
trivial method. The EMCDR models with either the linear or
the nonlinear cross-domain mapping functions outperform all
baseline models in terms of both RMSE and AUC metrics.
Moreover, the results demonstrate that the EMCDR models
with MLP mapping function bring significant improvement
as compared to the EMCDR models with linear mapping
function and other baselines. For example, when K = 20
and the target fraction of users is 10%, the average RMSE
of the MF EMCDR MLP model is 0.8988, indicating that
it outperforms the CMF model by 2.8%, the CST model by
2.0%, the LFM model by 1.9%, and the MF EMCDR LIN
model by 1.9%. The average AUC of the BPR EMCDR MLP
model is 0.6892, which outperforms the CMF, CST, LFM,
and BPR EMCDR LIN models by 12.4%, 8.5%, 7.3%, and
2.4%, respectively.

Next, we report the experimental results on the Douban
dataset, where users are shared across the user-movie and
user-book domains. In this experiment, we randomly remove
a fraction of users in the target domain and then make rec-
ommendation for these users. The experimental results in
terms of RMSE and AUC on the Douban dataset are pre-
sented in Tables 5 and 6, respectively. It can be seen that
the performance of the models on the Douban dataset is ba-
sically consistent with that on the MovieLens-Netflix dataset.
For example, when K = 20 and the fraction of removed
users is 10%, the average RMSE of the MF EMCDR MLP
model is 0.7650, which performs better than the CMF model
by 3.2%, the CST model by 2.6%, the LFM model by
1.9%, and the MF EMCDR LIN model by 0.7%. The aver-
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Table 5: Recommendation performance in terms of RMSE on the Douban dataset.

10% 20% 30% 40% 50%
AVE 0.8360± 0.0005 0.8357± 0.0007 0.8346± 0.0011 0.8354± 0.0019 0.8339± 0.0024

K=20

CMF 0.7903± 0.0009 0.7932± 0.0007 0.7964± 0.0008 0.7992± 0.0009 0.8023± 0.0007
CST 0.7851± 0.0006 0.7891± 0.0003 0.7911± 0.0007 0.7932± 0.0006 0.7951± 0.0004
LFM 0.7801± 0.0011 0.7823± 0.0010 0.7849± 0.0009 0.7876± 0.0007 0.7902± 0.0011

MF EMCDR LIN 0.7704± 0.0007 0.7725± 0.0006 0.7748± 0.0005 0.7781± 0.0007 0.7798± 0.0007
MF EMCDR MLP 0.7650± 0.0006* 0.7672± 0.0005* 0.7697± 0.0004* 0.7718± 0.0010* 0.7746± 0.0009*

K=50

CMF 0.7872± 0.0008 0.7893± 0.0005 0.7923± 0.0009 0.7957± 0.0004 0.7991± 0.0008
CST 0.7810± 0.0007 0.7829± 0.0007 0.7856± 0.0010 0.7882± 0.0007 0.7917± 0.0007
LFM 0.7774± 0.0011 0.7795± 0.0008 0.7819± 0.0008 0.7835± 0.0004 0.7862± 0.0007

MF EMCDR LIN 0.7688± 0.0010 0.7702± 0.0006 0.7735± 0.0009 0.7751± 0.0005 0.7770± 0.0010
MF EMCDR MLP 0.7613± 0.0007* 0.7632± 0.0006* 0.7660± 0.0003* 0.7682± 0.0008* 0.7715± 0.0008*

K=100

CMF 0.7844± 0.0005 0.7873± 0.0007 0.7892± 0.0009 0.7930± 0.0004 0.7964± 0.0003
CST 0.7782± 0.0006 0.7803± 0.0004 0.7823± 0.0011 0.7861± 0.0007 0.7897± 0.0005
LFM 0.7727± 0.0007 0.7753± 0.0006 0.7785± 0.0009 0.7806± 0.0010 0.7830± 0.0010

MF EMCDR LIN 0.7656± 0.0009 0.7683± 0.0008 0.7702± 0.0007 0.7723± 0.0008 0.7741± 0.0009
MF EMCDR MLP 0.7571± 0.0009* 0.7594± 0.0009* 0.7603± 0.0007* 0.7641± 0.0008* 0.7688± 0.0007*

Significantly outperforms LFM at the: * 0.01 level, paired t-test

Table 6: Recommendation performance in terms of AUC on the Douban dataset.

10% 20% 30% 40% 50%

K=20

CMF 0.6553± 0.0007 0.6521± 0.0004 0.6502± 0.0007 0.6479± 0.0010 0.6451± 0.0009
CST 0.6692± 0.0007 0.6682± 0.0006 0.6770± 0.0005 0.6746± 0.0009 0.6701± 0.0007
LFM 0.6737± 0.0010 0.6712± 0.0009 0.6791± 0.0010 0.6772± 0.0006 0.6748± 0.0008

BPR EMCDR LIN 0.7345± 0.0007 0.7310± 0.0004 0.7283± 0.0011 0.7251± 0.0008 0.7219± 0.0007
BPR EMCDR MLP 0.7593± 0.0005* 0.7571± 0.0007* 0.7551± 0.0009* 0.7526± 0.0005* 0.7498± 0.0008*

K=50

CMF 0.6574± 0.0008 0.6542± 0.0007 0.6525± 0.0011 0.6502± 0.0009 0.6475± 0.0012
CST 0.6694± 0.0007 0.6673± 0.0009 0.6749± 0.0008 0.6735± 0.0007 0.6714± 0.0006
LFM 0.6752± 0.0011 0.6734± 0.0008 0.6812± 0.0007 0.6797± 0.0008 0.6763± 0.0010

BPR EMCDR LIN 0.7377± 0.0009 0.7336± 0.0012 0.7301± 0.0013 0.7276± 0.0007 0.7240± 0.0008
BPR EMCDR MLP 0.7612± 0.0004* 0.7594± 0.0006* 0.7579± 0.0009* 0.7547± 0.0005* 0.7516± 0.0007*

K=100

CMF 0.6597± 0.0004 0.6568± 0.0005 0.6527± 0.0009 0.6521± 0.0007 0.6496± 0.0008
CST 0.6721± 0.0005 0.6523± 0.0008 0.6491± 0.0010 0.6452± 0.0004 0.6401± 0.0003
LFM 0.6778± 0.0007 0.6589± 0.0011 0.6549± 0.0009 0.6545± 0.0007 0.6518± 0.0003

BPR EMCDR LIN 0.7390± 0.0010 0.7354± 0.0010 0.7328± 0.0008 0.7297± 0.0006 0.7263± 0.0003
BPR EMCDR MLP 0.7633± 0.0008* 0.7623± 0.0005* 0.7593± 0.0007* 0.7571± 0.0009* 0.7534± 0.0003*

Significantly outperforms LFM at the: * 0.01 level, paired t-test
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Figure 2: Performance of cross-domain recommendation with re-
spect to different levels of training sets for k = 20 and the training
size is 10%.

age AUC of the BPR EMCDR MLP model is 0.7593, sug-
gesting performance improvement over the CMF, CST, LFM,
and BPR EMCDR LIN models by 12.7%, 13.5%, 15.9%,
and 3.4%, respectively.
Mapping Function Learning. We now investigate how the
performance of EMCDR is affected by the entities that are
used for learning the mapping function across domains. Tak-
ing cross-domain movie recommendation as an example, we
choose the top-p percent of popular movies, with p ranging
from 0.1 to 1. Results are shown in Figure 2. When p is
small, the performance increases with p, indicating that the
performance could be improved integrating more entities for
training the mapping function. However, when p surpasses a

threshold, the performance decreases with p. This indicates
that when unpopular and even cold entities are involved in
the learning of mapping function, and the performance of the
cross-domain recommendation is negatively affected.

5 Conclusions
In this paper we presented an embedding-and-mapping
framework for tackling cross-domain recommendation,
called EMCDR. We first employed latent factor models to
project users/items in both source and target domains into
two different latent spaces. We then learned a mapping func-
tion between latent spaces to capture the coordinate relation-
ship across the two domains. For a user/item in the target
domain, we make recommendation by mapping its factor in
the source domain into the target domain. Moreover, to learn
an appropriate mapping function, we proposed a training set
selection strategy based on the popularity of entities, where
only active users and popular items are leveraged to learning
the mapping function. Experiments conducted on two cross-
domain recommendation scenarios convincingly demonstrate
that the proposed models can significantly improve the qual-
ity of cross-domain recommendation.
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